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 STRONG DENSITY TOPOLOGIES WITH

 RESPECT TO MEASURE AND CATEGORY

 In [2] the notions of X-density point and strong X-density point of a plane set
 have been introduced and studied in comparison with the one-dimensional case.
 Moreover, the topologies, called T-density topology and strong X-density topology,
 associated with X-approximately continuous functions and strong X-approximately
 continuous functions respectively, have been introduced and investigated. In par-
 ticular, the problem of finding the coarsest topology under which X-approximately
 continuous functions are continuous has been solved. That topology has been
 called the deep X-density topology.
 • An essential role is played in this question by a Lusin-Menchoff theorem in the

 sense of category.
 A similar problem concerning the coarsest topology under which all strongly

 approximately continuous functions (with respect to Lebesgue measure) are con-
 tinuous, is unsolved.

 The strong density topology, i.e. the topology associated with strongly approx-
 imately continuous functions, is not the coarsest topology under which all strongly
 approximately continuous functions are continuous (see [3]).

 For this purpose, a topology d which is strictly coarser than the strong density
 topology and which also makes continuous all strongly approximately continuous
 functions, has been introduced in fact in [3]. It is unknown whether or not the d
 topology is the coarsest topology under which all strongly approximately continu-
 ous functions are continuous.

 In this paper the deep strong X-density topology is studied and the question
 if it is the coarsest topology under which all strongly X-approximately continuous
 functions are continuous is solved with negative answer (see th. 6).

 At the same time it is proved that a Lusin-Menchoff theorem doesn't hold
 either for the deep strong X-density topology (see th. 5) or for the d topology (see
 remark 2).

 Throughout the paper S will denote the class of plane sets having the Baire
 property. X will denote the <r-ideal of sets of R? of the first category.

 322



 We shall say that a property holds X-a.e. in X if it holds for all points of X
 except a set of the first category. The symmetric difference of the sets A and B is
 denoted by A A B. For A,B € S A ~ B will always mean A A B £ 1.

 XA will mean the characteristic function of the set A. The euclidean distance
 in R 2 will be denoted by p.

 For n,m € N and A E S we put (n,m) • A = {( nx,my ) : (x, y) E A}.

 Def 1: (0, 0) is a strong X-density point of A E S if and only if for every
 increasing sequences {k'n}nçN and {k"}nçN of natural numbers there exist sub-

 sequences {k'np}peN and {Kp}peN for which {x((fc; fc„ Mn[_11]2}pe7V converges to
 1 X-a.e.

 Def 2: A point (xo, yo) is a strong X-density point of A E S if and only if (0, 0)
 is a strong X-density point of the set A - (xņ, yo) = {(x - xo, y - Po) : (^, y) € A}.

 Def 3; A point (xo, yo) is a strong X-dispersion point of A E S if and only if
 (x0, yo) is a strong X-density point of R2 - A.

 For A E S <Pa(A) will denote the set of all strong J-density points of the set A.
 For A,B E S the following properties hold (see [2] th. 3'):

 1. <Ps(A) ~ A

 2. If A ~ B , then <p,(A) = <ps(B)

 3. v.(0) = 0, v*{R2) = R2

 4. <ps(A DB) = <Ps(A) n <Ps(B).

 Def 4: A point (x0, y0) is a deep strong X-density point of A if and only if there
 exists a set B, open in the natural topology, such that B D R2 - A and (x0, yo) is
 a strong X-dispersion point of B.

 The following result holds (see [1], lemma 1.5):

 Lemma 1: If (xo, yo) is a deep strong X-density point of the set A E S, then
 (xo, yo) is a deep strong X-density of A in the direction of x and y-axes.

 Let Tj denote the topology introduced in [2] as the family of sets A E S such
 that A C <fs(A). Denote by Ta the family of sets A E S such that each point of A
 is a deep strong X-density point of A. We omit an easy proof of the following:
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 Theorem 1: T, is a topology (on the plane) coarser than 7

 Observe that the set A = R2 - {(0, +oo) x {0}} € T¿. Since (0,0) cannot be
 a deep strong J-density point of A (by Lemma 3), A ^ 71.

 Lemma 2: If A e Z, then A = Gì U Pi, where G' Is an open set and Pi is a
 nowhere dense set.

 Proof. It is obvious if A = 0. If not, let ( xo , yo) € A. Then there exists a closed

 set F C A such that (xo> Vo) € Thus F Ý Let Gi =A and Ą = A- A-
 Since Pi C Fr(Gi), Pi is nowhere dense.

 Lemma 3: If A = Gi U Pi, where Gi is an open set, Pi is a nowhere dense
 set and A C <p*(A), then R2 - A = G 2 U where G 2 is an open set and P2 is a
 nowhere dense set.

 Proof: It is similar to the proof of the analogous lemma 3 of [2].

 Def 5: A point (x0, yo) is a deep strong X-density point of A E S in the
 direction of x-a xis (y -axis) if and only if xo (yo) is a deep I-density point of the
 set

 {t 6 R : ( t , y0) € A} ({te R: (x0, t) e A})1

 Lemma 4: Let (0, 0) be a deep strong X-density point of A E S. Then,
 for each P C R2 - A we have: (*) for any increasing sequences {nro}mgjv and
 {km}mçN of natural numbers, there exist subsequences {nmp}pçN ancř {^TOp}pe7V
 such that for each rectangle (ci', b') x (a",b") C [- 1,1]2 there exist a rectangle
 (c', d') x (c", d") C (a', b') x (a", b") and a natural number r € N such that:

 1- USr«"-,.*»,) • P)n ((c', d') X (c",ď')) = 0;

 2- LÇi, ((»-,, 1) ' P) n ((c-,*) x {0}) = 0;

 3. U£r((i, M • P) n ({0} x (c", à»)) = t.

 Proof: Suppose that the above statement is not true. Then there exist P C
 R2 - A and two increasing sequences {nm}m6w and {km}m^N such that for all
 subsequences {nmp}p€^r and {¿mp}p6Ar there exist a rectangle (a', b') x (a",b") C

 1The definition of deep J-density point of a set on the line is, with obvious changes, similar
 to the def. 4 (see also [6], def. 6).
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 [-1, l]2 such that for each r 6 N and for each rectangle (c', d') x (c", d") C (a', b') x
 (a", b") we have not 1. or not 2. or not 3. .

 There are two possibilities: for each r € N the set (J£Lr((nmp> ^mp) • P) is
 dense in (a', b') x (a", b") or for some ro € N U^r((nmpj kmp) • P) is not dense in
 (a', b') x (a", b") for r > r0.

 In the first case, if B is an open set which contains P, then for each r E N the

 set U£Lr(nmp) kmp) ' B is residual in (a', b') x (a", b"), a contradiction.
 In the second case there exists (aļ, 61) x (a",b") C (u', b') x (a",b") such that

 U£Lr((nmp, fcmp) * P n ((oj,^) x (a",b")) = 0 for each r > ro. Therefore for each
 (c', d') x (d', d") C (a[,b[) X (a",b") and for each r > ro 1. holds. If the set
 U£Lr(nmp, 1) • P is dense in (aļ, b[) x {0} for each r > r0, then for any open
 set B D P and for each r € N U£Lr(nmp>l) • B is residual in (aļ,&i) x {0},
 a contradiction by Lemma 1. Then the set U^r((nmpi 1) * P) is not dense in
 (aî,6i) x {0}, for some n > rn. Consequently, there exists (a'7,b'7) C (aí,6í) such
 that U£=r((nm„, 1) • P) D (a'2, b'2) x {0} = 0 for r > n.

 Thus for any rectangle (c', d') x (c", d") C (a'2, b'2) x (a", b") and for r > r' 1.
 and 2. hold.

 Therefore, for each r > ri and for each (c', d') x (c", d") C (a'2, b'2) x (a", b") we
 get Up=r((^5 kmP) ' P) H ({0} X (c", d")) 0. Thus, for each r > rx U^=r(l, kmp) • P
 is dense in {0} x (a",b") and U^r(l> ^mp) • B is dense in {0} x (a",b'{), for any
 open set B D P, a contradiction by Lemma 1.

 Theorem 2: Let A € S such that R2 - A = G U P, where G is open (in the
 natural topology) and P is a nowhere dense set, and let (0, 0) € A.

 Then (0, 0) is a deep strong T-density point of A if and only if the condition
 (*) of the lemma 4 is satisfied (for the set P).

 Proof: Since P C R2 - A and by lemma 4, it is obvious that, if (0, 0) is a deep
 strong Z-density point of A, then P satisfies the condition (*).

 Conversely, if the condition (*) of the lemma 4 is fulfilled, we shall construct
 an open set B D R2 - A such that (0, 0) is a strong X-dispersion point of B.

 With the denotation of lemma 4 we are looking for a set B' such that B' D P
 and (0, 0) is a strong J-dispersion point of B'. The requested set B will be BiUG.

 In order to do that, let (x, y) 6 P. Put

 Bx,y = (x $x,yi x "H &x,y) X (tf $x,yi V $x,y)i

 where 0 < 6x,y < min{/>2((a:,0), (0,0)),p2((0,y), (0,0))} if x ^ 0 and y / 0,
 0 < 6X, y < p2((0,0), (0,y)) if x = 0 and 0 < Sx,y < />2((ar, 0), (0, 0)) if y = 0.

 Let B' = (J (x,y)çpBx,y Obviously B' is open and Bļ D P.

 325



 Let {nm}m€N and {km}m€^ be arbitrary increasing sequences of natural num-
 bers. Let {nmp}pçN and {^mp}PeiV be the subsequences of {nm}m€Ar and {fcro}m€jv
 from the condition (*) of lemma 4. We shall show that lirripsup((nmp, kmp) • B') H
 [- 1,1]2 is a nowhere dense set and, consequently, that (0,0) is an X-dispersion
 point of B'. Let (a', b') x (a", b") C [- 1,1]2. From condition (*) there exist
 (c', ď) X (c",d") C (a', b') x (a", b") and r € N such that 1., 2. of lemma 4 are
 satisfied. We shall prove that lim,, sup((nmp, kmp) • B') l~l ((d,ď) x (c",d")) = 0.

 Suppose the contrary. Then there exists (x',y') € limp sup ( (nmp, kmp) • Bļ D
 ((d, d') x (c", d")) and, consequently, there exists a subsequence {(nmpi , kmps)}3eN
 such that for each s € N (x',y') 6 (nTOpj , kmp> ) • Bļ. Then we can construct
 a sequence (xa,ya)açN of points of P such that for each s Ç. N we have that
 (x'i y') € (nmp, J kmpt ) * (xa - ßx„y,,Xa ■+■ f>x„y,) X (ya - ôx„ys, Vs + ^x„y, )•

 Obviously {(xt,ya)}»çN tends to (0,0).
 Suppose that there exists a subsequence {(®Sr,y»r)}reN of {(#», ya)}3eN such

 that, for each r € N xSr ^ 0 and y„T 0. Since x' is also of the form x' = nmpa • x'a
 and y' = kmpt -y't, where®; € (xa-8x,yy„ya + 6x,iy,) and y'„ e (y. y. + £*.,».)
 for every s € N, we have for any r € N

 I x'-nmp.rxar' ^ 'x'tr -xtr' ^ 6x,r,y,r ^ 'xar'2 _
 'nmp.rX»r' ~ I®., I ~ |®.r| ~ |*J

 So {nmp.rx4r}r6Ar tends to x'.
 Analogously we can prove that {kmp,ry,r}rçN tends to y'. Thus, (nmptr , kmp>r ) •

 (x tri V ir) € (c', d') x (d', d") for sufficiently big r E N, but that contradicts 1. of
 the condition (*).

 Suppose now that there exists a subsequence {(x»r, yar)}reN of {(xÄ, ya)}3çN
 such that yir = 0 for each r € N, then, as above we may conclude that
 {nmp,rxsr}reN tends to x' and, consequently, that nmptrxSr 6 (c', d') and ySr = 0
 for sufficiently big r € N .

 Therefore (nmp,TXar,yír) G (c', ď) x {0} but this contradicts 2. of condition (*).
 Suppose, finally, that there exists a subsequence {(xJr, yar)}reN such that x„r =

 0 for each r € N. With analogous argument we obtain a contradiction too.

 Def. 6: We say that (0, 0) is a strong T-density point of A G S with respect to
 the first quarter of the plane if, for all increasing sequences {nm}m€jv and {km}mçN
 of positive integers, there exist subsequences {nmp}p€w and {kmp}p€N for which
 ÍX// 1 , x r J PCN converges o to 1 J-a.e. 1 ((lmp,fcmpM)n[0,l]2 , x r J PCN converges o

 Def. 7: We say that (0, 0) is a strong X-dispersion point of A E S with respect
 to the first quarter of the plane if and only if (0, 0) is a strong I -density point of
 R2 - A with respect to the first quarter of the plane.
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 In the standard way we extend the above definitions to the points different
 than (0, 0). Analogous definitions can be formulated for the remaining quarters.

 The set of strong 2"-density (X-dispersion) points of the set A with respect to
 the first quarter is denoted by <pf+(A) (ip++(A)). For the remainig quarters we
 use the symbols <pj+( A), (VT+(^)>

 Lemma 5: Let G C R2 be an open set. Then (0,0) G ip++(G) if and only
 if for each n G N there exist k G N and a real number S > 0 such that for any
 h, h' € (0, £) and i, i' 6 {1, . . . , n} there are j,j' G {1, . . . , fc} such that

 an (f - i)fe + j J x Ui'-i)h+r-i + = 0
 nk nk J [

 Proof: Similar to the linear case (see [5], th 1.)

 Def. 8: We say that / : R2 - ► R is strongly X -approximately continuous if f
 is continuous with respect to the topology 7j .

 Theorem 4: If f : R2 -* R is a strongly X-approximately continuous function
 and (a, ß) is an open interval, each point of the set /-1((a, /?)) is its deep strong
 X-density point.

 Proof: It suffices to show that if /(0,0) > 0, then there exists a closed set
 T C /-1((0, +oo)) such that (0, 0) is a strong I-density point of T. Choose p E N

 for which /(0,0) > ķ. Then, (0,0) is a strong J-density point of /_1((^, +oo)).
 Since /-1((i, +oo)) has the Baire property, it can be expressed in the form FA£,
 where F is closed and E is meager on the plane. Obviously (0,0) is a strong
 J-density point of F. Thus, by lemma 5 we may assume that for each n G N
 the numbers k and 6 are such that for any h , h' G (0, <5) and i, i' G {1, . . . , n} the
 numbers jo and j'Q G {1, . . . , k} are chosen in order to have

 "(t- l)k + jo- lh ' (i- l)fc + j J x r^- l)k + j'0- lh, ' (i'- l)fc + j'0 J c F nk ' nk nk ' nk

 Now, fix n G N and let k and 6 be with the above meaning. For any m, m' G
 iV, i, i' G {1, . . . , n} and j,j'€. {1, . . . , k}, by P™1J3 we denote the set of all points
 (h,h') G R2 for which the following conditions hold

 { n-i)k+j ) 8 - h<{ n-i)k+j )

 V (i'-l)k + j' J ' ( i'-l)k + j ' )
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 Thus, for any i,i' G {l,...,n} and j,j' G {l,...,fc} we have U^=ļ Um'=i
 P%f = (<U)2-

 Let n G N, i, i G {1, ... , n}, j,j' G {1, . . . , k} be fixed. Put u = (i - l)fc +
 j, u' = (i' - l)k + j' and define H*,^, as the closure of the union

 m- UU 1 m'=l u
 m- 1 m'=l (h,h')€P™£»

 We shall show that Hfyjj, C /-1([^, +°o)). To this end, let (z0, j/o) G
 Then there are sequences {xa}lÇN and {y«}»eAr tending to xo and yo, respectively,
 such that, for each s G N there are m4, m'a G N and (ha, h'a) G such that

 x» e l2^^' SFÄ*] and V ' € %kh»''
 Before getting f(xo,yo) > ļ we need to construct a subsequence {h3r}r^N

 of {ha},çN and a sequence {aP}r€jv of real numbers different than 0, convergent
 to 0 such that for each £ G N there exists t G {1, . . . , 2nk} such that for all
 z G {1, . . . , £} and for almost all r G N we have

 " 0+ (t-l)l + z-l 0+ (t-l)l + z 1 C [u-1 u 1 0+ 2nkl r' 0+ 2 nkl r' C [ [u-1 nk nk *'
 (if aT < 0, the endpoints of the interval on the left-hand side in this inclusion must
 be written conversely; this remark should be also repeated further in the proof).

 Consider some cases. First assume that there is a subsequence {rair}rejv of
 {ms}i6/v tending to infinity. Put oP = h3r for r G N. Then for all r G TV, we have

 ^ u h ^ u (u~ 1N'm*r-1£
 °-X'r~nk ^ h >r~nk' ^ u J

 so linir hSr = linv xSr = 0. Hence we have xo = 0.
 Put t = 2u - 1. For 1 G N and for any z G {1, . . . , and r G iV, we get

 '(t - 1)1 + z - 1 (t - 1)1 + z ļ _
 [ 2 nkl 'r' 2nkl tr'

 which has been desired.
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 The remaining case is when {m4},gjv contains a constant subsequence. For
 simplicity assume that all terms mt are equal to m3r. Consider the first subcase
 when there exists sm G N such that xo € for all s > s». For r G N put

 hSr = ht,+T and choose ar ^ 0 such that x0 + ar € and linv or = 0.
 Let / G N and put t = 1. Then for any z G {1, . . . , /} and r € N we get

 h + 2^r°r' 2:0 + Mia' c [x°' Xo + °rl c bar*-" ñkhíT. •

 The remaining subcase means that there is a subsequence {htr}r^N of {hs}açN

 such that xq g ^Ä«r] for all r G N. We may assume (choosing a sub-
 sequence if necessary) that either xq < ^-hSr for all r 6 N or xo > ^¡hSr for
 all r G N. Consider for example the first situation. Since Xo < ^-h3r < xSr
 for all r G N, we have that linv ^-hSr - xo. Then there is a r, G N such that

 - xo < ^ f°r each r > r*' Define ar = 2 {^hSr - x0) for
 r G N. Let i G N and put t = nk + 1. Since in this case *° S < har, we have

 (t-l)l + z-l (t-l)l + z 1
 *0+ 2M ""Xo+ 2 nil -

 Xo+G+l^)°r'*0+G+¿7)a'] C

 X„+Í«„xo+(Í+¿)<.,]c
 ["tí - 1 , «-1, . 1 (U - IN"**0
 [~^r , sri~ñk~ ,r . Jc
 "« - 1 u- 1 1.1
 . nk ,r' nk *r nk ,rJ '

 Analogously, we show that there is a subsequence {h'ar<¡ }qeN °f {Kr}reN and
 a sequence {bq}qçN of real numbers different than 0 convergent to 0 such that for
 each i G N there exists t' G {1, . . . , 2 nk} such that for all z' G {1, ...,/} and for
 almost all q G N we have

 2nkl "So Inki 'J ļ nk nk '
 From the above facts it easily follows that for any £ G N and tj > 0 there are

 aTq , bq G (-Tf, 0) U (0, j;) and t,ť G {1, . . . , 2 nk} such that for all z , z' G {1, . . . ,£}
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 we have

 ■ (t -1)1 + z -I (t-l)l + z 1
 0+ ■ 2 nkl a-vx° + 2nkl r"'

 (t' -1)1 + z' -lt (t'-l ) + z''
 yo +

 [U [U  « , nk «J X

 Hence, by Lemma 5, we may conclude that (xo, yo) is not a strong J-dispersion
 point of F and then it is not a strong J dispersion point of +oo)). Therefore

 (a?oj yo) is not a strong J-density point of /-1((- oo, ^)). Since / is Z-approximately
 continuous, it follows that f(x0,yo) > what proves the inclusion C
 f-Hb+oo))-

 Now, for m € N let Dm = 0, ¿]2 - [o, ^]2 and T++ = U^=1(Dro n
 UŁi U?=i UU Uj=1 U£=1 H&&) U {(0, 0)}.

 T++ is closed and T++ C /-1([J,+oo)). We shall show that (0,0) € <p++{T++)
 with use of lemma 5.

 Let n € N be arbitrary. Since (0,0) € if>++{R2 - F), by lemma 5 we may
 choose k and S. Put Si = min{£, £}. Let h, h' G (0,¿i) and i, i' G {l,...,n} be
 arbitrary. Choose j, j' € {1, . . . , k} by lemma 5. There are m, m' € N such that
 (h, h') € Pmm^' • By the definition of we have

 what means that (0,0) € <p++(T++).
 Analogously we can construct in the remaining quarters of the plane closed sets

 T+~,T~+,T , included in /-1([^, +oo)) and such that

 (0,0) e n 9;+(T-+) n v; -(r~).

 Put T = T++ U T+- U T-+ U T . T is closed set included in /-1((0, +oo))
 and (0,0) is a deep strong J-density point of /-1((0, +oo)), which ends the proof.

 Remark 1: The theorem above implies that the strongly Z-approximately
 continuous functions are exactly the functions which are continuous with respect
 to the topology Ta.

 Next theorem shows that for the topology T„ the Lusin-MenchofF theorem
 doesn't hold.

 330



 Theorem 5: There exist a set E G 71 and a closed set F C E such that, for
 each perfect set P such that F C P C E, there exists a point (xo, yo) G F which
 is not a strong T-density point of P.

 Proof. First construct a set E 7¡-open. In order to do that, for p G N and for
 each odd k G {1, 3, . . . , 2P - 1}, denote by a£ the number Define a sequence
 {cn}ngjv as follows: if n < m and cn = a*, cm = aj, for some p,q G N, k G
 {1,3,..., 2P - 1} and h G {1, 3, . . . , 2' - 1}, we have either p < q or p = q and
 k < h.

 Let {[fl„, 6„]}n6JV be a sequence of closed intervals such that oi = |, bļ = 1
 and, for each natural n E N 6n+i = |an and an+i = |6„+i.

 Let D = Un=i [®n> ^n] X {cn} and E = R2 - D. Put F = {0} x [0,1]. Then
 F C E and F is closed. We shall show that E is an open set in the Ts topology.

 Let (xo,yo) G E. If (aro, yo) F, then there exists 8 > 0 such that ®o ^ {- 8,6)
 and there exists no G N such that for each n > no, [an, bn] C (- 6, 8). Thus
 D n (((- oo, -8] U [Ć, +oo)) x R) = USLi [an, M x {cn} n (((-oo, -¿] U [¿, +oo)) x R)

 O

 and ( x0,y0 ) GĒ.
 Let (x0, yo) G {0} X [0, 1]. We shall show that for each n G N there exists 8 > 0

 such that, for each ( h , h') G (0, ¿)x(0, 8) and for each (¿, i') G {1, . . . , n} x{l, . . . , n}
 there exists ( j,j ') G {1,2,3} x {1,2,3} such that

 Mi -iH i-

 {0} x c E,

 [SO-1)-.-,-! 3n 3(¿ 3n X)+J 1 x 3n 3n

 i yo H yo H  3 n 5 3n

 Since {0} x R C E, the second condition is obvious for any n G N, 8 > 0, i' G
 {1, . . . , n}, j' G {1, 2, 3}, h' G (0, 8) and yo G [0, 1].
 If yo = 1, since [0, +oo) x [1, +oo) C E, the conditions above are true. Assume

 that y0 < 1. Observe that if y0 = c„0 for some n0 G N, then (R x {yo}) H D =
 [ûno,&no] x {eng}. Let 0 < ¿(¡r0lV0) < Ono- It is obvious that if cn ^ y0 for each
 n G N, then (R x {yo}) n D = 0 and we put £(*<,, yo) = 1.
 Now, let n be an arbitrary natural number. Put 8 = <5(r0iJ/0). Let (h, h') G

 (0, S) x (0, S) and (i, t') e {1, . . . , „} x {1, . . . , n}. If ¿i] nU~ ,K, 6»] = B,

 331



 then ([2Ü1Ü±ÍA, ¿A] X r)dD = t and i*] x [»„+ 2ü11!«Ä',i,0+£Ä']c
 E.

 Therefore we put j = 3 and j' = 3. If 3„ +2^> H U^i[ap? K] ¥" f°r Po

 such that [3^'~^+2/t, ^/i] D [ûpo^pol ^ ® an<l ûpo € (3^^+2/t, ^/i] , then we have

 ^po+i = |opo < &h- Therefore 3^+2h-bPo+1 > 3^)+2h-^h = £3bî > JL > 0
 and ò^+i < 3(ł-y+2/t. If e p''"^"1"2^ ih), then = 26^ > ^~¿+Ah.
 Therefore - ih > - ļh = & * > £ > 0 and Opo_a > ih. If
 Opo ^ 3^3n ^ an<^ ^PO - »^» ^en [aPo^Po] 3 3n n^] ' ^hus ^01 eaC^
 P G N, p Ž Po, [ap, bp ] n ļ^' a^fe, ļh] = 0.

 Now we consider the closed interval [j/0 + yo + -¿h'] . If c,^ £ ļy0 +

 yo + £ā'] , then we have [3^*~^+2fe, ^/i] x [y0 + 3^'ã^+2fr'> y0 + ļf/i'] C'D = 0 and we

 put j = 3 and j' = 3. If € [yo + yo + , then there exists j'0 G {1,2, 3}
 such that Cpg £ ļy0 + y0 4. ^+Jł ft' and therefore [3^~^+2/t, x

 [yo + yo + ~3n +J° ^'| rï-D = 0. Then we put j = 3 and j' = j'Q. Since
 0 = ¿(*0,1/0)5 ^e first and the second conditions are true.

 Now we'll show that there exists a closed set T C E such that (xo5 yo) is a
 strong X-density point of T, what is enough to conclude that E is open in the Tt
 topology.

 In order to do that, for simplicity, assume that (xo,yo) = (0,0). Let, for each
 n G N, 6 > 0 such that for any ( h , h') G (0, 6) x (0, S) and t', i' G {1, . . . , n} there
 exists (j, j') € {1,2,3} x {1,2,3} such that

 rç.-iHi-i 3 m -D+j 1 x |3(¿' - 1) 3 + j' - 1 ay - 3 1) + / J 3 n on ' I 3 n 3 n

 {0} x 3(-"-D+jy| c E.
 öTl oft

 For fixed n G N, S > 0 with the meaning above, m, m' € N, (j, j') 6 {1,2,3, } x
 {1, 2, 3}, (t', t') € {1, . . . , n} x {1, . . . , n}, let P^m'*' the se^ °f points (h, h') G
 il2 such that the following conditions hold simultaneously:

 { 3(i - 1) + j ) 6 ï h<[ 3(t - 1) + j J *
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 f3(»'-i) +j'-i'm's < h. jw-i)+f -ir'"1,
 f3(»'-i) [ 3(¿' - 1) + j') J < - h. V 3(»'-l)+¿' J

 Then for any (t, i') € x {l,...,n} and ( j,j ') € {1,2,3} x {1,2,3}
 Um=i Um'=1 Pmí'j' = (M) X (0,¿).

 For fixed n G N, ( i,i ') G {l,...,n} x {l,...,n}, (j,j') G {1,2,3} x {1,2,3},
 denote by the closure of the set

 U U Vi U 'ì^h+^-h^h-K-h'x'^Lh'+^-h'T-h'-^-h]^ 3n 9 3 9 J 3 9 3 3n i Vi , / • 3n 9 n 3 n 9 n J 3 n 9 n 3 n 3n
 (h,h')€P™£» ,

 where u = (i - 1)3 + j, u' = 3(i' - 1) + j'. We shall show that Hf-,-, C Let
 (®0)î/o) € Htfjj,. Then there are sequences {x,}<ejv and {ya}seN tending to x0
 and j/o respectively such that, for each s G N there are ms, m'a € N and (ha,h'a) €

 such that («•»»•)€ + + ģļK - ±h'a .
 If xq = 0 and yo = 0, it is obvious that (xo, yo) G E.
 If x0 0 and y0 = 0, we may assert that there is no subsequence {mSr}r€w of

 {m,}4€yv which is tending to infinity. If not, in fact, 0 < x,T < £;htr - ģ^hir <

 5¿hgr < ^ (^) r 1 Ö, for all r G N. So lim,. htr = linv xSr = 0 and xq = 0, a
 contradiction.

 Therefore {m4}i€w contains a constant subsequence. For simplicity assume
 that all terms are equal to mt0. Suppose that there exists a subsequence {hSr}repf

 of {ha}seN such that x0 & 5^«r] f°r all r € N. Then either x0 < ^-ha r
 for all r G N or xo > ^har for all r G N (choosing a subsequence if necessary).
 Consider, for example the first situation. Then, since xo < ^-h3r < xSr, for
 all r € N, it follows that linv = and linv sr + ^ xo +

 Ł {fT° f > *»•
 Since x,r > ^-hSr + ^hSr for each r € iV, we have that linv £,r >

 linv (išr^®r + > xo, a contradiction. Thus, there exists s* such that, for

 s > s*, xo G and (xo,0) € '^h„ ^/is] x {0} C E.
 If xo = 0 and yo ^ 0, the proof is similar.
 If xo ^ 0 and yo 0, we may choose, as above, a subsequence {^sr}reN °f

 {ha}seN, if necessary, such that there is r* £ N such that, for each r > r*, xo G

 [^/iSr, 5^/iSr] and we may choose a subsequence {Ä^^ }p€jv of {Kt}^n such that

 there exists p* G TV such that, for all p > p*, y0 G » ìhKr ]• Then choose

 p > P- such that (*„,*,) e [#**,,£*►,,] X E. We have
 «Zjf C E.
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 Now let Dm = [o, ^]2 - [O, ^ī]2 for m € N and let T++ = Um=i (^mH
 Un=x UU U?=i U|=i Uj'=i Hfrjj,} U {(0,0)}. T++ is closed and included in E. We
 shall show that (0,0) € y>++(T++). Letn G N, k = 9, 8 > 0, (h,h') G (0, 5)x(0, S)
 and t', i' G {1, . . . , ra}. For some j,j' G {1,2, 3} we have

 'u - 1 , u ,1 fu' - 1,. u'ļ
 'u ,~3 - ~ 1 , ' 3ra u ,1 J X fu' 1~3ÏT - 1,. ' 3ÏT u'ļ J C '

 where u = 3(t - 1) + j and u' = 3(t' - 1) + j'.
 Then

 fcii 3 + 9ra h , ¿U 3ra - 9ra J x f- 3ra A' + -U', 9ra £-h' 3ra - i-Ä'l 9ra C T++. L 3 ra 9ra , 3ra 9ra J 3ra 9ra 3ra 9ra

 Moreover, if jx = Zj - 1 ,j[= 3 j' - 1, then ju j[ G {1, ... ,9} and

 9(¿ - 1) + ji - 1 Ā 9(ť - 1) + ji 1
 9ra ' 9ra

 '9(i'-l)+j[- 1 9(»'-l)+¿{ 1 r++
 9ra '9 ra

 In a similar way we can construct closed sets T+~,T , T~+ in such a way that
 (0,0) € <Ps(T), where T = T++ U T+~ U T U T~+. Now let's show that, if P
 is a perfect set such that F C P C E, there is a point (xo, yo) € F which is not
 a strong X-density point of P. Suppose the contrary and let P a perfect set such
 that F C P C E and every point (xo, yo) € -F is a strong X-density point of P.
 Let G = R2 - P. Then D C G and, for each ra G N, there exists <5„ > 0 such

 that [o„, 6„] x {cn} C [an, 6„] x [cn- Sn, cn + <5n] C G. We want to show that F C Ď.
 Let (xo, yo) G F and let 7 > 0. Since lim„ bn = 0, then there exists ra0 such that,
 for ra > ra0 we have [an, 6n] C (0, 7). Therefore UÍ£=no[an> U x {cn} C (0, 7) x [0, 1].
 Let n' > rao such that cni G (yo - 7, t/o + 7)- Then we have

 [omAJxJcn,} C (0,7)x(yo-7>fo + 7) and> ((~7>7) x {y0-^,yo + lf))r'D ^ 0

 Thus (x0, yo) G Ď.
 Using this fact, we can define by induction a sequence {[a¿, /?fc]}fce./v of intervals

 such that for each k G N [afc+i,#H-i] C [«*,/?*], ßk+i - ak+i <'{ßk~ock) and for
 each k G N there exists n* such that [a*, ßk] C [cnk - Snk,cnk + <$nJ.

 Let yo G We will show that (0, yo) is not a strong X-density
 point of P. Since y0 G [oik,ßk] C [c„fc - Snk,cnk + <$nJ, for every k G N, we have
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 [®nfc> ] X {yo} C [Onm ^nfc] X [cnjj *^nfc 7 crifc ~t~ ] C G- Let iS" Ufc=l (^n* j ^nj¡) ^nd

 ífc = ¿£~. For each subsequence {ťfcp }p€JV of {ífc}fc6jv we have (§, 1) C U^i hp • 5 D
 [0, 1]. Moreover

 00 111

 tk ' S = tk * ļ^J (Orirł ^nr) 3 ťfc ' (°n») ^n*) = 7 2 ^n*) (x 2 ' ^)* r=l 2 2

 Then 0 is not an Z-dispersion point of S. Thus (0, yo) is not a strong Z-
 dispersion point of G and (0, yo) cannot be a strong Z-density point of P.

 Theorem 6: Ts is not a completely regular topology on the plane.

 Proof: We'll show that there exist a set D closed in the 71 topology and a point
 (xo, yo) & D such that there is no strongly Z-approximately continuous function
 / : R2 - ► R such that /(xo,yo) = 1 and f(D) C {0}.
 Let D be the set defined as in the proof of the theorem above. Let (xo, Vo) be a
 point of {0} X [0, 1]. Suppose that there is a strongly Z-approximately continuous
 function / such that /(xo, yo) = 1 and f(D) C {0}.
 Let A = {(x,y) : /(x,y) > |} and B = {( x,y ) : f(x,y) < £}. Then (x0,y0) €
 A and A Thus there exists a closed set P C A such that (xo, y) is a strongly
 Z-density point of P. Therefore there exists [a, b] C [0, 1] such that {0} x [a, 6] C A.
 Let n be a natural number. If ( x,y ) € [an, 6n] x {cn}, (where [an, bn' x {cn} is
 such that D = U^=1[an, 6n] x {cn}), then (x, y) € B and (x, y) is a strong Z-density

 O

 point of B ■ Thus there exist 8x<y such that, for every h, h' 6 (0, 8x<y) and for every
 i,i' 6 {l,...,n}

 (x + - - -h,x + -h) x (y + - ' n n / ' n n J

 (x + - - - h , x + -h) J y. (y - ' n , n J ' n n )

 (x - - - -h,x - -h) x (y + - ' n n / ' n n J

 (x - - - -h, x - -h) x (y - -
 V n n J ' n nj

 Now we define by induction sequences of sets {[a„p, ¿>np]x{c„p}}p6/v, {[ap> ßvWpeN
 and of points {(xj, . . . , x% p)}pgN such that, for every p Ç. N and i G {1, ... , 2P} we
 have
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 i) (<*i,/?i) c (a, 6)

 ii) ßp+i - ocp+ 1 < '{ßP - a„)

 iii) [oíp+1,/9p+1] C [ap,ßp]

 iv) [ocp, ßP' = [cnp - 6, cnp], where 8 = min^^, . . . , 8ąp<Cnp)

 v) [a"p+i i ^"p+i ] * {cnp} C (0, anp) X ( ocp,ßp )

 vi) [a ni ? &ni ] X {Cnj C (0, +oo) X (a, 6)

 vii) xf G (ûnp + *2P~(bnp ~ Onp)jO»»p + Jp{^np ~ anp))-

 For p = 1, let ni E N such that [<zni , bni] x {cni } C (0, +oo) x (a, 6) and choose
 x' G (ani , anļ + j(6ni ®»»i)) and G (^m "I" j(^ni ®nx)»^»i)*

 Put [ax,ßi] = [cni - <5, c„J, where 5 = min{<5xi Cnj , <$J.i Cnļ }. Assume, by in-
 duction, that there exist cnki [ûfc, ßk] and x', . . . , x£, satisfying i), ii), iii),
 iv), v), vi), vii), for all p < po- We want to show that there exist [anpo, ònpo],
 CnPo> and xf0,...,!^ with properties i), ii), iii), iv), v), vi) and vii).

 For this purpose, let [anpo,&npJ and cnpo such that [anp0,i>„p0] x {cnpo } C

 (0, ) X (yi, ßn-i) and let, for each i G {1, . . . , 2*° }, x? € (anpo + Í=±(bnpo -
 anPo)'antt> Põ(^nP0 - a"po))'

 Let 8 = min^^ , • • • , ^ lCnpo } and put [a^, ß^' = [cnpo - 8% cnpo], where
 8* is a positive number less than 8 and such that ii) and iii) are satisfied.

 If y * is such that {y*} = [<*?, ßP ], we have y* G (a, b), (0, y*) G {0} x (a, 6) C
 A. Then (0,y*) G A.

 Let k be an arbitrary natural number. Then there exists po such that, for each

 p > po, bnp < £ and p > 2k. Moreover, there exists pi such that cnp € (y*,y* + |)
 for every p> p'.

 Let p > max{pi,po}- Put h = 6np, h' = c„p - y*. Then ( h , h') G (o, ļ) x (0, £).
 Put i = i' = 2 and fix j,jf G {1, . . . , k}. Since p > 2 k, there exists £ G {1, . . . , 2P}

 such that X1 € (°np + ^F^np,anp + an(* > C"p ~ V*-
 Let t such that 0 < t < 8ątCnj> and + 1 < anp + ^bn¡>. Put ť = |(c„p -y*).

 Then ť < 8ą<Cnp.
 Thus, for each m, m' G {1, . . . , np}, the set

 / = U + "-i^±t,xU "A x L _ n fl/ 0.
 V np np ) V np np J
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 Consequently, the intersection

 ("■» + 3~vrh"''a"> + ļkb"') x

 (»* + (ī + ^r) (c- - + (I ■ + a) (c- - '">) n B
 includes I and then it's not empty.

 In conclusion, we may assert that for each k £ N there exist h , k' € (o, jr) such
 that for each j, j' € {1, . . . , k} we have

 ((ī+iar)*' (ï+à)'î)><

 Then (0, y*) is not a strong J-density point of the set A and that is in contra-
 diction with the fact that (0, y*) € A.

 Remark 2: It is obvious that D is closed in the d- topology (see [3]). Then an
 analogous proposition for strong (ordinary) density holds, i.e. the Lusin-MenchofF
 theorem for d-topology is not true.
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