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 MON OTONICITY AND LOCAL SYSTEMS

 Using the notion of a local system with some "intersection conditions", con-
 sidered by Thomson in [11] and [12], we extend Theorems 6, 3 and 4 of Preiss
 ([8]). The main result of the paper is the monotonicity Theorem 4. In [3] the
 author extends Bruckner's reduction theorem (see Theorem 8), but we don't know
 if Theorem 4 of Preiss ([8]) and our Theorem 4 follow by Theorem 8 of [3]. For
 convenience, if P is a property for functions defined on a certain domain, we will
 also use P to denote the class of all functions having property P.

 We need the following definitions and notations:

 Definition 1. ([11], p.3 and [12], p. 280). The family £ = {¿(x) : x E i?}
 is said to be a local system of sets provided it has the following properties: (i)
 {x} ^ ¿(x); (ii) if S 6 C(x) then x € S; (iii) if Si € ¿(x) and Sļ D Si then
 S 2 6 ¿(x); (iv) if S G ¿(x) and 8 > 0 then S' D (x - 6, x + f>) 6 ¿(x). The system ¿
 is bilateral (resp. bilaterally c-dense) provided every set S € C(x) contains points
 on either side of x (resp. is bilaterally c-dense in itself).

 Definition 2. ([11], p. 117). Let £ be a local system. A function / : [0,1] - ►
 R is said to be ¿-increasing at a point x provided ox = {y : y = x or (f(y) -
 f(x))/(y - x) > 0} € ¿(x). If ">" is replaced by ">" we say that / is strictly
 ¿-increasing. Similarly we define the conditions ¿-decreasing and strictly C-
 decreasing. We denote by C - DJ(x) = sup{c G R : {x} U {y : (f(y) - f(x))/(y -
 x) > c} € ¿(^)}> C - Df(x) is defined similarly (see [12], p. 281).

 An exact ¿-derivative of / at Xo, if it exists, is any number c (including ±00)

 such that, for any neighborhood U of c the set of points {y : y = x or ^yļzi^ €
 U} belongs to ¿(xo). In this case we write (¿) - Df(x 0) = c, with the warning
 that the number c need not be unique, nor have an immediate relations with the
 two extreme (¿)-derivates. The set of all (¿)-derivates of a function / at a point
 x0 will be denoted by (¿) - A (/, x0) ([11], p. 140).

 Definition 3. ([12], p. 292 and [2], p. 101). A local system ¿ = {¿(x) :
 x 6 R} will be said to satisfy the intersection conditions listed below if correspond-
 ing to any choice {crx : x € R} from ¿ there must exist a positive function 6 such
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 that whenever x,y € R and O < y - x < min{£(x),¿(y)} the two sets 8X and 8y
 must intersect in the asserted fashion:

 (3.1) intersection condition (I.C.): 8X D 8y H [x, y] ^ 0;

 (3.2) external intersection condition (E.I.C.): 8X fl 8y D (y, 2y - x) ^ 0 and 8X fl
 6y fl (2x - y,x) ^ 0;

 (3.3) external intersection condition, parameter mm (E.I.C.[m]): 8X H 8y D (y, (m +
 l)y - mx) ^ 0 and D fl ((m + l)x - my, x) / 0;

 (3.4) 8X D 8y fl (- oo, x] ^ 0 and 8X D 8y D [y, +oo) ^ 0;

 (3.5) 8X D 8y D (- oo, x] / 0

 (3.6) 8X fi 8y fl [y, +oo) ± 0.

 Let / : [0, 1] - ► R be a function. We denote by Ea(f) = {x : f(x) >
 a}; £«(/) = {x : f(x) < a}; Eba(f) = {x : a < f(x) < b}.

 Definition 4. ([5], [7]). A measurable function / : [0, 1] - »■ Ä is said to have
 the Denjoy-Clarkson property (D.C. - property) if for - oo < a <b < +oo, the set
 E^(f) has positive measure in every one-sided neighborhood of any of its points
 when Eļ(f) ± 0.

 Definition 5. ([5], [7]). A measurable function / : [0, 1] - ► R is m-i (resp.
 m 2) if Ea(f ) (resp. Ea(f)) for a € R has positive measure in any one sided
 neighborhood of any of its points when Ea(f) ^ 0 (resp. Ea(f) jí 0).

 Definition 6. (Baire conditions). Let / : [0, 1] - »• Ř. Then / € (resp.
 B' ) iff Ea(f ) (resp. Ea(f)) is Fe. It follows that Bi = B' D B¿.

 Let m.2 = m<2 fl m0; Mo = B_i D m0; M 2 = Bi Ci Tfīļ', Mļ = m-¡, fi B' ^
 DBļ ( DB' = condition Darboux Baire one), see [13]).

 Definition 7. ([5]). A function / : [0, 1] - > 7? is wBi (wide B') if for -00 <
 a < b < +00 and for every open interval I the sets {x : /(x) < a} and {x :
 f(x) > 6} are not simultaneously dense in I D E*(f) when I l~l E'{f) ^ 0. Clearly
 B' ^ wB' (see Theorem 1 of [8], p. 376).

 Definition 8. ([8], Theorem 4, p. 378). Let / : [0, 1] - ► R. If limi_>o+
 /(x - b) < /(x) for x G (0, 1] and lim¿_>o+ f(x + b) > /(x), for x € [0, 1) (if these
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 limits exist) then we say that / is uP. If - / G uP then we say that / G IP. Let
 V = lPDuP.

 Definition 9. ([4], p. 424). A function / : [0, 1] - ► jR is uCM if / is in-
 creasing on the closed subinterval [c, d' C [0, 1] whenever it is so on the open
 interval (c, d). Let 1 CM = {/ : - / G uCM} and let CM == 1 CM fl uCM. Let
 sCM = {/ : /(x) + Ax G CM, for each A G R}.

 Definition 10. ([2], p. 104). Let 8 be a positive function and let X be a
 set of real numbers. By a ¿-decomposition of X we shall mean a sequence of sets
 {X„} which is a relabelling of the countable collection Ymj = {x G X : ¿(x) >
 l/m} D [i/m, (j + l)/m], m = 1,2,... and j = 0, ±1,±2, ±3, ... .

 Remark 1. ([2], p. 104, [11], p. 32-33). The key features of such a decom-
 position of the set X are: (i) U^Li Xn = X' (ii) If x and y belong to the same set Xn
 then 'x - y' < min{£(x),¿(y)}; (iii) if x G XnXn and y G (x - S(x), x+S(x))nX„
 then again one must have |x - y| < min{<5(x), £(?/)}.

 Let / : [0, 1] - ► iž and let P be a subset of [0, 1], a G R. Let Ea(f] P) = {x G
 P : /(*) > a}; £»(/; P) = {x G P : f(x) < a}.

 Theorem A. Let f : [0, 1] -* R. The following assertions are equivalent:

 (A.l) / G Bi (/ is in Baire class one);

 (A. 2) for each closed subset P of[ 0, 1] and for any real numbers a < b at most one
 of the sets {x G P : /(x) >6}, {x G P : /(x) < a} is dense in P;

 (A. 3) for each closed subset P of [0, 1] there exists at most one real number p
 (depending on P) such that Ep(f'1 P) = E*(f' P) = P;

 (A. 4) for each closed subset P of [0, 1] and for any real numbers a < b at most one
 of the sets Eķ(f;P), Ea(f',P) is dense in P.

 Proof. The equivalence of (A.l) and (A. 2) follows by [8] (Theorem 1, p.
 376). We show that (A. 2) implies (A. 3). Suppose that / G (A. 2) and / ^ (A. 3).
 Then there exist a closed subset P of [0, 1] and real numbers a < b such that
 EaU'P) = Ea(f; P) = Eb(f] P) = Eb(f] P) = P. Hence {x G P : /(x) < a} =
 {x G P : /(x) > 6} = P. Therefore / ^ (A. 2). We show that (A. 3) implies
 (A. 4). Suppose that / G (A. 3) and / ^ (A. 4). Then there exist a closed sub-
 set P of [0,1] and real numbers a < b such that Eb(f;P) = Ea(f'P) = P.
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 Since Eb(fļP) C £,(/; P) and £°(/;P) C Eb(f-,P), it follows that Ea(f-P) =
 Ea(f-,P) = Eb(f-,P) = Eb(f-,P) = P. Hence / ¿ (A.3). We show that (A.4)
 implies (A.2). Suppose that / G (A.4) and / ^ (A.2). Then there exist a
 closed subset P of [0, 1] and real numbers a < b such that {iÇP: f(x) >b} =
 {x E P : f(x ) < a} = P. Let a < a' < bi < b then Ef>1(f'1P) = Ea^(f]P) = P.
 Hence / ^ (A.4).

 Theorem B. (Theorem 1 of [5]). Let f : [0, 1] - ► R be a Darboux function.
 Then f is wB' iff for - oo < a < b < +oo and for each open interval with
 I H Eb(f) 7^ 0 there exists an open subinterval J of I with J fl Eb(f) 0 such that
 either J C Ea(f) or J C Eb(f).

 Theorem C. Let f : [0, 1] - »• R. We have : a) If f is a Darboux function
 and f € wBļ Ci then f 6 D.C. (see the proof of Theorem 3 o/[5]; b) If f is a
 Darboux function and f € D.C. then f € c) If f is finite and f G D.C. then
 f G m2.

 Proof. Let / : [0, 1] - ► R, f G D.C. We prove that / G rri^ (that / G m 2
 follows analogously). Let a G R and let Xo G Ea(f). If f(x0) < +00 then there
 exists a natural number n such that f(x 0) < n. Let 8 > 0 and T = (aro - 8, Xo)
 or T = (xo, x0 + £). Since / G D.C. , m(E2(f) fi T > 0, hence m(Ea(f) H T >
 0. If f(x 0) = +00, suppose that there exists 8 > 0 such that, for example,
 m(Ea(f ) D (xo,aro + £)) = 0. Let x' G (xo,xo + 81 2) such that f(x 1) < a. Since
 / is Darboux, there exists x2 G (xo, ^0 + 8/2) such that f(x 2) G Ejļ(f) for some
 natural number k. Hence m(E*(f) fl (xo, Xo + <$)) > 0, a contradiction. It follows
 that / G m?.

 Remark 2. There exists a function / : [0, 1] - ► R which is not Darboux such
 that / G D.C. H Bi and / ^ m2. (Indeed, let /(x) = 0, x G [0, 1]'{1 /2} and
 /(1/2) = +00.)

 Corollary D. Let f : [0, 1] - ► R, f G B'. If f G m-i then f is Darboux and
 f G D.C.

 Proof. Since / G B' n - M2 ^ DB' and B' ^ wBi, by Theorem C,a), it
 follows that f G D.C.

 Remark 3. Corollary D was obtained before by Mukhopadhyay in [7]
 (Theorem 1, p. 280), but for / a finite function.
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 Proposition 1. Let f : [0, 1] - ► R, f G uCM and let h : [0,1] R, h
 continuous and increasing on [0, 1]. Then f - h G uCM.

 Proof. Let <z(x) = /(x) - h(x) and let (c, d ) C [0, 1] such that g is increasing
 on ( c,d ). It follows that /(x) = g(x) + h(x) is increasing on (c, d). Since / G uCM
 it follows that / is increasing on [c, d]. Suppose that there exists x' G (c, d) such
 that g(x i) > g(d). Let e = g(xi) - g(d). Since h is continuous it follows that there
 exists d 6 (0,d - x' ) such that h(x) > h(d) - e, for each x G (d - 6, d). Since
 g(x) > g(x i), for each x € (d - S,d), it follows that f(x) = g{x) + h(x) > f(d).
 This contradicts the fact that / is increasing on [c, d]. Hence g is increasing on
 [c, d] and g 6 uCM.

 Corollary 1. Let f : [0, 1] - * R. Then the following conditions are equivalent:
 a) / G sCM ; b) f(x) + Xx and Xx - f(x) are uCM for each X > 0.

 Proof, a) ^ b) is evident. We show that b) =£• a). If A = 0 then f{x) 6 CM.
 If A < 0 then by Proposition 1, f(x) + Xx G uCM. By hypothesis, -f(x) - Xx €
 uCM, hence f (x) + Aa: G CM. If A > 0 then by hypothesis f(x) + Ax G uCM.
 By Proposition 1, -f(x) - Xx G uCM, hence f(x) + Ax G CM.

 Example 1. Let F : [0, 1] - ► [-1, 1], F(x) = 1 - x, x G [0, 1) and .F(l) = -1.
 Then we have:

 a) F G CM C uCM on [0, 1].

 b) F(x) + Ax ^ uCM on [0, 1] if A > 1.

 c) uP on [0, 1].

 Example 2. Let F : [0,1] - ► [-1,1], F(x) = x sin^, x G (0,1], F( 0) = 1.
 Then we have:

 a) F is continuous on (0, 1]

 b ) F £ uP on [0, 1]

 c) F G sCM on [0, 1]

 Proof. a) is evident; b) F(0) = 1 limx_fo+ F(x) = 0; c) we prove that
 F(x) + Ax is uCM for each A G R. The case F(x) + Ax is £CM is similar. Let
 (c, d) be a subinterval of (0, 1) such that F(x) + Ax is increasing on (c, d). If c ^ 0,
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 since F is continuous on (0,1] it follows that F(x ) + Ax is increasing on [c, d'.
 Hence F(x) + Ax is uCM. If c = 0, we observe that F(x) + Ax is monotone on no
 (c, d). q.e.d.

 Proposition 2. For function F : [0, 1] - ► R we have:

 a) uV ®C = uV, where C the class of all continuous function defined on [0, 1]
 and Aļ ® Aļ denotes the linear space generated by the classes of functions
 Ai and Aļ.

 b) uV ^ uCM.

 c) V £ sCM.

 Proof, a) is evident; b) uP C uCM. Let F : [0,1] -» Ä, F € uP and
 let (c, d) C (0,1) such that F is increasing on (c,d). Let xi € (c, d). Then
 F(c) < lim¡c_>c+ F(x) < F(xi) < lim*-^- F(x). (These limits exist since F is
 increasing on (c, d).) Hence F is increasing on [c, d], and consequently F G uCM
 on [0, 1]. That uP § uCM follows from Example 1, a) and c).

 c) For V C sCM see Proposition 2, a) and b) and Definitions 8 and 9. That
 V ^ sCM follows from Example 2, b) and c).

 Lemma 1. (Theorem 50.2, p. 117 of [11]). Let C be a local system which
 satisfies intersection condition I.C. Let f : [0, 1] - ► R. If f is C-increasing on [0, 1]
 then f is increasing on [0,1].

 Proof, (based on a different idea than that in [11]). Let P be the collection of
 all X for which there exists no open interval containing x on which / is increasing.
 It is easy to show that the complement of P is an open set U. Further

 (1) / is increasing on the closure of each component interval of U .
 This implies that P is a perfect set. We prove that P is empty. Suppose that P ^ 0.
 For crx = {y : y = x or (f(y) - f(x))/(y - x) > 0} € £(x), let ¿(x) > 0, x G [0, 1]
 given by condition I.C. Let Pnm = {x € P : x E [m/n, (m + l)/n], 1/n < 8(x) <
 1 /(n - 1)}, n = 2, 3, ... , m = 0, 1, . . . , n - 1. By the Baire Category Theorem,
 there exists an open interval (a, b ) such that 0 ^ (a, b)f]P C ~Fnm for some n and m.
 Let xo < yo, xo a right accumulation point of P D (a, b) and yo a left accumulation
 point oîPr'{a,b). Let xuyi € Pnm, x0 < xi < yx < y0, xx € (x0, x0 + ¿(x)), yi G
 (yo - %o),î/o). Then aXo n <rXl ± 0; aXl D ķ 0; <ryi D ± 0, hence /(x0) <
 f(yo ). Now by (1) it follows that / is increasing on (a, 6), a contradiction. Hence
 P = 0.
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 Corollary 2. Let C be a local system which satisfies intersection condition I.C.
 Let f : [0,1] - ► R. If C - DJ(x) > 0 a.e. and C - D fix ) > - oo everywhere then f
 is increasing on [0, 1]. Moreover, suppose that for each point x € [0, 1] there exists
 an exact C-derivative of f at x, denoted by (C) - Df(x). If (£) - Df(x ) > 0 a.e.
 and (£) - Df(x) > - oo everywhere then f is increasing on [0, 1].

 Proof. Let e > 0 and let E = {x : C - Df(x) < 0}. Then 'E' = 0. By [1]
 (Lemma 1.2, p. 124) there exists an increasing function g : [0, 1] - * [0, e) such that
 g'(x) = +00 on E , </(0) = 0 and g'(x) > 0 for all x G [0, 1 ]'E. Then f + g is
 strictly ¿-increasing on [0, 1] and by Lemma 1, / + g is increasing on [0, 1]. Since
 e was arbitrary, / is increasing on [0,1]. For the second part we see that there
 exists an exact ¿-derivative of / + g at x denoted by (£) - D[f + g](k) which is
 everywhere strictly greater than 0. Hence f + g is strictly ¿-increasing on [0, 1].
 Using again Lemma 1, it follows that / is increasing on [0, 1].

 Theorem 1. (An extension of Theorem 6 of [8]). LetC be a local system
 which satisfies intersection condition I.C. Let f : [0, 1] - ► R be a function such that:
 (i) / G sCM on [0, 1]; (ii) An exact C-derivative (C)-Df(x) exists finite or infinite
 at every point x € [0, 1]; (iii) (£) - Df{x) is Bļ on [0, lj. Then: a) (£) - Df(x)
 is m2¡ b) (£) - Df(x ) is a Darboux function and satisfies the D.C -property, c) /
 fulfills the Mean Value Theorem.

 Proof. Let g(x) = (C) - Df(x). a) We show that g G 7TĪ2- Suppose that
 Ex = {x : g(x) < A} ^ 0 and that there exist a point Xo G Ex and So > 0
 such that xo - So > 0 and, for example, g(x) > A a.e. on (x0 - ¿o, ^o)- Let
 A = {x G (#0 - ^o>®o) : 9 is continuous at x}. If x G A then g(x) > A. (Indeed,
 if g(x) < A then there exists S > 0 with (x - S, x + Í) C (x0 - S,x 0), such that
 g(y) < A for each y G (x - S,x + £), a contradiction.) Let x G A then there exists
 a closed interval [c, d] C (®o - ¿o>®o) such that x G (c,d) and g(y) > - oo on
 [c, d'. By Corollary 2, f(x) - Xx is increasing on [c, d] , hence there exist maximal
 open intervals (an, 6n) such that /(x) - Ax is increasing on each (an, bn). By (i)
 it follows that /(x) - Ax is increasing on [qn, 6n], Hence the set G = U(an, 6„) is
 dense in (xo - So, xo ) and the set P = (xo - ¿o> %o )'G is a perfect set. Suppose on
 the contrary that P ^ 0. Let Xj G (xo - So, Xo)'G be a point of continuity for g ' p .
 Then «7(xi) > A. (Indeed, if g(x i) < A then by (iii) there exists ¿i > 0 such that
 (xi - ¿i, xi + ii) C (x0 + S0, x0) and g(y) < A for each y G (xi - Si, xi + ¿i) H P.
 Let ( an,bn ) C (xi - <$i, xi + ¿i) for some natural number n. Then g(an) > A and
 9(bn ) > A, a contradiction.) It follows that there exists a closed interval [ci,dļ]
 such that g(y) > A - 1 on P D [ci, dx]. By Corollary 2 we have that /(x) - Ax is
 increasing on [ci,di], a contradiction. Hence G = (x0 - S0,x0). By (i) it follows

 297



 that /(x ) - Ax is increasing on [xo - So, xo]> hence g(x o) > A, a contradiction.
 b) See a), (iii) and Corollary D.
 c) For every a, 6, 0 < a < b < 1, let A = Suppose that there is no

 x0 6 (a, 6) such that </(xo) = A. Since g is a Darboux function, it follows that
 either g(x) > A or g(x) < A on (a, 6). In the first situation, for example, it follows
 by Corollary 2 that f(x) - Xx is increasing on [a, 6]. Since g(x) > A on (a, b) it
 follows that f(b) - A > /(a), a contradiction.

 Observation. In Theorem 6 of [8] condition (i) is replaced by the restrictive
 condition F € V (see Proposition 2, c)). Also the function F from Example 2
 satisfies the hypothesis of our Theorem 1, but not of Preiss' Theorem 6.

 Lemma 2. Let f : [0, 1] - ► R and let P ^ 0 be a Gs subset of (0, 1). Let C
 be a local system with intersection condition (3.4.). Let A Ç {x E P : f is C -
 increasing at x} and B Ç {x G P : / is strictly C - decreasing at x}. Suppose
 that P = ~Ā (resp. P = B). We have: a) B (resp. A) is of first category with
 respect to P; b) If E = P'(A U B) is countable then B (resp. A) is nowhere dense
 in P.

 Proof. Let ax = {y : y = x or (f(y) - f(x))/(y - x) > 0, y ± x} D (0, 1) for
 x 6 A and let ax = {y : y = x or (f(y) - f(x))ļ(y - x) < 0, y^xjn (0, 1) for
 x G B. Let 6(x) € (0, 1) be the 8 given by condition (3.4) for x € A U B. Hence, if
 x, y € A U B such that |x - y' < min{£(x), S(y)} then <rx D <ry D (- oo, x) ^ 0 and
 <JX H <7y fi (y, +oo) ^ 0. Suppose that P = A (the second part follows analogously).

 a) Let Gn = fl^^x - S(x)/n,x + 6(x)/n) and let H = P D (fXLi Cn).
 Then H is a. dense Gs set in P, A C H C P. We prove that B D H = 0.
 Suppose on the contrary that BOH ^ 0. Let y € B fi H. Let n be a natural
 number such that 1/n < S(y). Then y € Gn, hence there exists x 6 A such
 that y € (x - i(x)/n, x + 6(x)/n). Since i(x)/n < 1/n < 6(y), it follows that
 |y - x| < min{£(x),£(y)}. Suppose, for example, that x < y (the case y > x is
 similar). Then we have two situations: 1) f(x) < f(y) and 2) /(x) > f(y).

 1) Let z € (- oo, x) n crx D <ry ^ 0 (see condition (3.5)). Then f(z) < /(x) and
 f(z) > f{y), a contradiction. 2) Let z G (y, +oo)n<TiCn<7y ^ 0 (see condition (3.6)).
 Then f(z) > f(x) and f(z) < f(y), a contradiction. It follows that B CI H = 0,
 hence B C P'H which is a set of first category with respect to P.

 b) Suppose on the contrary that 0 ^ (c,d) fl P C B. Let Amn = {x 6
 (c, d) fi A fi [m/n, (m + 1 )/n] : 6(x) € (1/n, l/(n - 1)]} and let Bmn = {x €
 (c,d) ni?n [m/n, (m+ l)/n] : £(x) € (1/n, l/(n - 1)]}, where n = 2,3,..., m =
 0, 1, 2, . . . , n - 1. Then (c, d) fi P = Un.mMmn H Bmn ) fi E. By the Baire Category
 Theorem it follows that there exists an open interval (a, b) C (c, d) such that
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 either 1) 0 / (a, 6) n P C Āmn or 2) 0 / (a, 6) fiP C Smn, for some n and
 m. 1) Let y G (a, 6) D B and let x € (y - 8(y),y + S(y)) fl Amn D (a, 6). Then
 |x - y' < min{£(x), £(j/)}, a contradiction (as at a), 1) and 2)). 2) Let x € (a, 6)fl A
 and let y € (x - 8(x),x + ¿(a:)) D Bmn fl (a, 6). Then |x - y| < min{£(x),6(y)}, a
 contradiction (as at a), 1) and 2)).

 Theorem 2. (An extension of Theorem 3 of [8]). Let F : [0, 1] - ► R and
 let £ be a local system with intersection condition (3.4) such that C - DF(x ) exists
 (finite or infinite) at each point x G [0, 1]. Then C - DF(x) is Bi on [0, 1].

 Proof. Let f(x) = C - DF(x). Suppose that / ^ B'. By (A. 3) (Theorem A),
 there exist a closed subset P of [0, 1] and real numbers a <b such that Ea(f' P ) =
 Eķ(f-, P) = Ea(f ; P) = Eb(f', P) = P. Applying Lemma 2, a) to F(x) - ax
 and F(x) - bx it follows that Ea(f'1P), Ea(f'P), Eb(f',P), Eb(f]P) are of first
 category with respect to P. Hence {x € P : f(x) = a} and {x € P : f(x) = 6} are
 residual sets with respect to P, a contradiction.

 Definition 11. ([4], p. 69 and [9], p. 236). A function F : [0, 1] - » R is
 said to be AC on a set E C [0. 1] if for each e > 0 there exists 6 > 0 such that
 E (F(bi) - F(ai )) > - e for each finite set {[a,-, 6,]} of nonoverlapping intervals with
 endpoints in E and E(6¿ - a,) <6. F E AC on E if - F G AC on E. AC =
 ~ĀCn AC.

 Definition 12. Let / : [0, 1] - ► R and let E C [0, 1]. We say that / 6lon£
 if there exists A € R such that f(y) - f(x) > À (y - x ), y > x, x,y € E. f G L on
 E if - / € Ļ on E.

 Let P be a closed subset of [0, 1]. We denote by P+ (resp. P~) the set {x G
 P : x is a right (resp. left) accumulation point of P}.

 Definition 13. Let / : [0, 1] - ► R and let P be a perfect subset of [0, 1]. We
 say that / € V (resp. ¡J') on P if there exists A E R such that f(y) - f(x) >
 A • (y - x), y > x, x € P+ , y 6 P~ (resp. x G P~, y G P+). f G L' (resp. L") on
 P if - / G H (resp. Ļ") on P.

 Definition 14. Let / : [0, 1] - ► R and let P be a perfect subset of [0, 1].
 We say that / G AC' (resp. AC") on P if for each e > 0 there exists 8 > 0
 such that if Ik = [afe, 6jt], k = 1,2,..., is a sequence of nonoverlapping intervals
 with at G P+, bk G P~ (resp. G P~, bķ G P+ ) and 2(6* - a¿) < S then
 S(/(6fc) - /(ajt)) > -s. f G AC' (resp. AC") on P if - / G AC' (resp. AC") on
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 Remark 4. a)iC AC : L C AC for finite functions on a set E C [0, 1]; b)
 For finite functions on a perfect set P we have: Ļ C Ļ'ļ Ļ C V'' ī C l'; L C
 Z"; AC C AC'; AC C AC"; AC C AC' ; AC C AC": c) Ļ' C £ and Ļ" C £ for
 finite functions on an interval (a, 6).

 Lemma 3. Let P be a perfect subset of [0, 1] and let (an, bn) be the intervals
 contiguous to P with respect to (0, 1). Let F : [0, 1] - » R and f : [0, 1] - » R be such
 that f(x) = j F(x), X € P and f(x) is linear on each [an, &„]. If F € AC (resp.
 VB) on P then f € AC (resp. VB) on [0,1]. (For VB see [14], p. 221.)

 Proof. Let e > 0. For e/3 we consider S > 0 given by the fact that F € AC
 on P. Let A- = {n : F(bn) < F(an)}, A+ = {n : F(bn) > F(an)}. Let A'_ be
 a finite subset of A- such that En€.4-V4' (bn - on) < 8. Let m$ = min{(F(6fc) -
 F(ak))/(bk - ak), k € A'_ } and let r) > 0 such that mg • t) > -e/3. Let 6ļ =
 min{6, t/}. A closed interval I = [a, 6] C [0, 1] is said of first kind of a, 6 G P, and
 of second kind if (a, 6) C (0, 1)'P. If J = [c, d] C [0, 1] is not of first or of second
 kind then [c, d' (~l P ^ 0. Let ci = inf(P fl [c, <i]) and d' = sup(P H [c, </]). Then

 2) [c,d] = [c,d] U [d, di] U [dud' and F(d) - F(c) = F(d) - F(d1) + F(dx) -
 F(ci) + F(ci) - F(c).
 Also [ci, ¿i] is of first kind and [c, Cj] and [di, d] are of second kind. Let J,- = [c¿, d,],
 be a finite sequence of closed intervals such that S(dj,c,) < 6ļ. 1) If each J,- is of
 first kind, then clearly S (/(d,) - /(c,)) = S(F(d,) - F(c¿)) > -e/3. 2) If each
 J* is of second kind then S(/(d,) - /(c,)) = ¿.^(/(dj) - /(c¿)) + E,€B2(/(¿,) -
 /(et)) + E, WM) - fid)) > ^A.'A'_(F(bn) - F(an)) + Ei€A'_ ms • | Jt| >
 -e/3 - e/3 = (-2/3)e, where Bx = {i : (cť,d,) C Une^-'>«'_(an, K)}; B2 = {i :
 C Ci, di ) C Une^_(an,6n)}; S3 = {i : (c,,d.) C Unex+(an, 6„)}- The general case
 follows by 1), 2) and (2). The second part follows similarly.

 Remark 5. a) Let C be the Cantor ternary set and let (an, 6n), n > 1 be
 the intervals contiguous to C with respect to (0,1). Let f,g : [0,1] - » R such
 that f(x) = g(x) = 0, x e C'(U{an,6„}); f(an) = g(bn) = 1; f(bn) = g(an ) =
 -1, f,g are linear on each [an, &„]. Then /6 V on C; g G V' on C; f,g$. [VBG'
 on C; /, <7 are Darboux on [0, 1]; f,g & B' on C. Since Ļ' C AC' it follows that
 we can not replace AC by AC' in Lemma 3.

 b) Lemma 3 is often used in [4] and [9] but without proof. Recall that a function
 F is VBG on a set A' is X can be expressed as the union of a sequence of sets
 on each of which F is of bounded variation V B', if the sets in the sequence can be
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 taken to be closed, F is said to be [VjBG].

 Lemma 4. Let F : [0, 1] - ► R. If F € AC on [0, 1] then F G VB on [0, 1].

 Proof. For e = 1 let 8 > 0 given by the fact that F € AC on [0, 1]. First we
 prove the following assertion:

 (3) If [a, 6] C [0, 1], b - a < 6, a = y0 < yi < • • • yjt-i < Vk = b then

 £ 1%,) - f (»01 < F(b) - F(a) + 2.
 t=0

 Let A- = {i : F(yi+1) - F(yi) <0, i € {0, 1, . . . , k - 1}} and A+ = {i : F(yi+i) -
 F(yi) >0, i e {0, 1, . . . , k - 1}}. Since F(b) - F(a) = J2ÏZè(F(yi+i) ~ F(Vi)) it
 follows that £ř=o 'F{yi+i) - F(y¿)| = £,-6^+(^(y«+i) - F(Vi)) ~ īlizA-(F(yi+ 1) ~
 F{yi)) = F(b) - F(a) -2Y,içA_(F(yi+l) - F(y,)) < F(b) - F(a) + 2 and we have
 (3). Now we prove that F € VB on [0, 1]. Let n be a natural number such that
 (n - 1) • S < 1 < n • 6. Let 0 = x0 < < • • • < xm = 1. Let be such
 that Xjt < i/n < Xji+ 1, i = 1,2, ...,n - 1, jo = 0, jn = m. By (3) we have
 EJLo - Ffo)! < EEJd^i+i) - H'M' + - n®i+i)l + • • • +
 |F((i + l)/n) - F(ii+1) I) < S£b' (2 + i1«! + 1)/«) - »)) = 2n + F(l) - f (0),
 hence F G VB on [0, 1].

 Remark 6. Let P, F, f be defined as in Lemma 3. If F is AC on P then F
 is V B on P . Indeed, if F € AC on P then by Lemma 3, / is AC on [0, 1]. By
 Lemma 4, / € VB on [0, 1], hence F is VB on P. This assertion is often used in
 [4] but without proof.

 Lemma 5. Let F : [0, 1] - ► R, F € AC. If F'(x) > 0 a.e. where F'(x) exists
 then F is increasing on [0, 1].

 Proof. By Lemma 4 it follows that F is VB, hence F is derivable on a
 measurable set A , |v4| = 1. By Vitali's covering theorem, applied to A and by the
 fact that F G AC. it follows that F is increasing on [0, 1].

 Remark 7. Lemma 5 follows also by [9] (Theorem V, p. 237) and [10] (Lemma,
 p. 4).

 Lemma 6. Let F : [0, 1] - ► R. Let P be a perfect subset of[ 0, 1] and let (on, 6„)
 be the intervals contiguous to P with respect to (0, 1). If F is AC' on P and F is
 increasing on each interval [an, 6n] then F is AC on [0,1].
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 Proof. Let e > 0 and let 6 > 0 be given by the fact that F is AC' on P. Let
 {[c¿, be a sequence of closed subintervals of [0, 1] such that E (di - c,) < 8.
 Let A = {i : (e,-, di) (IP / 0}. If i # A then (c,-, di) C (0, 1)'-P, hence there exists
 n such that [e,-, di] C [an, 6n]. Since F is increasing on each [on, bn] it follows that
 F (di) - F(ci) > 0. For i € A let cj- = inf(P f~l (c¿,á,)) and d¡ = sup (P l~l (c¿, di)).
 Then c¿ € P+ and d¡ Ç. P~ . Clearly (c,-,c¿) C (0, 1)'P and (d'^dì) C (0, 1)'P,
 hence F(d{) - F(ďi) > 0 and F(c<) - F(c.) > 0. Then ESi (F(d¿) - F(a)) >
 ZiUFW - F(ci )) = ZieA(F(di) - F(d't) + F(d') - F(cJ) + F(c'i) - F(a)) >
 HieA(F(di) - -F(c9) > -e, hence F € AC. on [0, 1].

 Lemma 7. Let F : [0, 1] - ► R, F 6 uCM. Let P be the collection of all x for
 which there exists no open interval containing x on which F is increasing. If there
 exists a portion (a, 6)DP such that F'(x) > 0 a.e. where F is derivable and (i)
 F € AC' on (a, 6) D P or (ii) F € L" with constant A € (- oo, 0) on (a, b) Ci P, then
 P = 0, hence F is increasing on [0, 1].

 Proof. It is easy to show that the complement of P is an open set U and
 F is increasing on each component of U. Since F is uCM it follows that F is
 increasing on the closure of each component interval of U, which implies that P is
 a perfect set. Suppose on the contrary that P is nonempty. By hypothesis there
 exists a portion (a, b)DP ^ 0 such that we have (i) or (ii). (i) Since F is increasing
 on the closure of each component interval of U , by Lemma 6, it follows that F
 is AC on (a, 6). Since F'(x ) > 0 a.e. on (a, b) it follows that F is increasing, a
 contradiction, (ii) Suppose that there exists (c, d) C (a, 6) fl P. By Remark 4, c),
 F is L with constant A on (a, 6) and F'(x) < A < 0 a.e. on (c, d), a contradiction.
 Hence (a, b) fl P is nowhere dense. Let (r, s) C (a, b) be a component of U . Then
 F(s) - F(r) < A • (s - r) < 0, a contradiction (since F is increasing on [r, 5]). It
 follows that P = 0, hence F is increasing on [0, 1].

 Lemma 8. Let £ be a local system with intersection condition (I.C.). Let
 F : [0, 1] - * R, A = {x : C - DF(x) > -00}, such that E = [0, 1]'A is at most
 countable and for each x € E there exists a bilateral set Ex € C(x) such that

 lim F(y) < F(x) < Hm F(y).
 y y x y'x
 y € Ex y e E x

 If C - DF(x) > 0 a.e. then F is increasing on [0, 1].

 Proof. Clearly F is uCM on [0, 1]. Let P and U = U(an, 6n) be defined as in
 Lemma 7. Suppose that P ^ 0. Since F € uCM it follows that F is increasing on
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 each [an, £>„], hence P is a perfect subset of [0, 1]. Let / : A - ► R, - oo < f(x) <
 C - DF(x) for each x G A. Let ax = {y : y = x or ( F(y ) - F(x))/(y - x) >
 f(x)} € C{x) for x G A and ax = Ex for x € E. Let 6(x), x G [0, 1], be a positive
 function such that whenever 0 < y - x < min{í(rc), ¿(y)} then ax D <ry D [x, y] 0.
 Let An = {x G A : f(x) > - n}. Let Anj be a ¿-decomposition of An. Since
 P C E D (U„,¿ Anj), by the Baire Category theorem, it follows that there exists an
 open interval (a, b) such that (a, 6) fl P ^ 0 and (a, 6) fl P C ~Ānj for some n and j.
 We prove that F is V with constant - n on (a, 6) fl P , hence F is AC' on (a, b) D P.

 1) Let x < y, x,y G Anj D (a, 6). Then for t G ax fl cry fl [x,y] ^ 0 we have
 F(t) - F(x) > -n(t - x) and F(y) - F(t) > -n(y - t ). Hence F(y) - F(x) >
 -n(y - x).

 2) Let x < y, x G A D P+ D (a, 6), y G Anj D (a, 6). Let xk ' x, xk G
 Anj n (x,x + i(x)), Xk < y. By Remark 1, (ii), let zk G crx fi aXk fi [x,xjt] ^ 0.
 Hence F(y) - F(x) = F(y) - F(xk) + ^(xjt) - F(zk ) + F(zk ) - f(x) > -n(y -
 xk) - n(xk - zk) + f(x)(zk - x) = -n(y - zk) + f(x)(zk - x). If fc oo then
 F(y) - F(x) > -n(y - x).

 3) Let x G P+nEn(a,b), y G AnjTl(a, 6), x < y. Let xk ' x, xk G Anj, xk G
 (x,x + ¿(x)), xk < y. Let zk G Ex fi aXk fi [x,xfc] ^ 0. Then F(y) - F(x) >
 -n(y - Xfe); F(xk) - F(zk) > -n(xk - zfc); Hmfc^+oo F(zk) > F(x). Hence
 F(y) - F(x) > F(y) - lim^^oo F(zk) ^ ~n{y ~ x)- By Lemma 7, it follows that
 P = 0, a contradiction.

 Lemma 9. Let C be a bilateral local system with intersection conditions I.C.
 and E.I.C. [m]. Let F : [0, 1] - ► R and let A = {x G [0, 1] : C - D_F(x) > - oo}
 such that E = [0, 1]'A is at most countable and for each x G E, e > 0 the sets
 {z G (x - e, x) : F(z) < /(x) + e} and {z G (x,x + e) : F(z) > F(x) - e} are
 uncountable. If C - DF(x) > 0 a.e. then F is increasing on [0, 1].

 Proof. We observe that F G uCM and F'{x ) > 0 a.e. where F is derivable.
 Let P and U = U(an, 6n) be the sets defined in Lemma 7 and suppose that P is
 nonempty. Since F G uCM it follows that F is increasing on each [an, 6n], hence
 P is a perfect subset of [0, 1]. Let / : A - > R be a finite function such that
 - oo < /(x) < C - DF(x). Let ax = {y : y = x or (F(y) - F(x))/(y - x) >
 /(x)} G C(x) for x € A. For each x G E let ax be a fixed set of £(x). Let
 An = {x G A : f(x) > - n}, n = 1,2,

 function such that whenever 0 < y - x < min{¿(x), ¿(y)} then crx D ay D [x, y] ^
 0; crx fl <7j, n (y,y + m(y - x) ^ 0; ax D ay n (x - m(y - x),x) / 0. Let
 {Anj} j j > 1, be a ¿-decomposition of An. By the Baire Category Theorem there
 exists an open interval (a,b) such that 0 ^ (a,b) fl P C Ānj for some n and j.
 We prove that F G V with constant -n on (a, 6) fl P. 1) If x,y G Anj, x < y
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 then F(y) - F(x) > - n(y - x ) (see Remark 1, (i), condition I.C. and 1) of the
 proof of Lemma 8). 2) If x G A fi ( a,b ) fi P+ and y G Anj D (a, 6), x < y
 then F(y) - F(x) > -n(y - x) (see 1), Remark 1, (ii) and 2) of the proof of
 Lemma 8). 3) Let x € P+ f~l A fl (a, b), y € P~ fi E D (a, b), x < y (the cases
 x G P+C'Ef'(a, b), y € P~DAn(a, 6) and x G P+n^fl(a, 6), P~f'EC'{a, b) are
 similar). Then F(y) - F(x) > -n(y - x). Indeed, let G(x) = F(x) + nx. Suppose
 on the contrary that G(x) > G(y). Lete < min{(y- x)/2, (G(x)-G(y))/2}. Since
 y G E it follows that {z G (y - e, y) : G (z) < G(y) G e} is uncountable. We have
 two situations: (i) there exists z G (y - e, y) n A fi io such that G(z) < G(y) + e,
 where P0 = {x G P : x is a bilateral accumulation point of P}. Then by 2),
 G(x) < G(z) < G(y) + e < G(x), a contradiction, (ii) there exists z G (aj, &i) C
 ( V - s, y) for some i such that G(z) < G(y) + e. Since F is increasing on [a,-, 6,]
 it follows that G is strictly increasing on [a,-, 6,] and G(u) < G(y) + £, for each
 u G [o¿, z]. Let t G Anj, ł < m(a¿ - t) < z - at-, a, - t < min{i(a,), £(<)}
 and v G D <xai D (a,-,a,- + m(a¿ - ť)) C (at-, z) (see E.I.C. (m)). Then by 2),
 G(x) < G(v) < G(y) + e < G(x), a contradiction. By Lemma 7 it follows that P
 is empty.

 Theorem 3. Let C be a bilateral system with intersection conditions I.E. and
 E.I.C. [m]. Let F : [0,1] -* R, F G uCM. Let A = {x : C - DF{x) > - oo}, B =
 {x : C - DF(x) = - oo and C - ~BF(x) < 0} such that E = [0, 1]'(A U B) is at
 most countable and for each x G E there exists a bilateral set Ex G C(x) with

 lim F(y) < F(x) < lim F(y).
 y / x y -► x

 y < x, y G Ex y > x, y G Ex

 If C - DF{x) > 0 a.e. on [0, 1] then F is increasing on [0, 1].

 Proof. Let P and U = U(an, 6n) be the sets defined in Lemma 7. Suppose
 that P is nonempty. Let F : A'J B - »iřbea finite function such that - oo <
 /(x) < C - DF{x) if x G A and C - DF(x ) < /(x) < 0 if x G B. Let ax = {y :
 y = x or (^(y) - F(x))/(y - x) > /(x)} G C(x) if x G A, ax = Ex if x G E and
 <tx = {y : y = x oí ((F(y) - F(x))/(y - x) < /(x)} G C(x) if x G B. Let 6(x), x G
 [0, 1] be a positive function such that whenever 0 < |y - x| < min{£(x), i(t/)} then
 axn<ryn[x,y] 0, <Txr'ayr'(y,y+m(y - x) ^ 0 and <7xn<ryn(x- m{y- x),x) ^ 0.
 Let An = {x G A : f(x) > - n} and Bn = {x G B : f(x) < - 1/n}. Let
 {Anj}, j > 1 be a ¿-partition of An and {Bnj}, j > la ¿-partition of Bn. Since
 P C U n,j(Anj U Bnj U E). By the Baire Category Theorem it follows that there
 exists an open interval (a, b) such that (a, b) fi P ^ 0 and (i) F is V with constant
 - n on (a, b) fi P C ~Ānj for some n and j or (ii) F is Z" with constant -1/n on

 304



 (a, 6) fi P C Bnj for some n and j.
 (i) We have four situations: a) If x < y, x, y € Anj D (a, b) then F(y) -

 F(x) > -n(y - (see Remark 1, (i) and condition I.C.). b) If x < y, x £
 AnP+n (a, b), y € Anj fl (a, b) then F(y) - F(x) > -n(y - x). Indeed, let
 Xk 6 (x,x + ¿(x)) D i4nj, Xfc ' x, xjt < y, k = 1,2, ... and let zjt 6 f 1
 crXk n [x, Xk] ^ 0 (see Remark 1, (ii) and condition I.C.). Then F(zk) - F(x) >
 f(x)(zk - x); F(xjfe) - F(zk) > -n(xk - zk ) and by a), F(y) - F(xk) > -n(y - xfe).
 It follows that F(y) - F(x) > -n(y - zk) + f(x)(zk - x). If k -* +oo then
 F(y) - F(x) > - n(y - x). c) If x < y, x € B fl P+ H (a, b), y 6 Anj D (a, b) then
 F(y) - F(x) > -n(y - x). Indeed, let xk ' x, xk 6 (x,x + ¿(x)) fl Anj fl (a, 6),
 xk < y and let zk € <rx H aXk D (x - m(xk - x), x) (see Remark 1, (ii) and condition
 E.I.C. [m]). Then F(zk) - F(x) > -f(x)(x-zk), F(xk)-F(zk) > - n(xk-zk ) and
 by a), F(y)-F(xk) > -n(y-xk). Hence F(y) - F(x) > -n(y-zk)- f(x)(x-zk).
 If k - > oo then zk y x, hence F(y) - F(x) > -n(y - x). d) If x < y, x G
 £nP+n (a, 6), y € Anj D (a, 6) then F(y) - F(x) > -n(y - x). Indeed, let
 x* € (x, x + ¿(x)) H Anj fl (a, 6), xk ' x, xk < y. Let zk € Ex D aXk fl [x, x*] ^ 0
 (see Remark 1, (ii) and condition I.C.). Then F(xk) - F(zk) > -n(xk - zk) and
 by a), F(y) - F(xk) > -n(y - xk). Since F(x) < limu^~ F(zk) it follows that
 F(y) - F(x) > -n(y - x).

 (ii) Let Ko = {x G i3 fi (a, 6) : x is a bilateral accumulation point for Pfl(a, b)}.
 We have four situations: A) If x < y, x, y 6 Bnj fl (a, b) then F(y) - F(x) <
 (- 1 /n)(y - x) (see Remark 1, (i) and condition I.C.). B) If x < y, x € A fl
 P~ fl (a, 6), y € Bnj D (a, 6) then F(y) - F(x) < (-1 /n)(y - x). Indeed, let
 xk € Bnj, xk y x, xk € (x - 6(x),x) and let zk € crXk C' exC' (x* - m(x -
 ®Jt),iCfe). If k - y oo then zk y x, zk € <rx. We have F(xk) - F(zk) < (- 1/n)
 (xfc - zk), F(y) - F(xk) < (- 1 /n)(y - xk) and F(x) - F(zk) > (x - zk)f(x),
 hence F(y) - F(zk) + F(zk) - F(x) < (-1 /n)(y - zk) + (zk - x)/(x). If k -> oo
 it follows that F(y) - F(x) < (- 1 /n)(y - x). C) Since F is increasing on each
 [an, 6n] and C(x) is bilateral it follows that B n P fi (a, 6) C Ko. If x < y, x G
 B fl P+ fl (a, b), y € Bnj l~l (a, b) then F(y) - F(x) < (- 1 ļn)(y - x). Indeed, let
 xjt € (x, x + í(x)) fi Bnj, xk ' x, xk < y, k = 1,2, . . . and let zk G cr x D <rXk fi
 [x,xfc] 0 (see Remark 1, (ii) and condition I.C.). Then F(zk) - F(x) < f(x)(zk -
 x),F(x jt) - F(zk) < (- l/n)(xfc - zk) and by A), F(y) - F(xk) < (-1 /n)(y - xk).
 It follows that F(y) - F(x) < (- l/n)(y - zk) + f(x)(zk - x). If k - *■ oo then
 F(y)-F(x) < (- 1 /n)(y-x). D) Ifx € Er'P~C'(a,b), y 6 ¿?ní-n(a,6), x < y then
 F(y) - F(x) < (- l/n)(y - x). Indeed, let xk € Bnj, xk S x, xk G (x- S(x),x) and
 'etzk C <rXk fl (xfc _ m(x - xk), x). Then zk S x, zk € Ex and F(xk) - F{zk) <
 (-1 /n)(xfc - zk ), F(y) - F(xk) < (-1 /n)(y - xfc), lîmjt-oo F(zk) < F(x). Hence
 F(y)-F(x) < limjt^oo ( F(y)-F(zk )) < limfc-,«, (-1 /n)(y-zk) < (-1 /n)(y-x).
 By Lemma 7 it follows that P is empty, a contradiction.
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 Theorem 4. (An extension of Theorem 4 of [8], p. 378). Let C be a bi-
 lateral c-dense system which satisfies intersection conditions I.C. and E.I.C. [m].
 Let F : [0, 1] - ► R, F G uCM , and let E be a subset of [0, 1] such that if x ķ E
 and C - DF(x) = - oo then C - DF(x) < 0. //( i) C - DF(x) > 0 a.e. on [0, 1];
 (ii) E is countable ; (iii) F is B' on E' (iv) for each x G E and e > 0 the sets
 {z G (x - e,x) : F(z) < F(x) + e} and {z G (x,x + e) : F(z) > F(x) - e} are
 uncountable; then F is increasing on [0, 1].

 Proof. Let A = {x : C - DF{x) > - oo} and B = {x : £ - DF{x) = - oo and
 C - DF(x) < 0}. Then we observe that [0, 1] = j4UBU£. First we prove

 (4) For each x G A and e > 0, the sets {z : F(z) > F(x) - e} fi (x, x + e) and
 {z : F(z) < F(x) + e} D (x - e, x) are uncountable.

 Let x Ç A, e > 0 and let p > 1 be a natural number such that C - DF(x) > -p.
 Then Sx = {y : y = x or (F(y) - F(x))/(y-x) > -p] G C(x) is bilaterally c-dense
 in itself. If z G [x,x+eļp)r'Sx then .F(z) > F{x)-p{z-x) > F(x)-pe/p= F(x)-
 e. Similarly, if z G (x - e/p, x] then F(z) < F(x) + p(x - z) < F(x) + e. It follows
 that the sets {z : F(z) > F(x) - e}fl(x,x+e) and {z : F(z) < i?,(x)+e}n(x - e, x)
 are uncountable, hence we have (4). Let P and U = U(an, 6n) be the sets defined
 in Lemma 7 and suppose that P is nonempty. By Theorem 3 it follows that F
 is increasing on each component interval of (0, 1)'2?, hence Tš D P. But clearly
 E C P, hence P = TZ. By (iii) F is B' on P. Let Po = ^'(U{an, &„} U E). Since
 F G uCM it follows that F is increasing on each [an, 6n], hence P is a perfect
 subset of [0, 1]. In what follows we prove

 (5) If x G P+ fi E (resp. x G P~ H E) and e > 0 then the set {z G (x, x + e) fi Po •
 F (z) > F(x) - e} (resp. {z G (x - e,x)DPo : F(z) < P(x) + e}) is nonempty.

 Suppose on the contrary that there exists xo G P+ H E and £o > 0 such that the set
 Ao = {z Ç (xo,xo+£o)nPo : F(z) > F(x o)- £o} is empty. Let B0 = {&* G (x0, xo+
 e0) : F(bk) > F(x o) - eo/2}. For a G (x0, x0 + eo) let Aa = {n : (an, bn ) C (x0, a)}.
 Then Aa is infinite. Indeed, suppose on the contrary that Aa has p elements,
 i.e., a' < Ū2 <...< ap < a. Then x0 < a (since Xo G P+) and [xo,ai] C P,
 a contradiction (see (iv) and the fact that Ao is empty). We prove that Bo is
 nonempty and contains no islated points. Let e < Co/2. By (iv), since A0 is empty,
 it follows that there exists z G ( a*, 6* ) C (xo,xo + e) C (x0,x0 + £o) for some
 natural number k G Ae+XQ such that F(z) > /(x0) - e. Since F is increasing on
 [ajt, 6jb] it follows that F(bk ) > F(z) > F(x0) - e > F(x0) - eo/2. Hence 6* G B0
 and Bo is nonempty. Suppose on the contrary that B0 contains an isolated point
 6„. Then there exists 0 < S < min{xo + £o - bn : F(bn ) - F(x o) + eo/2} such that
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 (í>n, bn + S) H {z : F(z) > F(x0) - e0/2} í~l (USi[a»> &«] = Since A0 = 0 it follows
 that (6„, bn + 6) D {z : F(z) > F(x0) - £o/2} D P0 = 0. Hence (6n, &n + 6) H {z :
 F(z) > F(bn ) - £} is at most countable (since F(bn) - 8 > F(x o) - £o/n ) but this
 contradicts (4).

 Since C is bilateral and F is increasing on [an, 6n] it follows that bn G A U E.
 Hence Bo is a nonempty perfect subset of P. Since F is B' on P it follows that there
 exists a sequence of sets Qn , n > 1, Qn = C P, such that {x E Bo • F(x) <
 F(xo) - £o/2} = U Qn. Since A0 = 0 it follows that D = {x G Bo ' F(x) > F(x 0) -
 £o/2} C -EU(U{an, bn}) is countable. Sincero = ÖU(UQn), by the Baire Category
 Theorem, there exists an open interval (a, b) such that 0 ^ (a, b)f'Bo C Qn for some
 natural number n. Let bj € (a, b)OBo. Then F(bj) > F(x o)-£o/2, a contradiction.
 It follows that Ao is nonempty and we have (5). Let f : Al) B -+ R be a, finite
 function such that -00 < f(x) < C - DF(x) if x € A and C - DF(x) < f(x) < 0
 if x € B. Let <rx = {y : y = x or (F(y) - F(x))/(y - x) > f(x)} € C(x) if
 x € A, <rx = {y : y = x or (F(y) - F(x))/(y - x) < f(x)} € C{x) if x 6 B
 and let <jx G C{x) be a fixed set if x € E. Let £(x), x G [0, 1] be a positive
 function such that whenever 0 < y - x < min{¿(x), ¿(y)} then <jxC'<jyC' [x, y] ^
 0, <rx D cryn (y,y + m(y - x)) / 0 and ax fi ay fl (x - m(y - x),x) ^ 0. Let
 An = {x G A : /(x) > -n} and Bn = {x G B : /(x) < -1/n}. Let {Ánj}, j > 1,
 be a ¿-partition of An and {Bnj}, j > la ¿-partition of Bn. By the Baire Category
 Theorem it follows that there exists an open interval (a, 6) fl P ^ 0 such that (i)
 (a, 6)nPc ~Ānj for some n and j or (ii) (a, i)flPc ~Bnj for some n and j.

 (i) We prove that F is V with constant - n on P D (a, b).

 a) If x < y, x,y G Anj then F(y) - F(x) > -n(y - x).

 b) If x < y, x G A fl P+ fl (a, 6), y G Anj CI (a, b) then F(y) - F(x) > -h(y - x).

 c) If x < y, x G B fi P+ fi (a, b ), y G Anj fl (a, b) then F(y) - F(x) > -n(y - x).
 (For the proof of a), b), c) see the proof of Theorem 3.)

 d) Ifx < y, x G EnPo such that F(z) > F(x)-e 0. By b) and c), F(y) - F(z) >
 -n(y - z ), hence F(y) - F(x) + e > - n(y - x) - n(x - z). Since |x - z' < e
 and e is arbitrary, it follows that F(y) - F(x) > -n{y - x).

 (ii) We prove that F is T" with constant -1/n on P fl (a, b).

 A) If x < y, x,y G Bnj then F(y) - F(x) < (- 1 /n)(y - x).

 B) If x < y, x G -i4nP~n(a, 6), y G Bnjf](a,b) then F(y) - F(x) < (- 1 /n)(y -
 x).
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 C) If X < y, X € BnP+n(a,b), y € BnjC'(a,b ) then F(y) - F(x) < (-1 /n)(y-
 x).

 D) Ifx < y, X € EnP~C'(a,b), y € BnjC'(a,b ) then F(y) - F(x) < (- 1 ļn)(y -
 a;). Let e > 0, x - e> a. By (5) it follows that there exists z E (x - e, x) such
 that F(z) < F(x) + £• By B) and C), F(y) - F(z) < (- 1 /n)(y - z ), hence
 F(y) - F(x) - e < F(y) - F(z) < (- 1 /n)(y - x + x - z). Since | x - z' < e
 and e is arbitary it follows that F(y) - F(x) < (-l/n)(y - x).

 By Lemma 7 it follows that P is empty, a contradiction.

 Remark 7. A local system C = {£(x) : x € R} will be said to be:

 a) of ordinary type if C(x) = {S : S contains an open interval about the point x}
 (see [2], p. 99 or [11], p. 4);

 b) of (1, 1) density type if C(x) = {S : S has density 1 at a:} (see [2], p. 99 or
 [11], Definition 12.1, p. 22);

 c) of ( p , A) density type if C{x) = {S : S has right lower density exceeding p and
 left lower density exceeding A at a:} (see [2], p. 99);

 d) of qualitative type if C{x) = {S : S is residual in a neighborhood of x} (see
 [2], p. 99).

 By [11] (Lemma 15.6, p. 34 and Lemma 15.7, p. 35) or by [2] (the proof of Theorem
 3.5, p. 102), the ordinary; the ( p , A) density, p > 1/2, A > 1/2 and the qualitative
 type systems are bilaterally c-dense and satisfy conditions I.C. and E.I.C [m].

 If £ is of ordinary type we obtain the ordinary lower derivative DF(x); if C is
 of (1, 1) density type we obtain the approximately lower derivative D„rF(x): if C
 is of (p, A) density type we obtain the o.p(p,') - DF(x) (see [12], part I, p. 75). For
 p = A = 1/2 we obtain the lower preponderant Denjoy derivative DprF(x)-, if C is
 of qualitative type we obtain the lower qualitative Marcus derivatives DqF{x) (see
 [1], p. 166).

 Systems of (1/2,1/2) density type do not satisfy in general an E.I.C. [m] but
 all the theorems of the present paper can be extended to them by decomposing
 the line into a sequence of sets {A"n}^Ļ3 so that for x € Xn, the density of each
 S G C(x) exceeds (n+2)/(2n), and then the E.I.C. [m] can be used to yields results
 on each set of the sequence. Thus, those theorems that use the E.I.C. [m] apply to
 preponderant derivative, but with some technical modifications (see [2], p. 103).

 Using Definition 8, the Preiss Theorem can be written in the following way:
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 Theorem 4 (Preiss). Let f : (a, b) - ► R, F € uP and let E be a subset of

 (a,b) such that if x £ E and /^p(s) = - °° then fáp(x) = - oo. //"

 (i) /^p(x) > 0 a.e. on (a, b).

 (ii) E is countable.

 (iii) F is B' with respect to the set ~E.

 (iv) for each x G E and e > 0 the sets {? € (i - e, x) : f(z) < f(x) + e}, {z G
 (x, x -f e) : f(z) > f(x) - e} are uncountable; then f is increasing on (a, b).

 Our Theorem 4 is a real extension of Preiss Theorem since:

 a) uP ^ uC M (see Proposition 2) b).

 b) The Preiss conditions on the set E are stronger than ours.

 c) Preiss assumed that UF is B' with respect to the set 'E" and we suppose
 only UF is B' with respect to the set 'E" . We think that this is the most
 important improvement of the Preiss Theorem.

 d) Our Theorem 4 relates to several kinds of derivatives.

 Example 3. Let C be the Cantor ternary set and let (a¿, &,•), t' > 1 be the
 intervals contiguous to C. There exists a function F : [0, 1] - ► [0, 1] such that:

 a) F( 0) = 0; F( 1) = 1

 b) F is increasing on [0, 1]

 c) F'(x) = +00, for each x G C

 d) F is constant on each (a,-, &,), i > 1

 e) F £ ÍCM and F G uCM , hence F ^ CM.

 Proof. By [1] (Lemma 1.2, p. 124) there exists a function G : [0, 1] - ► [0, 1]
 such that:

 (i) (?(0) = 0 and G(l) = 1

 (ii) G is continuous and strictly increasing on [0, 1]
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 (iii) G'(x ) = +00 for each x G C

 Let F(x) ^ = Í x ^ ^
 F(x) ^ ' = ' G(ci), x G (a,-, &,), where c, = (a¿ + 6,)/2, i > 1.

 a),b),d),e) are evident, c) Let x € C. Since G'(x 0) = +00 it follows that for a > 0
 there exists 8 > 0 such that

 (6) G(x) - G(xo) > <*(x - ®o), for each x G [aro, + £)

 We have three situations:

 1) If x G C D (xo, + £) then by (6), F(x) - F(x 0) > a(x - x0)

 2) If x G (a¿, Ci) fi [aro, xo + for some i, then by (6)

 F(x) - F(x 0) = G(ci ) - G(®o) > - G(x0) > a(x - x0 )

 3) If a: € [c¿, 6¿) H [xo> + 8) then by (6)

 F(x) - F(®o) = G(ci) - G(x 0) > a(cj - x0) > ^(x Z - x0). Z

 It follows that G'+(x0) = +00. Similarly G'~(xo) = +00, hence we have c).

 Remark. Using the property of function G from Example 3, Preiss defines in
 [8] (p. 374) a function /1 which has the same properties as our function F, but in
 contrast with the proof in [8], our proof is elementary.

 Example 4 (Preiss). Let F : [0, 1] - ► [0, 1] be the function defined in Exam-
 ple 3. Let G : [0, 1] - ► R be defined as follows:

 ' 1 - F(x), *gC'(U?=1KM)

 G(x) - < ^ ~ x ^ - i>2'+"' ] > l' - 1
 0, x G {ai,a2,...}

 .1, x G {61, bļ, . . .}

 On (a,-, a¿ + ) and (6,- - , 6.) we define G(x) such that G is continuous
 and increasing on each [a¿, 6,] and G'(x) exists on (a,, 6,), for each i > 1. Then we
 have:

 a) G satisfies Darboux condition on [0, 1]
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 b) G<¿BU G on [0,1]

 c) G'ap(x) exists (finite or infinite) n.e. on (0, 1) and G'ap(x) > 0 a.e. on [0, 1].

 Proof. Fora) and c) see [8], p. 375. b) The set {a: : G(x) > 0} = (USi(°«>
 (C - {oi, a2, . . .}) which is not of F<,-type. Indeed if {x : G(x) > 0} is of i^-type
 then {x : G(x) > 0} D C = C - U{ai,a2,...} is of i^-type. Suppose that there
 exists a sequence of closed sets {Kj}j> ' such that C - U{ai, <12, . . .} = Uj>i Kj-
 Then by Baire Category Theorem, there exist a,ß£ [0, 1] such that 0 ^ [a, ß ] fi
 (C'{ai, Ū2, . . .}) is not closed. Hence F B¿. Similarly we prove that the set
 {x : F(x) < 1} is not of Fc-type, hence F ^ B'.

 Remark. Example 4 shows that in Theorem 4 we can not omit condition (iii).

 Example 5 (Preiss). Let F : [0, 1] - ► [0, 1] be the function defined in Exam-
 ple 3TTêt-fír71Õ7l]^-/r~be defined as follows:

 ' l-F(x), xGC'(USiKM)

 1 - F(x), x € [a¿ + bi - , i > 1
 0, x G {flit Û2, • • •}

 <

 1, x € {61,62,...}

 -1, «eUSite + W
 >2, x€USl{6¿_^}

 On the intervals ( a¡,a¡ + ; (a, + a¡ + ; (b¡ + ÇgSS b¡ + ;
 (fc + fe, 4 we define H such that

 (i) H is continuous on [a¿, 6¿], i > 1

 (ii) H' exists on (a,-, 6,), i > 1

 (iii) H'+(a,i ) = -00 and //'"(&,) = -00, i > 1

 (iv) H is increasing on [a,- + 6,- - , i > 1

 (v) H is decreasing on each [a¿, a, + and [ft,- + 6¿] , i > 1
 Then we have

 a) H satisfies the Darboux property on [0, 1]
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 b) H Bi, H £ Sj on [0, 1]

 c) H'ap{x ) exists (finite or infinite) for each x 6 (0, 1).

 Proof. For a) and c) see [8], p. 375 and for b) see the proof of Example 4) b).

 We are indebted to Professor Solomon Marcus, the referees, and Professor Weil
 for their help in preparing this article.
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