Vasile Ene, Institute of Mathematics, str. Academiei 14, 70109 Bucharest, Romania.

INTEGRATION BY PARTS FOR THE FORAN INTEGRAL

Definition 1. ([1], p.360). Given a natural number N and a set E, a function F is said to be A(N) on E, if for every $\varepsilon > 0$ there is a $\delta > 0$ such that if I_1, \ldots, I_k, \ldots are nonoverlapping intervals with $E \cap U_k \neq \emptyset$ and $\sum |I_k| < \delta$ then there exist intervals J_{kn} , $n = 1, \ldots, N$ for which

$$B(F; E \cap \cup I_k) \subset \bigcup_k \bigcup_{n=1}^N I_k \times J_{kn} \text{ and } \sum_k \sum_{n=1}^N |J_{kn}| < \varepsilon.$$

Definition 2. Given a natural number N and a set E, a function F is said to be A(N) on E if for every $\varepsilon > 0$ there is a $\delta > 0$ such that if I_1, \ldots, I_k, \ldots are nonoverlapping intervals with $E \cap I_k \neq \emptyset$ and $\sum |I_k| < \delta$ then there exist sets E_{kn} , $n = 1, \ldots, N$ such that $\bigcup_{n=1}^N E_{kn} = E \cap I_k$ and $\sum_k \sum_{n=1}^N 0(F; E_{kn}) < \varepsilon$.

Proposition 1. Definition 1 and Definition 2 are equivalent.

Proof. "Definition 1 \Rightarrow Definition 2": Since $B(F; E \cap \cup I_k) \subset \bigcup_k \bigcup_{n=1}^N I_k \times J_{kn}$ it follows that $F(E \cap I_k) \subset \bigcup_{n=1}^N J_{kn}, k \ge 1$. Let $E_{kn} = (E \cap I_k) \cap F^{-1}(J_{kn})$. Then $\bigcup_{n=1}^N E_{kn} = E \cap I_k$ and $0(F; E_{kn}) \le |J_{kn}|$.

"Definition 2 \Rightarrow Definition 1": Let $J_{kn} = [\inf_{x \in E_{kn}} F(x), \sup_{x \in E_{kn}} F(x)].$ Then $0(F; E_{kn}) = |J_{kn}|$ and $F(E \cap I_k) \subset \bigcup_{n=1}^N J_{kn}$.

Definition 3. ([1], p.360). The class \mathcal{F} will consist of all continuous functions F defined on a closed interval I for which there exist a sequence of sets E_n and natural numbers N_n such that $I = \bigcup E_n$ and F is $A(N_n)$ on E_n .

Definition 4. A function $f : [a, b] \to \overline{R}$ is Foran integrable if there exists a function $F \in \mathcal{F}$, F approximately differentiable a.e., such that $F'_{ap}(x) = f(x)$ a.e. on [a, b] and

$$(\mathcal{F})\int_a^b f(x)dx = F(b) - F(a).$$

Lemma 1. Let $F, G, H : [a, b] \to R$, $F \in VB$, G continuous and $H(x) = F(x) \cdot G(x) - (S) \int_a^x G(t) dF(t)$. Let $E \subset [a, b]$ such that G is A(N) on E. Then H is continuous on [a, b] and H is $A(N^2)$ on E. Moreover, if F is monotone then H is A(N) on E. (Here $(S) \int_a^x G(t) dF(t)$ is the Riemann-Stieltjes integral.)

Proof. Suppose that F is increasing on [a, b], F(a) = 0, $F(b) = M_0$. Let $[c, d] \subset [a, b]$. By [2] (Theorem 2.1, (i), p.244) we have $H(d) - H(c) = (G(d) - G(c)) \cdot F(d) + (F(d) - F(c)) \cdot G(c) - (S) \int_c^d G(t) dF(t) = (G(d) - G(c)) \cdot F(d) + (F(d) - F(c)) \cdot (G(c) - A)$, where A is a number between the bounds of G on [c, d]. Hence

(1)
$$|H(d) - H(c)| \le M_0 \cdot |G(d) - G(c)| + 0(G; [c, d]) \cdot (F(d) - F(c)).$$

Since G is continuous, by (1) it follows that H is continuous on [a, b]. Let $\varepsilon > 0$. Since G is A(N) on E it follows that there exists a $\delta > 0$ such that if I_1, \ldots, I_k, \ldots are nonoverlapping intervals with $E \cap I_k \neq \emptyset$ and $\sum |I_k| < \delta$ then there exist sets E_{kn} , $n = 1, \ldots, N$ such that $\bigcup_{n=1}^N E_{kn} = E \cap I_k$ and $\sum_k \sum_{n=1}^N 0(G; E_{kn}) < \varepsilon/(2M_0)$. Let $\eta > 0$ such that $0(G; I) \leq \varepsilon/(2NM_0) = \varepsilon'$, for each interval $I \subset [a, b]$ with $|I| < \eta$. (This is possible since G is continuous on [a, b].) Let $\delta_1 = \min\{\delta, \eta\}$, then $0(G; I_k) \leq \varepsilon'$, for each k. By (1) it follows that $0(H; E_{kn}) \leq M_0 \cdot 0(G; E_{kn}) + 0(G; I_k) \cdot |F(I_k)|$. Hence $\sum_{k=1}^\infty \sum_{n=1}^N 0(H; E_{kn}) \leq M_0 \cdot \sum_{k=1}^\infty \sum_{n=1}^N 0(G; E_{kn}) + N \cdot \varepsilon' \cdot \sum_{k=1}^\infty |F(I_k)| \leq M_0 \cdot (\varepsilon/2M_0) + N \cdot \varepsilon' \cdot M_0 < \varepsilon$. Hence H is A(N) on E. Suppose that F is VB on [a, b]. Then $F = F_1 - F_2$, where F_1 and F_2 are increasing and bounded on [a, b]. Let

$$H_1(x) = F_1(x) \cdot G(x) - (S) \int_a^x G(t) dF_1(t)$$
 and
 $H_2(x) = F_2(x) \cdot G(x) - (S) \int_a^x G(t) dF_2(t).$

Then $H(x) = H_1(x) - H_2(x)$ and $H_1, H_2 \in A(N)$ on *E*. By [1] ((ii), p.360) it follows that *H* is $A(N^2)$ on *E*.

<u>Theorem 1</u>. (An extension of Theorem 2.5 of [2], p.246). Let $F, g : [a, b] \to R$ be such that $F \in VB$ and g is an (\mathcal{F}) -integrable function on [a, b]. Then $F(x) \cdot g(x)$ is (\mathcal{F}) -integrable and denoting the (\mathcal{F}) -indefinite integral of g by G, we have

$$(\mathcal{F})\int_a^b F(x)g(x)dx = G(b)\cdot F(b) - G(a)\cdot F(a) - (S)\int_a^b G(x)dF(x)dx$$

Proof. G is continuous, $G \in \mathcal{F}$ and $G'_{ap}(x) = g(x)$ a.e. on [a, b]. By Lemma 1, $H(x) = F(x) \cdot G(x) - (S) \int_a^x G(t) dF(t)$ is in \mathcal{F} on [a, b]. By [2] (Theorem 2.1, (ii),

p.244) it follows that $H'_{ap}(x) = F'(x) \cdot G(x) + F(x) \cdot G'_{ap}(x) - G(x) \cdot F'(x) = F(x) \cdot g(x)$ a.e. on [a, b]. It follows that $F(x) \cdot g(x)$ is (\mathcal{F}) -integrable on [a, b] and

$$(\mathcal{F})\int_{a}^{b} F(x) \cdot g(x) dx = H(b) - H(a) = F(b) \cdot G(b) - F(a) \cdot G(a) - (S)\int_{a}^{b} G(t) dF(t).$$

Theorem 2. Let $F : [a, b] \to R$ be an increasing function and let $g : [a, b] \to \overline{R}$ be an (\mathcal{F}) -integrable function. Then there exists $c \in [a, b]$ such that

$$(\mathcal{F})\int_a^b g(x)\cdot F(x)dx = F(a)\cdot (\mathcal{F})\int_a^c g(x)dx + F(b)\cdot (\mathcal{F})\int_c^b g(x)dx.$$

Proof. The proof is similar to that of Theorem 2.6 of [2] (p.246), using Theorem 1 instead of Theorem 2.5 of [2] (p.246).

We are indebted to Professor Solomon Marcus for his help in preparing this article.

References

- [1] Foran, J.: An extension of the Denjoy integral, Proc. Amer. Math. Soc., 49, 359-365 (1975).
- [2] Saks, S.: Theory of the integral, 2nd. rev. ed. Monografie Math. Vol. VII, PWN, Warsaw, 1937.

Received February 27, 1991