Pavel Kostyrko, Department of Mathematics, Comenius University, 842 15 Bratislava, Czechoslovakia.

THERE IS NO STRONGLY LOCALLY ANTISYMMETRIC SET

A function $f: R \to R$ (where R is a real line) is said to be locally symmetric if for each $x \in R$ there is a $\delta_x > 0$ such that f(x+h) = f(x-h) holds for each $h, 0 < h < \delta_x$. This notion was introduced in [F]. A full description of locally symmetric functions is known ([D], [R], [T]): these functions are constant on all but, at most a countable set.

We will say that the set $S \subset R$ is strongly locally symmetric, if its characteristic function is locally symmetric, i.e., for every $x \in R$ there is a $\delta_x > 0$ such that for each h, $0 < h < \delta_x$, $x + h \in S$ if and only if $x - h \in S$. Answering a query by Evans and Weil [EW], Rusza proved ([R]) that for every strongly locally symmetric subset S of R, either the closure of S or the closure of R - S is countable.

In his paper [M] S. Marcus suggested investigating both symmetry and its polar opposite, antisymmetry, of sets and functions. This motivates the following definition:

Definition. A set $A \subset R$ is said to be strongly locally antisymmetric (SLA) if for every $x \in R$ there exists a $\delta_x > 0$ such that for each h, $0 < h < \delta_x$, $x + h \in A$ if and only if $x - h \notin A$.

If A is an SLA set, then it is obviously non-void, because both A and R - A have to be dense in R. One can see that any SLA set A is necessarily Lebesgue non-measurable. Indeed, let A be a measurable SLA set and $x \in R$. Since $\lambda(A \cap (x - h, x + h)) = \lambda((R - A) \cap (x - h, x + h)) = h$ (where λ denotes Lebesgue measure) holds for each h, $0 < h < \delta_x$, we have $d(x, A) = \frac{1}{2}$ where d(x, A) is the density of A at x. This contradicts the Lebesgue Density Theorem. In [M] S. Marcus asks whether an SLA set really exists. The following theorem gives a negative answer to his question.

Theorem. There is no SLA set.

Proof. Let A be an SLA set and let f be its characteristic function. Then for every $x \in R$ there is a $\delta_x > 0$ such that for each k, $0 < k < \delta_x$, we have |f(x+k) - f(x-k)| = 1. Put $E_n = \{x : \delta_x > \frac{1}{n}\}$ for n = 1, 2, ... Then $\bigcup_{n=1}^{\infty} E_n = R$ and, according to the Baire Category Theorem, for some m there is an interval (a, b) such that E_m is dense in (a, b). Without loss of generality, we may assume that $b-a < \frac{1}{m}$. Let $x \in E_m$ and $I = [x-2h, x+2h] \subset (a, b)$. The notation is simplified if we assume that I = [-2h, 2h], and that E_m is dense in (-2h, 2h). If so, choose a negative x' in E_m so that $0 < x' - (-\frac{h}{2}) < \frac{1}{2}\delta_h$, and choose a positive x'' in E_m so that $0 < x'' - \frac{h}{2} < \frac{1}{2}\delta_{-h}$. This means that $0 < 2x' + h < \delta_h$ and $0 < 2x'' - h < \delta_{-h}$. Clearly, we can also arrange that x'' + 2x' < 0 and 2x'' + x' > 0.

Let us define the following intervals:

$$I_{1} = [-2h, 2x' + 2h] = [x' - (x' + 2h), x' + (x' + 2h)],$$

$$I_{2} = [-2x', 2x' + 2h] = [h - (2x' + h), h + (2x' + h)],$$

$$I_{3} = [2x'' + 2x', -2x'] = [x'' + (x'' + 2x'), x'' - (x'' + 2x')],$$

$$I_{4} = [-2x'', 2x' + 2x''] = [x' - (2x'' + x'), x' + (2x'' + x')],$$

$$I_{5} = [-2x'', 2x'' - 2h] = [-h - (2x'' - h), -h + (2x'' - h)], \text{ and}$$

$$I_{6} = [2x'' - 2h, 2h] = [x'' - (2h - x''), x'' + (2h - x'')].$$

. .

For J = [r, s], let F(J) = f(s) - f(r). It is straightforward to check that each I_i (i = 1, ..., 6) is a subinterval of I, that $F(I_i) = +1$ or -1 for each I_i , and for f we have $f(2h) - f(-2h) = F(I_1) - F(I_2) - F(I_3) - F(I_4) + F(I_5) + F(I_6) = \sum_{i=1}^{6} (\pm 1) = F(I_1) - F(I_2) - F(I_3) - F(I_4) - F(I_5) - F(I_6) = \sum_{i=1}^{6} (\pm 1) = F(I_1) - F(I_2) - F(I_3) - F(I_4) - F(I_5) - F(I_6) = \sum_{i=1}^{6} (\pm 1) = F(I_1) - F(I_2) - F(I_3) - F(I_4) - F(I_5) - F(I_6) = \sum_{i=1}^{6} (\pm 1) = F(I_1) - F(I_2) - F(I_3) - F(I_4) - F(I_5) - F(I_6) = \sum_{i=1}^{6} (\pm 1) = F(I_1) - F(I_2) - F(I_3) - F(I_4) - F(I_5) - F(I_6) = \sum_{i=1}^{6} (\pm 1) = F(I_6) - F(I$ even number. Hence $|f(2h) - f(-2h)| \neq 1$, a contradiction.

Remark. The family of intervals $\{I_i\}_{i=1}^6$ was used in [T] for an investigation of locally symmetric functions.

Problem. One can define the following polar opposite of locally symmetric function: A function f is said to be locally antisymmetric if for each $x \in R$ there is a $\delta_x > 0$ such that $|f(x+h) - f(x-h)| \ge \delta_x$ holds for each h, $0 < h < \delta_x$. It is an open problem whether such a function really exists.

References

- [D] R.O. Davies: Symmetric sets are measurable, Real Anal. Exchange 4 (1978-79), 87-89.
- [EW] M.J. Evans, C.E. Weil: Query 37, Real Anal. Exchange 3 (1977-78), 407.
- [F] M. Foran: Symmetric functions, Real Anal. Exchange 1 (1976), 38-40.
- [M] S. Marcus: Symmetry in the simplest case: the real line, Computers Math. Applic. 17 (1989), 103-115.
- [R] T.Z. Ruzsa: Locally symmetric functions, Real Anal. Exchange 4 (1978-79), 84-86.
- [T] B.S. Thomson: On full covering properties, Real Anal. Exchange 6 (1980-81), 77-93.

Received March 1, 1991