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 A Note on the Banach-Steinhaus Theorem1

 §1 Introduction.

 The Baire categories have been used successfully to distinguish between
 "large" and "small" sets in many theorems of analysis. One such theorem is
 the Banach-Steinhaus Theorem whose statement is the following:

 Suppose a family of continuous linear operators in the Banach space X
 is not uniformly bounded with respect to norm. Then the set at which this
 family converges pointwise is of the fìrst category; i.e. it is a countable union
 of nowhere dense sets.

 The purpose of this note is to improve this theorem using the geometric
 notion of set porosity. In recent years, there has been a great deal interest in
 the notion of set porosity in metric spaces. (See [1], [2] and [3].) This is a
 more restrictive notion than "nowhere dense". It is something like "nowhere
 dense with estimate". (Exact defintions will be given in the next section.)
 The following natural question arises: In what theorems can one replace the
 statement that some set is of the first category by the statement that some set
 is <7-porous? This question is meaningful because L. Zajíček [2] proved that in
 any Banach space the notions of first category and cr-porosity are distinct.

 In this note we shall prove that in two well-known cases the replacement
 can be made.

 §2 Definitions.

 A set M in a metric space (X,p) is called porous at x G X if there is a
 positive number a such that for any e > 0 there is a point y in the open ball
 B(x, e) with center x and radius e such that B(y, ap(x , y)) fi M = 0.

 If the above number a can be chosen as close to 1 as we wish, the set M
 is called strongly porous at x.

 A set, M, is called porous if it is porous at all points of M, and strongly
 porous if it is strongly porous at every point of M.

 A countable union of porous sets is called cr-porous , etc.

 1 The author is grateful to the editors for their attention to his paper.
 The editors hope their efforts are worthy of the autor's gratitude.
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 §3 The Main Lemma.

 LEMMA 1. Let M be a convex nowhere dense set in a Banach space X. Then
 M is strongly porous.

 Proof. Fix x0 G X and e > 0. Take a small positive number 8. Since M
 is nowhere dense, there exists an open ball T such that T C B(x0,e6) and
 TnM = 0. As M is a convex set and T is a convex body which misses M, it
 follows from the Hahn-Banach theorem that there exists a hyperplane Tc which
 separates M and T. This means that there exists a continuous linear functional
 <j> : X - ► R such that <f>' m > c, <1>'t < c for some c G R. Specifically, we take
 c = sup{^(x) : X € T}. In this case we have:

 (1) dist(rc,r) < e6

 where T = {x : <1>(x) = <1>(x0)} is a hyperplane containing x0 and parallel to Tc.
 It is known that if x0 6 T, then for each r > 0 there exists a point y G B(x0,r )
 such that

 (2) dist(y, r) > r(l - 6)

 Note that the point y' which is symmetric to y with respect to x0 also satisfies
 the above inequality. So we can choose y G B(x0, e) such that,
 1. dist(y, rc) > e(l - 28). (This follows from (1) and (2) by the triangle
 inequality.), and

 2. M and y are on opposite sides of Tc (i.e. <f>(y) < c ).
 Therefore, we have

 B(y, (1 - 2 8)p(x0,y)) fi M = 0

 and the lemma is proved.

 REMARK 1. K. Saxe has kindly pointed out that a somewhat more re-
 strictive version of strong porosity is actually proved here. Specifically, for
 every 0 < a < 1 and every x G M there is an e(a) > 0 such that for every
 0 < e < e(a ) there is a y on the boundary of B(x, e) such that B(y, ae)fiM = 0.
 Other analogous versions of porosity can be defined in the obvious way. Lemma
 1 and its corollaries in terms of this stronger version of porosity then remain in
 force without any changes in the proofs.

 §4 Applications.

 We recall the following well known theorem.
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 THEOREM 1. (Banach-Steinhaus) Let X be a Banach space, let Y be a
 normed linear space and let $ be a family of continuous linear operators from
 X to Y . Suppose that âup{||^|| : <ļ> Ç. $} = oo. Then the set E = {a: G X :
 there is an N = N(x) with ||<^(®)||y < N whenever <ļ> € $} is of the first
 category.

 PROPOSITION 1. The above set E is a-strongly porous.

 Proof. This is obvious because E = U~=1£/jv where En = {x € X :
 ||<£(®)||y ^ N for every (f> € $} is a convex nowhere dense set.

 Among numerous corollaries we note the following one.

 COROLLARY 1. The set of functions which have convergent Fourier series
 at a specified point is a-strongly porous in the space C[- 7r, tt] .

 Proof. This follows from the above theorem and the well known fact that

 norms of the linear functionals / - ► Sm(f',t0) (the mth partial sums of the
 Fourier series of /) are unbounded.

 For the second application recall the following theorem of Banach.

 THEOREM 2. (Banach) Let X and Y be Banach spaces and let A: X -*Y
 be a continuous linear operator. Then either >1(X) - Y or A(X) is of the first
 category in Y .

 First note that A(X) = U ^=1A(nT0), where T0 = B( 0, 1) in Y . It can
 be proved that either Q = A(T0 ) contains some open ball or Q is nowhere
 dense. But since Q is convex, in the second case Q is strongly porous. As a
 consequence, Banach's theorem has the following stronger version.

 PROPOSITION 2. Under the hypothesis of Banach's theorem, above, either
 •A(-X") = Y or A(X) is a-strongly porous in Y .
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