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 ON TAU-SMOOTH MEASURE SPACES WITHOUT
 THICK LINDELÖF SUBSETS

 1. Introduction. Let X be a completely regular Hausdorff space. The smallest
 er-algebra of subsets of X making all the real valued continuous functions on X
 measurable (or, equivalently, the <r-algebra generated by the cozero sets of X) is
 denoted by Ba(X), the Baire sets of X; and the <r-algebra generated by the open
 sets of X is denoted by Bo(X), the Borei sets of X.

 We say that a collection Af of subsets of X is directed upwards if whenever
 Oi,Oļ € Aí, there exists a set O3 (E AÍ with Oi U O2 C O3. A countably additive
 measure /z defined on Ba(X) is said to be T-smooth or T-additive, if for any
 upwards directed collection AÍ of cozero subsets of X such that U Aí = X , we have
 sup06Ar n(0) = n(X). A Borei measure is T-smooth if for any upwards directed
 collection Af of open subsets of X , we have sup0eJV- fi(0) = /x(U Af).

 In [1] Robert F. Wheeler asks the following question (Problem 8.14): Is it true
 that if fi is a finite r-smooth Baire measure on X, then there is a Lindelöf subset
 of X with full ļi- outer measure? For the sake of brevity we say that a r-smooth
 measure space (X, Ba(X),fi) has the L property if there is a //-thick Lindelöf
 subset of X. A set B C X is thick (or equivalently, has full outer measure) if
 the inner measure of the complement is zero. Clearly, a measure space with the L
 property is r-smooth, since every cover of X by cozero sets contains a countable
 subcollection whose union has full measure; so Wheeler's question amounts to
 asking whether the L property characterizes the measure spaces that are r-smooth.
 In this note we show that a negative answer is consistent with ZFC. We investigate
 the specific case of the Sorgenfrey plane with Lebesgue measure, and prove that
 whether it has the L property or not is undecidable in ZF (assuming inaccesible
 cardinals exist). More precisely, it will be shown that

 i) there is a model of ZF where the Sorgenfrey plane with Lebesgue measure
 lacks the L property;

 ii) under ZFC + CH the Sorgenfrey plane with Lebesgue measure has the L
 property;
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 iii) the existence of a r-smooth measure space without the L property is consis-
 tent with ZFC.

 It is well known that every r-smooth Baire measure fi has a unique r-smooth
 Borei extension fi. Clearly, a Lindelöf subset of a space X with full //-outer measure
 will also have full fi- outer measure, so with respect to Wheeler's question it makes
 no difference whether we are working with a Baire measure or its Borei extension.

 2. A model of ZF in which the Ł property fails.
 Let ZFC be Zermelo-Frankel set theory together with the Axiom of Choice, and

 let I be the statement "there is an inaccessible cardinal". Under the assumption
 that there is a transitive e-model of ZFC + I, Robert M. Solovay has proven (see
 [2], Theorems 1 and 4.1) that there exists a transitive e-model M of ZF, in which
 the following hold:

 i) The principle of dependent choice

 ii) Every subset of the real line R is Lebesgue measurable

 iii) Every subset of the plane R2 is Lebesgue measurable.

 Denote the planar Lebesgue measure by A2. We are going to show that in Ai,
 the Sorgenfrey plane R2 has no Lindelöf subsets with positive (outer) measure.
 Wheeler asks his question in the context of finite Baire measures. Lebesgue mea-
 sure is not finite, but this does not represent a problem, since we can always restrict
 our attention to some appropriately chosen subset of the plane with finite measure.
 The symbol R¿ denotes the real line with the Sorgenfrey topology (the topology
 generated by the semiopen intervals [a, 6)), and R2 stands for the plane with the
 product Sorgenfrey topology. Clearly Bo( R2) C Ba( R2), since i?a(R2) = Bo( R2)
 (actually Bade has proven that i?a(R2) = Z?o(R2), cf. [3]); thus every Lebesgue
 subset of the plane can be approximated from inside by a Baire set (in the Sor-
 genfrey topology) with the same measure, and hence there is no need to restrict
 A2 to Ba( R2), for the answer to Wheeler's question does not change.

 2.1 THEOREM. In the model A4, the Sorgenfrey plane lacks the L property.

 Proof: The Lebesgue measure A2 on R2 is r-smooth because linear Lebesgue
 measure A is r-smooth on R/, and a product of two r-smooth measures is r-
 smooth (in fact, the product of an arbitrary number of r-smooth probability
 measures is r-smooth, cf. [4]). Let E be a subset of the plane with positive
 A2-measure. If we regard A2 on R2 as the product measure obtained by rotat-
 ing the usual coordinate axes by forty five degrees (either clockwise or counter-
 clockwise) and then assigning to each rotated axis the measure A, then it follows
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 from the Fubini-Tonelli Theorem that there is a line with slope -1 whose intersec-
 tion with E is uncountable. Therefore E is not Lindelöf. Note that the Fubini-

 Tonelli Theorem holds in M. , since its proof does not use the full Axiom of Choice
 (Dependent Choice suffices). ^

 Next, we consider the situation in ZFC. The symbol C stands for the Lebesgue
 sets of the plane.

 3. In ZFC + CH the measure space (R^, C, A2) has the L property.
 Let CH be the Continuum Hypothesis. Under ZFC + CH it is easy to

 show that R2 has a Lindelöf subset S with full A2-outer measure. This follows

 from the existence of a thick Sierpiński subset of the plane. A set is Sierpiński
 if it is uncountable and its intersection with every set of measure zero is at most
 countable. We remind the reader of how to produce a Sierpiński set S with full
 outer measure. The cardinality of the Borei sets (with the usual topology on the
 plane) is the same as the cardinality of the continuum, and therefore equal to Hi
 by the Continuum Hypothesis. Let {Ba : a < Hi} be the collection of all Borei
 sets of planar measure zero, and let {Ca : a < Hi} be the collection of all closed
 sets with positive planar measure. Inductively select za € Ca' U {Bß : ß < a}.
 Such choice is always possible, since U {Bß : ß < a} is a countable union of sets
 of measure zero, while Ca has positive measure. Then the set S := {za : a < Hi}
 has the desired properties.

 Let A be an uncountable index set. We call the set {(x0, ya) : a G A} uncount-
 able and strictly decreasing if the following conditions are satisfied: i) if a ^ ß ,
 then xa ^ Xß' ii) if xa < Xß , then ya > yß] iii) if xa > xß , then ya < yß.

 3.1. THEOREM. Under ZFC + CH, the Sorgenfrey plane has the L prop-
 erty.

 Proof: Every uncountable decreasing set A C R2 is contained in the graph of a
 monotone decreasing function /, defined on some interval. To see this, simply set
 f(x) = inf{ya : (xQ, ya) € A and xa < x}, provided that the infimum exists and
 that the set {ya : (xa,ya) € A and xa < x} is not empty; otherwise, leave f(x)
 undefined. Hence, A is a subset of a Borei set (in the usual topology) of planar
 measure zero. Let S' be a Sierpiński set with full outer measure. Then S contains
 no uncountable decreasing set, and by the next lemma, it is Lindelöf. 4

 We mention that the proof of Lemma 3.2 does not use the Continuum
 Hypothesis.
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 3.2. LEMMA. A subset ofR] is Lindelöf if and only if it does not contain an
 uncountable, strictly decreasing subset. Furthermore, every Borei subset of R¿ is
 Lebesgue measurable.

 Proof: Suppose A C R¿ contains a strictly decreasing uncountable subset D.
 The relative closure ~D of D in A is not Lindelöf, since the collection {[a, b) x [c, d) :
 (a, c) € ~D } has not countable subcover. But every closed subset of a Lindelöf space
 is Lindelöf, so A is not Lindelöf.

 For the other direction, assume A C R¿ is not Lindelöf. Then there exists a
 cover C = {[aa, ba) x [ca, da) : a 6 A} of A without a countable subcover. Since the
 plane with the usual topology is Lindelöf, it follows that the set Ua(aa, ba) x (c0, da)
 can be covered with countably many elements from C. Therefore the set Z :=
 (Uo,[aa,6a) X [ca,á0))'(Ua(aa,6a) x (ca,da)) is not Lindelöf. Note that Z is a
 countable union of sets none of which contains a strictly increasing pair of points
 (i.e., a pair ( xo,yo ), (a;i,yi) with x0 < and y0 < yi). To see why this is true,
 for each n € N let {B%(l/2n) : i € N} be a countable cover of the plane by balls
 of radius 1/2 n, and let Zn be the set {(x,y) € Z : [a;, x + 1/n) x [y,y + 1/n) C
 [aQ, ba) x [ca, d a) for some a € A}. Then for all i, n € N, Zn(~)B%(l/2n) contains no
 increasing pair. Select i and n so that Zn fl B*(l/2n) is not Lindelöf. The number
 of horizontal lines that intersect Zn fl B*(l/2n) in more than one point is at most
 countable, as the following argument shows. For each such line H, select two points
 in H fl Zn fl -B'(l/2n). These two points are the endpoints of an open interval Ih-
 The projections of these intervals onto the x-axis must be disjoint, for else we would
 have an strictly increasing pair in Z„nBi(l/2n). Thus, there are at most countably
 many intervals Iff. The same argument shows that the number of vertical lines
 that intersect Zn fl B'(l/2n) in more than one point is at most countable. By
 removing these horizontal and vertical lines from Zn fl B'(l/2n), we are left with
 a strictly decreasing set, which must be uncountable, since Zn fi Bi(l/2n) is not
 Lindelöf.

 To show that every set in Bo(R*) is Lebesgue measurable, it is enough to prove
 it for the open sets in the Sorgenfrey topology. Let C = {[aa, ba) x [ca, da) : a G A}
 be an arbitrary collection of basic open sets. The result will follow if we show that

 Z := (Ucfûa, 6a) X [ca, <¿a))'(Uor(Oa5 ^ar) X (ca, ¿a))

 has measure zero. But we saw in the previous paragraph that Z can be expressed
 as a countable union of sets with no strictly increasing pairs. Since each such set
 is the union of a strictly decreasing set with a subset of a countable union of lines,
 it follows that Z has measure zero. t

 Assuming the consistency of ZFC + I, it follows from Theorems 2.1 and 3.1
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 that one cannot decide in ZF whether or not (R2,£, A2) has the L property. But
 most mathematics is carried out within ZFC, and it is conceivable that by using
 the Axiom of Choice, one might be able to produce a thick Lindelöf subset in each
 r-smooth measure space. We show next that this is not the case.

 4. The existence of a subset of the Sorgenfrey plane which lacks the
 L property is consistent with ZFC.

 Let ("P(N), <) denote the collection of all subsets of the natural numbers or-
 dered by inclusion, and let (A) be the statement "every uncountable subset of
 ■P(N) contains an uncountable chain or an uncountable antichain". James E.
 Baumgartner has proven that if ZF is consistent, then so is ZFC + MA + (A) +
 2n° = K2 (cf. Theorem 1 of [5]), where MA stands for Martin's Axiom. The rea-
 son why (A) is useful for our purposes is that it entails the following proposition:
 Every injective function from an uncountable set of reals into the reals is (strictly)
 monotone on an uncountable set (cf. [6], Theorem 6.14, page 947).

 4.1. THEOREM. It is consistent with ZFC + MA + (A) +2No = N2 that
 there is a r-smooth measure space without the L pioperty.

 Proof. If it is consistent with ZFC + MA + (A) +2N° = N2 that R2 has no
 A2-thick Lindelöf subset, then we are done. So we assume that under ZFC + MA
 + (A) +2N° = ^2, does have a Lindelöf subset E with full outer measure. By
 Lemma 3.2, E contains no uncountable strictly decreasing set. Let R denote the
 image of E under a 90 degree rotation (say, clockwise, for definiteness). Then R
 has full outer measure, and since every Borei subset of R is of the form B D R for
 some B in Bo{ R2), it follows that the measure '2R defined by A ^(BfiR) = A2(i?) is
 a r-smooth Borei measure on the completely regular and Hausdorff space R (with
 the subspace topology from the Sorgenfrey plane).

 Let T C R be A^-thick. Select an injective function / defined on an un-
 countable subset of R, such that its graph is contained in T. Such a function
 (an uncountable set of ordered pairs) can be defined by induction: Let ß < u>i,
 and suppose that for 7 < ß, (a:7, y7) has already been chosen. The count-
 able union of lines - x7} U {y = y7}) has measure zero, so we select
 {xß->Vß) € T' U7<i3 ({® = ®7} U {y = î/7}), and then set / = 'j{(xß,yß) : ß < u>i}.
 The function / is strictly monotone on an uncountable set of reals (by (A)). Since
 / C R, it is monotone decreasing on that set, for R contains no uncountable,
 strictly increasing subset. Thus, by Lemma 3.2, T is not Lindelöf. t

 4.2. COROLLARY. The existence of a r-smooth measure space without the
 L property is consistent with ZFC + MA +2K° = N2.
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 Proof. By Theorem 4.1 and Baumgartners result (Theorem 1 of [5]). 4

 Often one can prove results that hold in ZFC + CH by using only ZFC +
 MA (recall that the Continuum Hypothesis implies Martin's Axiom). Here we
 have an example where this is not the case. We have seen that the existence of a
 thick set R C such that (R, Xjļ, Bo(R)) lacks the L property is consistent with
 ZFC -1- MA. In ZFC + CH, however, given any thick set R C R?, the measure
 space (R, '2R, Bo(R)) has the L property, by the same argument given for the plane
 in Section 3: Select a Sierpiński set S C R with full A^-outer measure. Then S is
 Lindelõf.

 5. Final remarks.

 We have shown that Wheeler's question does not have a positive answer in
 ZFC, but it is still possible that by adding new axioms consistent with ZFC one
 might be able to prove that all r-smooth measure spaces have the L property.
 To exclude this possibility it is necessary to exhibit a counterexample in ZFC
 without the use of any special axioms. Axiom (A) was utilized in Section 4 to
 produce a "large" (uncountable) set with a desired property (strictly decreasing),
 inside an arbitrary subset of the plane with full outer measure. Perhaps if one
 considers an uncountabale product of probability measure spaces such "large" sets
 occur naturally. But characterizing the Lindelõf subsets of uncountable products
 appears to be a difficult task. I do not know whether the L property holds or fails
 even for products of nice spaces, such as (0, l)Hl with the product Lebesgue measure
 and the usual topology on (0, 1), or NNl with the product measure determined by
 a probability measure on N whose support is infinite.
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