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 THERE IS NO STRONGLY LOCALLY
 ANTISYMMETRIC SET

 A function f : R R (where il is a real line) is said to be locally symmetric
 if for each x € R there is a 8X > 0 such that f(x + h) = fix - h) holds for each
 h, 0 < h < Sx. This notion was introduced in [F]. A full description of locally
 symmetric functions is known ([D], [R], [T]): these functions are constant on all
 but, at most a countable set.

 We will say that the set S C R is strongly locally symmetric, if its characteristic
 function is locally symmetric, i.e., for every x G R there is a 6X > 0 such that for
 each h, 0 < h < 6X, x + h G S if and only if x - h G S. Answering a query by
 Evans and Weil [EW], Rusza proved ([R]) that for every strongly locally symmetric
 subset S of R, either the closure of S or the closure of R - S is countable.

 In his paper [M] S. Marcus suggested investigating both symmetry and its
 polar opposite, antisymmetry, of sets and functions. This motivates the following
 definition:

 Definition. A set A C R is said to be strongly locally antisymmetric (SLA) if
 for every x G R there exists aif>0 such that for each h, 0 < h < 6X, x + h G A
 if and only if x - h ^ A.

 If A is an SLA set, then it is obviously non-void, because both A and R - A
 have to be dense in R. One can see that any SLA set A is necessarily Lebesgue
 non-measurable. Indeed, let A be a measurable SLA set and x G R. Since A(A fl
 (x - h, x + h )) = A ((R - A) H (x - h, x + h )) = h (where A denotes Lebesgue
 measure) holds for each h, 0 < h < 6X, we have d(x, A) = | where d(x, A) is
 the density of A at x. This contradicts the Lebesgue Density Theorem. In [M]
 S. Marcus asks whether an SLA set really exists. The following theorem gives a
 negative answer to his question.

 Theorem. There is no SLA set.

 Proof. Let A be an SLA set and let / be its characteristic function. Then
 for every x G R there is a 6X > 0 such that for each k, 0 < k < 8X, we have
 |/(a: + k) - f(x - fc)| = 1. Put En = {x : Sx > £} for n = 1,2,... . Then

 423



 U~1 En = R and, according to the Baire Category Theorem, for some m there is
 an interval (a, b ) such that Em is dense in (a, b). Without loss of generality, we may
 assume that b - a< Let x € Em and I = [x - 2 fe, x + 2 fe] C (a, 6). The notation
 is simplified if we assume that I = [- 2fe, 2h], and that Em is dense in (-2 h, 2h). If
 so, choose a negative x' in Em so that and choose a positive
 x" in Em so that 0 < x" - £ < This means that 0 < 2x' + h < 6 h and
 0 < 2 x" - h < 8-h- Clearly, we can also arrange that x" + 2x' < 0 and 2x"+x' > 0.

 Let us define the following intervals:

 11 = [-2hì2x' + 2h] = [x'-(x' + 2h),x'+(x' + 2h)]ì

 12 = [ - 2x'ļ 2xf -(- 2 Ä] = [fe - (2x' -ļ- fe), h (2x' -|- fe)],

 /3 = [2a:" + 2x', - 2x/] = [x" + (x" + 2x'), x" - (x" + 2x')],

 /4 = [- 2x", 2x' + 2x"] = [x' - (2x" + x'), x' + (2x" + x')],

 /5 = [- 2x", 2x" - 2fe] = [- fe - (2x" - fe), - fe + (2x" - fe)], and

 le = [2x" - 2fe, 2fe] = [x" - (2fe - x"),x" + (2fe - x")].

 For J = [r, s], let F(J ) = /(s) - /(r). It is straightforward to check that each
 Ii (¿ = 1, . . . , 6) is a subinterval of /, that F (Ii) = +1 or - 1 for each and for / we

 have/(2fe) - /(- 2fe) = F^-Fil^-Fi^-FiQ+Fi^+Fih) = £?=i(±l) =
 even number. Hence |/(2fe) - /(- 2fe)| ^ 1, a contradiction.

 Remark. The family of intervals was used in [T] for an investigation
 of locally symmetric functions.

 Problem. One can define the following polar opposite of locally symmetric
 function: A function / is said to be locally antisymmetric if for each x € R there
 is a 8X > 0 such that |/(x + fe) - f(x - fe)| > Sx holds for each fe, 0 < fe < Sx. It is
 an open problem whether such a function really exists.
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