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INTEGRATION BY PARTS FOR THE FORAN
INTEGRAL

Definition 1. ([1], p.360). Given a natural number N and a set E, a function
F is said to be A(N) on E, if for every € > 0 there is a § > 0 such that if
L,...,Iy,... are nonoverlapping intervals with EN Uy # @ and ¥ |Ix| < é then
there exist intervals Jx,, n = 1,..., N for which

N N
B(F;ENUL)CU U Ik X Jin and .Y |Jknl < e

k n=1 k n=1

Definition 2. Given a natural number N and a set E, a function F is said
to be A(N) on E if for every € > 0 there is a § > 0 such that if I ,..., Ix,...
are nonoverlapping intervals with E N Iy # 0 and 3 |Ix| < é then there exist sets
Ein, n=1,...,N such that UN_, Ex, = ENI; and ¥, SN, O(F; Erp) < €.

Proposition 1. Definition 1 and Definition 2 are equivalent.

Proof. “Definition 1 = Definition 2”: Since B(F; ENUI) C U UN, Ix X Jin
it follows that F(ENIi) C UnN=1 Jin, k > 1. Let Ex, = (ENI) N F~1(Jxyn). Then

UnN=1 Ex, = ENI; and O(F; Ekn) < | Jknl-

“Definition 2 = Definition 1”: Let Ji, = [inf;eE,, F(z), sup,eg,, F(z)].
Then 0(F; Ei,) = |Jin| and F(EN ;) C UY; Jkn.

Definition 3. ([1], p.360). The class F will consist of all continuous func-
tions F' defined on a closed interval I for which there exist a sequence of sets E,
and natural numbers N, such that ] = UE, and F is A(N,) on E,.

Definition 4. A function f : [a,b] — R is Foran integrable if there exists a
function F' € F, F approximately differentiable a.e., such that F, (z) = f(z) a.e.
on [a,b] and

b
() [ f@)ds = F(b) - F(a).
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Lemma 1. Let F,G,H : [a,b] = R, F € VB, G continuous and H(z) =
F(z)-G(z) — (S) [FG(t)dF(t). Let E C [a,b] such that G is A(N) on E. Then
H is continuous on [a,b] and H is A(N?) on E. Moreover, if F is monotone then

H is A(N) on E. (Here (S) [F G(t)dF(t) is the Riemann-Stieltjes integral.)

Proof. Suppose that F is increasing on [a,b], F(a) = 0, F(b) = M,. Let
[¢,d] C [a,b]. By [2] (Theorem 2.1, (i), p.244) we have H(d) — H(c) = (G(d) —
G(c)) - F(d) + (F(d) = F(c)) - G(c) - (S) I G(t)dF(t) = (G(d) — G(c)) - F(d) +
(F(d)— F(c))-(G(c) — A), where A is a number between the bounds of G on [c, d].
Hence

(1)  |H(d) - H(c)| £ Mo - |G(d) — G(c)| + 0(G; [c, d]) - (F(d) — F(c))-

Since G is continuous, by (1) it follows that H is continuous on [a,b]. Let € > 0.
Since G is A(N) on E it follows that there exists a § > 0 such that if I1,...,I,...
are nonoverlapping intervals with EN I # 0 and ¥ |Ix| < & then there exist sets
Ey., n=1,..., N such that LJnN=1 Ey, = ENIyand 3, Zfﬂ 0(G; Ern) < €/(2Mo).
Let n > 0 such that 0(G;I) < €/(2NM,) = ¢, for each interval I C [a,b] with
|I| < n. (This is possible since G is continuous on [a,b].) Let § = min{é,n},
then 0(G; Ii) < ¢, for each k. By (1) it follows that O(H; Ex,) < Mo - 0(G; Ex,) +
0(G; It) - |F(Ix)|. Hence S22, T, O(H; En) < Mo - 32, 01, 0(G; Ein) + N -
e, |F(Ik)| £ Mo-(e/2Mp)+ N - €'- My < €. Hence H is A(N) on E. Suppose
that F is VB on [a,b]. Then F = F; — F;, where F; and F; are increasing and
bounded on [a, ). Let

Hi(z) = Fi(z) - G(z) — (S) / "G(t)dFi(t) and

Ha(z) = Fy(z) - G(z) — (5) / " G(t)dF(t).

Then H(x) = Hi(z) — Hy(z) and Hy,H; € A(N) on E. By [1] ((ii), p.360) it
follows that H is A(N?) on E.

Theorem 1. (An extension of Theorem 2.5 of [2], p.246). Let F,g :
[a,b0) = R be such that F € VB and g is an (F)-integrable function on [a,b].
Then F(z)- g(z) is (F)-integrable and denoting the (F)-indefinite integral of g by
G, we have

b b
(F) / F(z)g(z)dz = G(b) - F(b) — G(a) - F(a) — () / G(z)dF(z).

Proof. G is continuous, G € F and G| (z) = g(z) a.e. on [a,b]. By Lemma 1,
H(z) = F(z)-G(z) — (S) [{ G(t)dF(t) is in F on [a,b]. By [2] (Theorem 2.1, (ii),
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p-244) it follows that H, (z) = F'(z)-G(z)+F(z)-G,,(z)—G(z)-F'(z) = F(z)-9(z)
a.e. on [a,b]. It follows that F(z)- g(z) is (F)-integrable on [a, b] and

(F) / b F(z)-g(z)dz = H(b)— H(a) = F(b)-G(b) - F(a)-G(a)—(S5) / ' G(t)dF(t).

Theorem 2. Let F : [a,b] — R be an increasing function and let g : [a,b] = R
be an (F)-integrable function. Then there ezists c € [a,b] such that

(F) / b g(z) - F(z)dz = F(a) - (F) / ) g(z)dz + F(b) - (F) / b g(z)dz.

Proof. The proof is similar to that of Theorem 2.6 of [2] (p.246), using Theorem
1 instead of Theorem 2.5 of 2] (p.246).

We are indebted to Professor Solomon Marcus for his help in preparing this
article.
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