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 EACH PEANO SUBSPACE OF Ek IS AN w-limit SET

 As established in [ABCP] and [BS] a nonvoid closed subset F of I = [0, 1] is
 anu»-limit set for some continuous f : R-* R if and only if F is nowhere dense
 or a union of finitely many nondegenerate closed intervals. In [AC ] we tried
 to extend this result to Ek asking what compact sets in Ek can be u;-limit sets
 for some continuous function from Ek into Ek. In particular it was found that
 each totally disconnected compact set in Ek is such an w-limit. However, we
 were unable to characterize those continua which can be w-limit sets.

 As a partial answer towards settling this problem we prove that any locally
 connected continuum in Ek is an w-limit set. This answers a number of ques-
 tions raised in [AC]. We also give some examples which suggest an attractive
 conjectural characterization.

 Terminology and Notation:

 Suppose A Ç Ek and / : A - ► A and / is continuous. We define f°(x) = x
 and fn+1(x) = f(fn(x)) for each x G A and natural number n. An qj-limit set.
 <jj(x,f) is defined to be the set of limit points of the sequence {/n(x)}£Ļ0.
 In this paper we will be considering only bounded sequences {fn(x)}%LQ or
 compact u;- limit sets. We will use 7 (x,f) to denote the range of the sequence
 {fn(x)}%L 0. Note that there exists a k such that either 7 (xk,f) Ç u>(xk,f) or
 y(x¡ ķ,/) flu >(xk,f) = <ļ> where Xk = fk(x). We will say that an u>-limit set A is
 orbit enclosing if there exist / and x for which 7(1, /) Ç u>(x, /).

 By a continuum we mean any nonvoid compact connected set. A continuum
 M is locally connected if M in the relative topology has a basis consisting of
 connected open sets. A locally connected continuum is usually called a Peano
 space and it is well known that when a Peano space is metrizable it is the
 continuous image of I. A set M is arcwise connected if each two points in M
 belong to some homeomorph of I. A set M is totally disconnected if the largest
 connected subsets of M are singleton sets. A continuimi is indecomposable if
 it is not the union of two proper subcontinua.

 An ordered n-tuple (Ai, ..., An) is called a chain if Aļ fi A,-+ 1 ^ <f> for
 each i. We say that a set B is chainable if there exist A', . . . , An such that
 B = {.Ai, . . . , An} and (A' , . . . , An) is a chain.
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 The first result exploits the construction found in the proof of the existence
 of the "space filling curve" appearing in [N; p. 90]. In fact it is a strengthening
 of the well known theorem that a Peano space is the continuous image of I.

 Theorem 1. Suppose S is a nondegenerate Peano subspace of Ek and I is a
 closed line segment in Ek disjoint from S. Then I U S is an orbit enclosing
 u -limit set.

 Proof. When k = 1 the result is obvious from [ABCP]. We will carry out the
 proof for k - 2 from which the general case will be clear. Since diam S > 0 we
 may assume diam 5 = 1.

 Let us now define a sequence of finite coverings of 5 by subcontinua, {£?n}£Lo>
 as follows: Put Qo = {5}. Supposing Qn has been defined, the local connect-
 edness of S allows us to construct a Qn+i (see [N] or [HY]) which is a finite
 covering of 5 by subcontinua such that

 (1) each member G € Qn is the union of a chainable subfamily T~i(G) of
 Gn+ 1

 (2) 0 < diam H < 2-n_1 for each H € Çn+i

 Since U~o is countable we may find a line L so that diam 11(0) > 0 for
 all G 6 U~=o where II is the projection mapping onto L. From Theorem
 2 of [AC] if two sets are homeomorphic and one is an orbit enclosing w-limit
 set, then so is the other. Therefore without loss of generality we may assume
 that 5 is a subset of the planar disk {z : | z - | - 2i | }, a and b belong
 to 5 where a = 2 i and 6 = 1 + 2i, L is the x-axis and I = [0, 1] x {0}. Put
 6n = min {diam 11(0) : G 6 Çn}. Then 6n > 0 for each n.

 Next we will define a sequence {Nm}^=0 of positive integers and a sequence
 of chains {Cm}~_0 of subcontinua of 5 as follows: Choose Nq so that NqSi >2
 and put Kq = S for each i < Nq and put Co = (Kq, . . . , K^°). Now suppose
 we have defined for each i <m a positive integer N{ such that > 2 and
 a chain C{ = (K¡, ..., K^) where each K' € Qi and a G K' and b € K?'

 Pick ai G Kxm D K1+1 for each i < Nm and put ao = a and ajvm = b. Since
 HÇKin) is chainable there exists a chain whose coordinates are members
 of Ti^Kìn) and whose first coordinate contains a¿_ i and whose last coordinate
 contains ai. Let a(i,m) be the number of coordinates in C¿m. Choose nm such
 that nmNm6m+2 > 2 and nm > max{a(t,m) : i < iVm}. Put iVm+1 = nmNm.
 By including repetitions of coordinates in we may assume each is
 chainable by {K^+1, . . . , K^+1) where ß = nm(j - 1) + 1 and 7 = nmj. Let
 Cm+i be the concatenation of the above chains so that the set of coordinates of
 Cm+ 1 is {ÜT^+1 : i < Nm+ļ}. Clearly the inductive hypothesis is satisfied.

 Note that if nm(j - 1) < i < nm j then A"¿,+ 1 - ^L- For x G [0, 1) there
 exists for each m a unique j such that j - 1 < xNm < j. Denote this j by xm
 and put Am(x) = K^f1. Also put -Am(l) = Kmm f°r each m-
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 Let us show that -í4m+i(x) Ç Am(x) for all m and x. For x = 1 it is
 obvious. If x ^ 1 we have to show K^ļ ļ1 Ç K%f>. For this it suffices to show
 "m(®m - 1) < £m+ 1 < nmxm. It is easy to see that

 1 ®m+ 1 1 ^ ®m+l ^
 ~KT< Nm+i ^ -X •

 By multiplying this inequality by jVm+i we obtain nm(xm- 1) < xm+i < nmxm.
 Therefore for each x, {Am(x)}^>_0 is a descending sequence of compact sets

 whose

 diameters tend to 0. Hence define /( x) so that {/(x)} = fim=o
 Now we show that KĻ Ç /([^- , jfa]) for each m and j < Nm. Letting

 y € KĻ we may pick ¿1 such that y € Kļļ+1 Ç KĻ. Then there exists ¿2 such
 that y G Ä"^+2 Ç Continuing in this way we obtain a sequence

 such that y € K£+k Ç ŪTjJļjķ-! and «m+/b(Ú-i - 1) < Ů < nm+k(ik - 1)
 for all k. However {[ a descending sequence whose inter-

 section consists of a single point x G [^- , jj-]- Hence y G fìfe^i ^m+k -
 n~=o Ktr = {f(x)}.

 If x € [fer ' then ^X) € K « = ! t' then 1 6 llfc '
 so that /(x) G tf*1. Hence Ç /([g- , ¿]) Ç U K*1 for all j and
 771.

 If I x - y I < -TT- then there exists i such that both x and y belong to
 * * IT»

 IftS ©• Hence- /(*) a™1 /(») ^011« u ' U Hence, |
 /(x) - /(y) I < 3 • 2-m. It follows that / is continuous on I.

 Since /([^- , -j j-)) Ç KĻ and / is continuous f(jj-) must be a limit point
 of KĻ. Hence, for all m and j

 iym iy m

 From this it follows that /( I) = S.
 Now extend / to I U S by putting /(x) = II(x) for x G 5. Hence / is

 continuous from I U S onto III 5 with /( I) = S and f(S) = I. Moreover, using
 the Tietze extension theorem we may extend / continuously to all of E2.

 Let W be any open set hitting S . Then K%m Ç W for some i and m > 1. Since
 diarn > 8m > ^ 2_ the line segment /(K^) contains some [ ^ - ].
 Hen<* I1&. wbls f(KL) e f(W). Then KU = Ç
 /2(W) and again since diam Kļn_1 > <5m_i > - , f(Kļn_1 ) contains some

 běh. and ^-2 = /(lîfeh. e mL.) £ f'(w). contm-
 uing in this way we eventually get a and ß such that Kq = /([^^- ,
 fP(W). However since S = Kq we obtain f^(W) = S and f^+1(W) = I.
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 Hence for each open sets U and V hitting S U I there exists n such that
 fn(U) fi V ^ <ļ>. This is a well-known sufficient condition for S U I to be an
 u;-limit set for /. (See [S])

 Theorem 2 .HA consists of finitely many mutually disjoint nondegenerate
 Peano su bspaces of Ek, then U A is an orbit enclosing io-limit set. Li particular
 any Peano subspace of Ek is an orbit enclosing u -limit set.

 Proof. If A has one member A, choose a line segment I disjoint from A. From
 Theorem 1 there exists € A and a continuous / such that I U A = u>(xo , /)
 and u>(xo,f) is orbit enclosing. Clearly A - Lj(xo,f2) and I = u>(f(xo), f2) and
 both are orbit enclosing.

 Now let us do it when A = {A,B} with A ^ B. From this the general
 proof will be clear. Choose a line segment I disjoint from A'J B. Carry out
 the construction of the proof of Theorem 1 where A3m and B^ play the role of
 K^. Clearly we may select the sequence {Nm}m=o to be the same for both
 constructions. Suppose u>(x0 , /) = I U A and w(yo,g) = I U B.

 Define h = gof on A and h = fog on B. Then we may extend h continuously
 to Ek so that h(A) = B and h(B) = A.

 Let W be any open set hitting A. Pick j and m so that A^ Ç W . Then as
 in the proof of Theorem 1 there exists t such that N * ] Ç f(Aļn) Ç
 f{W). Since g([-^ , jr^]) = B^ we have B ^ = g([-^ , j^]) Ç
 g f(W) = h(W). Then there exists s such that [ ? jv * 2] Q
 Hence A>m_2 = /([^, ^]) Ç /*(**,_,) = Qh2'w).

 Continuing in this way we eventually get a and ß for which A% Ç h^(W).
 Since f(A§) = I and h(A%) = g f(Ag) = g(I) = B we have B = h^+'W) and
 A = h,P+2(W). The same relationship holds when W is open and hits B.

 Therefore for any open U and V hitting A U B there exists n such that
 hn(U) fi V ^ <j> and this is sufficient to make A U B into an orbit enclosing
 u>-limit set.

 An interesting consequence of Theorem 1 is the following.

 Corollary. There exists xq Ç. I and a continuous function g : I - * I for which
 I = u)(x o,g) and each level set of g is uncountable with the exception of possibly
 two.

 Proof. Let S be the disk of Theorem 1. Then for each x 6 I /-1(x) is a
 segment. But I = u)(x0, f2) and clearly g-1(A) is uncountable whenever A G
 (0, 1) where g = / 2 .

 Let us return to the question of what continua can be u;-limit sets. First of
 all not all continua are a;-limit sets. For example, as shown in [AC] adjoining an
 indecomposable continuum to a disk yields a continuum which is not an w-limit
 set.
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 On the other hand [AC] proved that any continuum with empty interior is
 an cj-limit set. But it may not be orbit enclosing as shown by example 1 below.
 Note that an u;-limit set with nonempty interior must be orbit enclosing.

 Example 1. There exists in E2 a non arcwise connected continuum which is an
 w-limit set but not an orbit enclosing w-limit set.

 Proof. Let S be the perimeter of the unit square with R its right edge. Let
 a be interior to S and let T be a spiral starting at a which approaches S (i.e.
 S Ç T'). Let W be a "sin ^ curve" approaching R from outside S and beginning
 at b. Then A' is a continuum which is not arcwise connected. By Theorem 7 of
 [AC] X is an w-limit set.

 Assume now that X is an orbit enclosing w-limit set u?(xo , /). Hence f(X) =
 X and fn(x o) G X for all n. Since the continuous image of an arc must be
 locally connected, f(A) is an arc whenever A is an arc. From this it follows that
 f(W) Ç W U S or f(W) C T U 5; f(T) Ç T U 5 or f(T) Ç W U S; f(S) Ç S
 or f(S) is an arc in W or T.

 Let us now show f(S) = S. Suppose s € 5 and t € T with f(s) = t. Let
 tn € T with tn - ► s. Then f(tn) - ► t- Therefore f(T) Ç T U S and it follows
 that fk(T) Ç T U S for all k. Hence {fn(x o)}£Lo 1S eventually outside the
 open set W and can't be dense in W, a contradiction. Likewise we obtain a
 contradiction when f(S)

 Since f(S ) = S it follows that f(W) Ç T U S and f(T) Ç W U 5. Otherwise,
 say, f(W) Ç W U S and fk(W) Ç W U S for all k, leading to a contradiction.

 Suppose f(W) n S ^ <j>. Choose w € W and s E S for which f(w) = 5. Then
 for any arc A containing w, f(A) is an arc containing s and f(A) fi T = <f>.
 It follows that f(W) n T = <f> and f(W) = S. Therefore T D f(X) = <j>, a
 contradiction. Hence, we must have f(W) = T and likewise f(T) = W.

 Suppose X G S. Choose tn Ç. T such that tn - ► x. Then f(tn) € W and
 /(¿n) -► /(*) € W. Hence, /(*) € R. Therefore f(S) Ç R and (S-Ä)n f(X) =
 <f> , a contradiction.

 This finishes the proof.

 So the question should be divided into two questions: What are necessary and
 sufficient conditions for a continuum to be an w-limit set? What are necessary
 and sufficient conditions for a continuimi to be an orbit enclosing w-limit set?

 The converse of Theorem 2 is not true, that is, local connectedness is not a
 necessary and sufficient condition for being an orbit enclosing a;-limit set. This
 follows from the following example.

 Example 2. There is an orbit enclosing w-limit set in E2 which is arcwise con-
 nected but not locally connected.

 First version: Let h be the piecewise linear function from I into I with vertices
 (0,0), (^,1), (f>0), (f,l), (f>0) and (1,1). Using the equations of the line
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 segments of h it is easy to show in terms of "decimals" to base 5 that

 f .X2X3 ... if ®i is even
 h(.XiX2X3 ...) = <

 t .X2X3

 where x* = 4 - x*.

 Let Z be the set of integers and define a function a on Z as follows: <*0 = 0,
 a„ = £ - - when n > 0 and a„ = - ? - ^ when n < 0. Let J be the closed ¿ n ł i»

 line segment joining i to -i. For n € Z put In = {re'°" : 0 < r < 1}. Put
 X = J U U{In : n e Z}.
 Then X is arcwise connected but not locally connected. Define / : X - ► X
 by f(y ) = y if y € J

 f e,an+1h(x) if X € [0, 1] f(eta"x) = I
 ' etc"n-1h(x ) if X G (|,1]

 It is easily verified that / is continuous.

 If X = etctn(.aia2 ... ), we will call n the indicator of x and .0102 . . . the
 decimal part of x. If x 6 X-J, then /(x) € X - J and / increases the indicator
 by 1 if ai = 0 or 1 and decreases the indicator by 1 if a' = 2, 3 or 4. If a' is
 even, then the decimal part of /(x) is .0203 . . . while if a' is odd the decimal
 part is .0203 ... . We will say an iterate fm(x) is neutral if the number of
 "ones" plus the number of "threes" in its first m digits is even.

 Now we will construct a z € Io such that u>(z, f ) = X. For this it will suffice
 to show for each k G Z and finite decimal .yiy2 • • • ym there exists n and a
 sequence {ßj}^ such that fn(z) = e,otk .yiy2 . . . ym ßißi ■•• •
 Let B consist of all finite strings whose elements are in {0,1,2,3,4}. Let
 {Wjfc}£l0 be a 1 - 1 enumeration of the denumerable set Z x B. We will
 construct the desired z by induction.

 First suppose Wo = (n, .61 ... 6m). Let z', z2, . . . , zç0 be given by 0, . . . , 0,
 61,625 ••• bm where £0 =| « | +m. Then z' ... zç0) = .bļb2 ... 6me,alnl.

 Now suppose we have defined Ço, £ii • • • , £n with £j < £j+i and {zj}^^ such
 that for each j < k and Wj = (ny, .61 ... 6m> ) we have /'"''(.zi ... ) =
 .61 ... bmjeiQ "»i'.

 Suppose Wfc+i = (n, .61 ... 6m) and let v be the indicator of fnk(.Zļ ... zçk ).
 Then we choose z^fc+i, . . . , Z£fc+1 according to the cases given by the following
 table:
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 f'n"'Ļzi ... zín) j = v - n Z£k+1 . . . z(k+1

 neutral j > 0 2 2 ... 2 b' ... bm

 neutral j < 0 0 0 ... 0 6i . . . 6m

 neutral j = 0 b' ... bm

 non-neutral j > 0 2 2 ... 2 3 &i . . . bm

 non-neutral j < 0 0 0 . . . 0 1 b' . . . bm

 non-neutral j = 0 1 2 6ļ ... bm

 In the first 5 lines the numbers of O's or 2's is determined by £*+i = £*+ | j |
 +m

 It is easily shown that f*{.z' . . . Z(k+1 ) = e,a" .6j ... bm where t = £k+i - m.
 Then z = ,ZiZ2 ... obviously has the desired property, completing the proof.

 Second Version: Let C be the unit circle in E2 and K be a Cantor set in

 (0, 27t). Put X = {rety : 0 < r < 1, y € K}. Define h(x) = 2x if 0 < x < .5
 and h(x) = 2(1 - x) if .5 < x < 1. As is well-known there exists xq such
 that uj(xQ,h ) = [0,1]. By Theorem 13 of [ABCP] there exists a continuous
 g : K -* K and a yo € K for which i(yQ,g) Ç w(yo,g) = K.

 Both h and g have the following property (where (/, A) = (h, C ) or (g, K)):
 for all open sets U and V (relative to A) hitting A there exists m such that
 /nm(ï7)nV ^ <f> for all n. Now define F : X -* X by F(x,y) = h{x)et9^y' Then
 F is continuous and by the above property it follows that for each open sets U
 and V hitting X there exists n such that Fn(U) fi V ^ <j). Hence, X = u(zq,F)
 for some zq G X.

 Since the spaces in the two versions of Example 2 are radically different in
 that the first space has isolated "spokes" and the second space has no isolated
 "spokes" each version sheds some light on the following conjecture.

 Conjecture. A continuimi in Ek is an orbit enclosing u>-limit set if and only if
 it is arcwise connected.

 Since a locally connected continuum is arcwise connected (see [N] or [HY]),
 the validity of the conjecture would imply our Theorem 2.
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