Vasile Ene, Institute of Mathematics, str. Academiei 14, 70109 Bucharest, Romania.

MONOTONICITY AND LOCAL SYSTEMS

Using the notion of a local system with some "intersection conditions", considered by Thomson in [11] and [12], we extend Theorems 6, 3 and 4 of Preiss ([8]). The main result of the paper is the monotonicity Theorem 4. In [3] the author extends Bruckner's reduction theorem (see Theorem 8), but we don't know if Theorem 4 of Preiss ([8]) and our Theorem 4 follow by Theorem 8 of [3]. For convenience, if P is a property for functions defined on a certain domain, we will also use P to denote the class of all functions having property P.

We need the following definitions and notations:

Definition 1. ([11], p.3 and [12], p. 280). The family $\mathcal{L} = \{\mathcal{L}(x) : x \in R\}$ is said to be a local system of sets provided it has the following properties: (i) $\{x\} \notin \mathcal{L}(x)$; (ii) if $S \in \mathcal{L}(x)$ then $x \in S$; (iii) if $S_1 \in \mathcal{L}(x)$ and $S_2 \supset S_1$ then $S_2 \in \mathcal{L}(x)$; (iv) if $S \in \mathcal{L}(x)$ and $\delta > 0$ then $S \cap (x - \delta, x + \delta) \in \mathcal{L}(x)$. The system \mathcal{L} is bilateral (resp. bilaterally *c*-dense) provided every set $S \in \mathcal{L}(x)$ contains points on either side of *x* (resp. is bilaterally *c*-dense in itself).

Definition 2. ([11], p. 117). Let \mathcal{L} be a local system. A function $f:[0,1] \rightarrow \mathbb{R}$ is said to be \mathcal{L} -increasing at a point x provided $\sigma_x = \{y : y = x \text{ or } (f(y) - f(x))/(y-x) \ge 0\} \in \mathcal{L}(x)$. If " \ge " is replaced by ">" we say that f is strictly \mathcal{L} -increasing. Similarly we define the conditions \mathcal{L} -decreasing and strictly \mathcal{L} -decreasing. We denote by $\mathcal{L} - \underline{D}f(x) = \sup\{c \in \mathbb{R} : \{x\} \cup \{y : (f(y) - f(x))/(y - x) > c\} \in \mathcal{L}(x)\}$. $\mathcal{L} - \overline{D}f(x)$ is defined similarly (see [12], p. 281).

An exact \mathcal{L} -derivative of f at x_0 , if it exists, is any number c (including $\pm \infty$) such that, for any neighborhood U of c the set of points $\{y : y = x \text{ or } \frac{f(y)-f(x_0)}{y-x_0} \in U\}$ belongs to $\mathcal{L}(x_0)$. In this case we write $(\mathcal{L}) - Df(x_0) = c$, with the warning that the number c need not be unique, nor have an immediate relations with the two extreme (\mathcal{L}) -derivates. The set of all (\mathcal{L}) -derivates of a function f at a point x_0 will be denoted by $(\mathcal{L}) - \Delta(f, x_0)$ ([11], p. 140).

Definition 3. ([12], p. 292 and [2], p. 101). A local system $\mathcal{L} = \{\mathcal{L}(x) : x \in \overline{R}\}$ will be said to satisfy the intersection conditions listed below if corresponding to any choice $\{\sigma_x : x \in R\}$ from \mathcal{L} there must exist a positive function δ such

that whenever $x, y \in R$ and $O < y - x < \min\{\delta(x), \delta(y)\}$ the two sets δ_x and δ_y must intersect in the asserted fashion:

- (3.1) intersection condition (I.C.): $\delta_x \cap \delta_y \cap [x, y] \neq \emptyset$;
- (3.2) external intersection condition (E.I.C.): $\delta_x \cap \delta_y \cap (y, 2y x) \neq \emptyset$ and $\delta_x \cap \delta_y \cap (2x y, x) \neq \emptyset$;
- (3.3) external intersection condition, parameter mm (E.I.C.[m]): $\delta_x \cap \delta_y \cap (y, (m+1)y mx) \neq \emptyset$ and $\delta_x \cap \delta_y \cap ((m+1)x my, x) \neq \emptyset$;
- (3.4) $\delta_x \cap \delta_y \cap (-\infty, x] \neq \emptyset$ and $\delta_x \cap \delta_y \cap [y, +\infty) \neq \emptyset$;
- $(3.5) \ \delta_x \cap \delta_y \cap (-\infty, x] \neq \emptyset$
- (3.6) $\delta_x \cap \delta_y \cap [y, +\infty) \neq \emptyset$.

Let $f : [0,1] \to \overline{R}$ be a function. We denote by $E_a(f) = \{x : f(x) > a\}; E^a(f) = \{x : f(x) < a\}; E^b_a(f) = \{x : a < f(x) < b\}.$

Definition 4. ([5],[7]). A measurable function $f: [0,1] \to \overline{R}$ is said to have the Denjoy-Clarkson property (D.C. - property) if for $-\infty < a < b < +\infty$, the set $E_a^b(f)$ has positive measure in every one-sided neighborhood of any of its points when $E_1^b(f) \neq \emptyset$.

Definition 5. ([5],[7]). A measurable function $f : [0,1] \to \overline{R}$ is m_2 (resp. \overline{m}_2) if $\overline{E}_a(f)$ (resp. $\overline{E}^a(f)$) for $a \in R$ has positive measure in any one sided neighborhood of any of its points when $E_a(f) \neq \emptyset$ (resp. $E^a(f) \neq \emptyset$).

Definition 6. (Baire conditions). Let $f : [0,1] \to \overline{R}$. Then $f \in \underline{B}_1$ (resp. \overline{B}_1) iff $E_a(f)$ (resp. $E^a(f)$) is F_{σ} . It follows that $B_1 = \overline{B}_1 \cap \underline{B}_1$.

Let $m_2 = \overline{m}_2 \cap \underline{m}_2$; $\underline{M}_2 = \underline{B}_1 \cap \underline{m}_2$; $\overline{M}_2 = \overline{B}_1 \cap \overline{m}_2$; $M_2 = m_2 \cap B_1 \subsetneq DB_1$ (DB_1 = condition Darboux Baire one), see [13]).

Definition 7. ([5]). A function $f:[0,1] \to \overline{R}$ is wB_1 (wide B_1) if for $-\infty < a < \overline{b} < +\infty$ and for every open interval I the sets $\{x : f(x) \le a\}$ and $\{x : f(x) \ge b\}$ are not simultaneously dense in $I \cap \overline{E_a^b(f)}$ when $I \cap E_a^b(f) \neq \emptyset$. Clearly $B_1 \subsetneq wB_1$ (see Theorem 1 of [8], p. 376).

Definition 8. ([8], Theorem 4, p. 378). Let $f : [0,1] \rightarrow \overline{R}$. If $\lim_{b\to 0_+} f(x-b) \leq f(x)$ for $x \in (0,1]$ and $\lim_{b\to 0_+} f(x+b) \geq f(x)$, for $x \in [0,1)$ (if these

limits exist) then we say that f is uP. If $-f \in uP$ then we say that $f \in 1P$. Let $\mathcal{P} = 1P \cap uP$.

Definition 9. ([4], p. 424). A function $f : [0,1] \to R$ is uCM if f is increasing on the closed subinterval $[c,d] \subset [0,1]$ whenever it is so on the open interval (c,d). Let $1CM = \{f : -f \in uCM\}$ and let $CM = 1CM \cap uCM$. Let $sCM = \{f : f(x) + \lambda x \in CM, \text{ for each } \lambda \in R\}.$

Definition 10. ([2], p. 104). Let δ be a positive function and let X be a set of real numbers. By a δ -decomposition of X we shall mean a sequence of sets $\{X_n\}$ which is a relabelling of the countable collection $Y_{mj} = \{x \in X : \delta(x) > 1/m\} \cap [j/m, (j+1)/m], m = 1, 2, \ldots$ and $j = 0, \pm 1, \pm 2, \pm 3, \ldots$.

Remark 1. ([2], p. 104, [11], p. 32-33). The key features of such a decomposition of the set X are: (i) $\bigcup_{n=1}^{\infty} X_n = X$; (ii) if x and y belong to the same set X_n then $|x-y| < \min\{\delta(x), \delta(y)\}$; (iii) if $x \in X \cap \overline{X}_n$ and $y \in (x-\delta(x), x+\delta(x)) \cap X_n$ then again one must have $|x-y| < \min\{\delta(x), \delta(y)\}$.

Let $f : [0,1] \to \overline{R}$ and let P be a subset of [0,1], $a \in R$. Let $E_a(f;P) = \{x \in P : f(x) > a\}; E^a(f;P) = \{x \in P : f(x) < a\}.$

<u>Theorem A.</u> Let $f : [0,1] \to \overline{R}$. The following assertions are equivalent:

- (A.1) $f \in B_1$ (f is in Baire class one);
- (A.2) for each closed subset P of [0,1] and for any real numbers a < b at most one of the sets $\{x \in P : f(x) \ge b\}, \{x \in P : f(x) \le a\}$ is dense in P;
- (A.3) for each closed subset P of [0,1] there exists at most one real number p (depending on P) such that $\overline{E_p(f;P)} = \overline{E^p(f;P)} = P$;
- (A.4) for each closed subset P of [0,1] and for any real numbers a < b at most one of the sets $E_b(f; P)$, $E^a(f; P)$ is dense in P.

Proof. The equivalence of (A.1) and (A.2) follows by [8] (Theorem 1, p. 376). We show that (A.2) implies (A.3). Suppose that $f \in (A.2)$ and $f \notin (A.3)$. Then there exist a closed subset P of [0,1] and real numbers a < b such that $\overline{E_a(f;P)} = \overline{E^a(f;P)} = \overline{E_b(f;P)} = \overline{E^b(f;P)} = P$. Hence $\{\overline{x \in P} : f(x) \le a\} = \{x \in P : f(x) \ge b\} = P$. Therefore $f \notin (A.2)$. We show that (A.3) implies (A.4). Suppose that $f \in (A.3)$ and $f \notin (A.4)$. Then there exist a closed subset P of [0,1] and real numbers a < b such that $\overline{E_b(f;P)} = \overline{E^a(f;P)} = P$. Since $E_b(f; P) \subset E_a(f; P)$ and $E^a(f; P) \subset E^b(f; P)$, it follows that $\overline{E^a(f; P)} = \overline{E_a(f; P)} = \overline{E_b(f; P)} = \overline{E_b(f; P)} = P$. Hence $f \notin (A.3)$. We show that (A.4) implies (A.2). Suppose that $f \in (A.4)$ and $f \notin (A.2)$. Then there exist a closed subset P of [0,1] and real numbers a < b such that $\{\overline{x \in P : f(x) \ge b}\} = \{\overline{x \in P : f(x) \le a}\} = P$. Let $a < a_1 < b_1 < b$ then $\overline{E_{b_1}(f; P)} = \overline{E^{a_1}(f; P)} = P$. Hence $f \notin (A.4)$.

Theorem B. (Theorem 1 of [5]). Let $f : [0,1] \to \overline{R}$ be a Darboux function. Then f is wB_1 iff for $-\infty < a < b < +\infty$ and for each open interval with $I \cap E_a^b(f) \neq \emptyset$ there exists an open subinterval J of I with $J \cap E_a^b(f) \neq \emptyset$ such that either $J \subset E_a(f)$ or $J \subset E^b(f)$.

<u>Theorem C</u>. Let $f : [0,1] \to \overline{R}$. We have: a) If f is a Darboux function and $f \in wB_1 \cap m_2$ then $f \in D.C$. (see the proof of Theorem 3 of [5]; b) If f is a Darboux function and $f \in D.C$. then $f \in m_2$; c) If f is finite and $f \in D.C$. then $f \in m_2$.

Proof. Let $f: [0,1] \to \overline{R}$, $f \in D.C$. We prove that $f \in \underline{m}_2$ (that $f \in \overline{m}_2$ follows analogously). Let $a \in R$ and let $x_0 \in E_a(f)$. If $f(x_0) < +\infty$ then there exists a natural number n such that $f(x_0) < n$. Let $\delta > 0$ and $\mathcal{T} = (x_0 - \delta, x_0)$ or $\mathcal{T} = (x_0, x_0 + \delta)$. Since $f \in D.C$., $m(E_a^n(f) \cap \mathcal{T} > 0$, hence $m(E_a(f) \cap \mathcal{T} > 0)$. If $f(x_0) = +\infty$, suppose that there exists $\delta > 0$ such that, for example, $m(E_a(f) \cap (x_0, x_0 + \delta)) = 0$. Let $x_1 \in (x_0, x_0 + \delta/2)$ such that $f(x_1) \leq a$. Since f is Darboux, there exists $x_2 \in (x_0, x_0 + \delta/2)$ such that $f(x_2) \in E_a^k(f)$ for some natural number k. Hence $m(E_a^k(f) \cap (x_0, x_0 + \delta)) > 0$, a contradiction. It follows that $f \in \underline{m}_2$.

<u>Remark 2</u>. There exists a function $f : [0,1] \to \overline{R}$ which is not Darboux such that $f \in D.C. \cap B_1$ and $f \notin m_2$. (Indeed, let $f(x) = 0, x \in [0,1] \setminus \{1/2\}$ and $f(1/2) = +\infty$.)

Corollary D. Let $f : [0,1] \to \overline{R}$, $f \in B_1$. If $f \in m_2$ then f is Darboux and $f \in \overline{D.C.}$

Proof. Since $f \in B_1 \cap m_2 = M_2 \subsetneq DB_1$ and $B_1 \subsetneq wB_1$, by Theorem C,a), it follows that $f \in D.C$.

<u>Remark 3</u>. Corollary D was obtained before by Mukhopadhyay in [7] (Theorem 1, p. 280), but for f a finite function.

Proposition 1. Let $f : [0,1] \to R$, $f \in uCM$ and let $h : [0,1] \to R$, h continuous and increasing on [0,1]. Then $f - h \in uCM$.

Proof. Let g(x) = f(x) - h(x) and let $(c, d) \subset [0, 1]$ such that g is increasing on (c, d). It follows that f(x) = g(x) + h(x) is increasing on (c, d). Since $f \in uCM$ it follows that f is increasing on [c, d]. Suppose that there exists $x_1 \in (c, d)$ such that $g(x_1) > g(d)$. Let $\varepsilon = g(x_1) - g(d)$. Since h is continuous it follows that there exists $d \in (0, d - x_1)$ such that $h(x) > h(d) - \varepsilon$, for each $x \in (d - \delta, d)$. Since $g(x) > g(x_1)$, for each $x \in (d - \delta, d)$, it follows that f(x) = g(x) + h(x) > f(d). This contradicts the fact that f is increasing on [c, d]. Hence g is increasing on [c, d] and $g \in uCM$.

a) $\frac{\text{Corollary 1}}{f \in sCM; b}$. Let $f : [0,1] \to R$. Then the following conditions are equivalent: a) $\frac{f \in sCM; b}{f \in sCM; b} f(x) + \lambda x$ and $\lambda x - f(x)$ are uCM for each $\lambda \ge 0$.

Proof. a) \Rightarrow b) is evident. We show that b) \Rightarrow a). If $\lambda = 0$ then $f(x) \in CM$. If $\lambda < 0$ then by Proposition 1, $f(x) + \lambda x \in uCM$. By hypothesis, $-f(x) - \lambda x \in uCM$, hence $f(x) + \lambda x \in CM$. If $\lambda > 0$ then by hypothesis $f(x) + \lambda x \in uCM$. By Proposition 1, $-f(x) - \lambda x \in uCM$, hence $f(x) + \lambda x \in CM$.

Example 1. Let $F : [0,1] \to [-1,1]$, F(x) = 1 - x, $x \in [0,1)$ and F(1) = -1. Then we have:

- a) $F \in CM \subset uCM$ on [0,1].
- b) $F(x) + \lambda x \notin uCM$ on [0,1] if $\lambda \ge 1$.
- c) $F \notin uP$ on [0,1].

Example 2. Let $F : [0,1] \to [-1,1], F(x) = x \sin \frac{2\pi}{x}, x \in (0,1], F(0) = 1.$ Then we have:

- a) F is continuous on (0,1]
- b) $F \notin uP$ on [0,1]
- c) $F \in sCM$ on [0,1]

Proof. a) is evident; b) $F(0) = 1 \not\leq \lim_{x \to 0^+} F(x) = 0$; c) we prove that $F(x) + \lambda x$ is uCM for each $\lambda \in R$. The case $F(x) + \lambda x$ is ℓCM is similar. Let (c,d) be a subinterval of (0,1) such that $F(x) + \lambda x$ is increasing on (c,d). If $c \neq 0$,

since F is continuous on (0,1] it follows that $F(x) + \lambda x$ is increasing on [c,d]. Hence $F(x) + \lambda x$ is uCM. If c = 0, we observe that $F(x) + \lambda x$ is monotone on no (c,d). q.e.d.

Proposition 2. For function $F: [0,1] \rightarrow R$ we have:

- a) $u\mathcal{P}\oplus \mathcal{C} = u\mathcal{P}$, where \mathcal{C} the class of all continuous function defined on [0,1]and $\mathcal{A}_1 \oplus \mathcal{A}_2$ denotes the linear space generated by the classes of functions \mathcal{A}_1 and \mathcal{A}_2 .
- b) $u\mathcal{P} \subsetneq uCM$.
- c) $\mathcal{P} \subsetneq sCM$.

Proof. a) is evident; b) $u\mathcal{P} \subset uCM$. Let $F : [0,1] \to R$, $F \in u\mathcal{P}$ and let $(c,d) \subset (0,1)$ such that F is increasing on (c,d). Let $x_1 \in (c,d)$. Then $F(c) \leq \lim_{x \to c^+} F(x) \leq F(x_1) \leq \lim_{x \to d^-} F(x)$. (These limits exist since F is increasing on (c,d).) Hence F is increasing on [c,d], and consequently $F \in uCM$ on [0,1]. That $u\mathcal{P} \subsetneq uCM$ follows from Example 1, a) and c).

c) For $\mathcal{P} \subset sCM$ see Proposition 2, a) and b) and Definitions 8 and 9. That $\mathcal{P} \subsetneq sCM$ follows from Example 2, b) and c).

Lemma 1. (Theorem 50.2, p. 117 of [11]). Let \mathcal{L} be a local system which satisfies intersection condition I.C. Let $f: [0,1] \to R$. If f is \mathcal{L} -increasing on [0,1] then f is increasing on [0,1].

Proof. (based on a different idea than that in [11]). Let P be the collection of all x for which there exists no open interval containing x on which f is increasing. It is easy to show that the complement of P is an open set U. Further

(1) f is increasing on the closure of each component interval of U.

This implies that P is a perfect set. We prove that P is empty. Suppose that $P \neq \emptyset$. For $\sigma_x = \{y : y = x \text{ or } (f(y) - f(x))/(y - x) \ge 0\} \in \mathcal{L}(x)$, let $\delta(x) > 0$, $x \in [0, 1]$ given by condition I.C. Let $P_{nm} = \{x \in P : x \in [m/n, (m+1)/n], 1/n < \delta(x) < 1/(n-1)\}$, $n = 2, 3, \ldots, m = 0, 1, \ldots, n-1$. By the Baire Category Theorem, there exists an open interval (a, b) such that $\emptyset \neq (a, b) \cap P \subset \overline{P}_{nm}$ for some n and m. Let $x_0 < y_0, x_0$ a right accumulation point of $P \cap (a, b)$ and y_0 a left accumulation point of $P \cap (a, b)$. Let $x_1, y_1 \in P_{nm}, x_0 < x_1 < y_1 < y_0, x_1 \in (x_0, x_0 + \delta(x)), y_1 \in (y_0 - \delta(y_0), y_0)$. Then $\sigma_{x_0} \cap \sigma_{x_1} \neq \emptyset$; $\sigma_{x_1} \cap \sigma_{y_1} \neq \emptyset$; $\sigma_{y_1} \cap \sigma_{y_0} \neq \emptyset$, hence $f(x_0) \le f(y_0)$. Now by (1) it follows that f is increasing on (a, b), a contradiction. Hence $P = \emptyset$. Corollary 2. Let \mathcal{L} be a local system which satisfies intersection condition I.C. Let $\overline{f}: [0,1] \to \overline{R}$. If $\mathcal{L} - \underline{D}f(x) \ge 0$ a.e. and $\mathcal{L} - \underline{D}f(x) > -\infty$ everywhere then f is increasing on [0,1]. Moreover, suppose that for each point $x \in [0,1]$ there exists an exact \mathcal{L} -derivative of f at x, denoted by $(\mathcal{L}) - Df(x)$. If $(\mathcal{L}) - Df(x) \ge 0$ a.e. and $(\mathcal{L}) - Df(x) > -\infty$ everywhere then f is increasing on [0,1].

Proof. Let $\varepsilon > 0$ and let $E = \{x : \mathcal{L} - \underline{D}f(x) < 0\}$. Then |E| = 0. By [1] (Lemma 1.2, p. 124) there exists an increasing function $g : [0,1] \rightarrow [0,\varepsilon)$ such that $g'(x) = +\infty$ on E, g(0) = 0 and g'(x) > 0 for all $x \in [0,1] \setminus E$. Then f + g is strictly \mathcal{L} -increasing on [0,1] and by Lemma 1, f + g is increasing on [0,1]. Since ε was arbitrary, f is increasing on [0,1]. For the second part we see that there exists an exact \mathcal{L} -derivative of f + g at x denoted by $(\mathcal{L}) - D[f + g](k)$ which is everywhere strictly greater than 0. Hence f + g is strictly \mathcal{L} -increasing on [0,1]. Using again Lemma 1, it follows that f is increasing on [0,1].

Theorem 1. (An extension of Theorem 6 of [8]). Let \mathcal{L} be a local system which satisfies intersection condition I.C. Let $f:[0,1] \to \mathbb{R}$ be a function such that: (i) $f \in sCM$ on [0,1]; (ii) An exact \mathcal{L} -derivative $(\mathcal{L})-Df(x)$ exists finite or infinite at every point $x \in [0,1]$; (iii) $(\mathcal{L}) - Df(x)$ is B_1 on [0,1]. Then: a) $(\mathcal{L}) - Df(x)$ is m_2 ; b) $(\mathcal{L}) - Df(x)$ is a Darboux function and satisfies the D.C.-property; c) f fulfills the Mean Value Theorem.

Proof. Let $g(x) = (\mathcal{L}) - Df(x)$. a) We show that $g \in \overline{m}_2$. Suppose that $E^{\lambda} = \{x : g(x) < \lambda\} \neq \emptyset$ and that there exist a point $x_0 \in E^{\lambda}$ and $\delta_0 > 0$ such that $x_0 - \delta_0 > 0$ and, for example, $g(x) > \lambda$ a.e. on $(x_0 - \delta_0, x_0)$. Let $A = \{x \in (x_0 - \delta_0, x_0) : g \text{ is continuous at } x\}$. If $x \in A$ then $g(x) \ge \lambda$. (Indeed, if $g(x) < \lambda$ then there exists $\delta > 0$ with $(x - \delta, x + \delta) \subset (x_0 - \delta, x_0)$, such that $g(y) < \lambda$ for each $y \in (x - \delta, x + \delta)$, a contradiction.) Let $x \in A$ then there exists a closed interval $[c,d] \subset (x_0 - \delta_0, x_0)$ such that $x \in (c,d)$ and $g(y) > -\infty$ on [c,d]. By Corollary 2, $f(x) - \lambda x$ is increasing on [c,d], hence there exist maximal open intervals (a_n, b_n) such that $f(x) - \lambda x$ is increasing on each (a_n, b_n) . By (i) it follows that $f(x) - \lambda x$ is increasing on $[a_n, b_n]$. Hence the set $G = \cup (a_n, b_n)$ is dense in $(x_0 - \delta_0, x_0)$ and the set $P = \overline{(x_0 - \delta_0, x_0) \setminus G}$ is a perfect set. Suppose on the contrary that $P \neq \emptyset$. Let $x_1 \in (x_0 - \delta_0, x_0) \setminus G$ be a point of continuity for $g|_P$. Then $g(x_1) \geq \lambda$. (Indeed, if $g(x_1) < \lambda$ then by (iii) there exists $\delta_1 > 0$ such that $(x_1-\delta_1,x_1+\delta_1)\subset (x_0+\delta_0,x_0) \text{ and } g(y)<\lambda \text{ for each } y\in (x_1-\delta_1,x_1+\delta_1)\cap P.$ Let $(a_n, b_n) \subset (x_1 - \delta_1, x_1 + \delta_1)$ for some natural number n. Then $g(a_n) \geq \lambda$ and $g(b_n) \geq \lambda$, a contradiction.) It follows that there exists a closed interval $[c_1, d_1]$ such that $g(y) > \lambda - 1$ on $P \cap [c_1, d_1]$. By Corollary 2 we have that $f(x) - \lambda x$ is increasing on $[c_1, d_1]$, a contradiction. Hence $G = (x_0 - \delta_0, x_0)$. By (i) it follows

that $f(x) - \lambda x$ is increasing on $[x_0 - \delta_0, x_0]$, hence $g(x_0) \ge \lambda$, a contradiction. b) See a), (iii) and Corollary D.

c) For every $a, b, 0 \le a < b \le 1$, let $\lambda = \frac{f(b)-f(a)}{b-a}$. Suppose that there is no $x_0 \in (a, b)$ such that $g(x_0) = \lambda$. Since g is a Darboux function, it follows that either $g(x) > \lambda$ or $g(x) < \lambda$ on (a, b). In the first situation, for example, it follows by Corollary 2 that $f(x) - \lambda x$ is increasing on [a, b]. Since $g(x) > \lambda$ on (a, b) it follows that $f(b) - \lambda > f(a)$, a contradiction.

Observation. In Theorem 6 of [8] condition (i) is replaced by the restrictive condition $F \in \mathcal{P}$ (see Proposition 2, c)). Also the function F from Example 2 satisfies the hypothesis of our Theorem 1, but not of Preiss' Theorem 6.

Lemma 2. Let $f : [0,1] \to R$ and let $P \neq \emptyset$ be a G_{δ} subset of (0,1). Let \mathcal{L} be a local system with intersection condition (3.4.). Let $A \subseteq \{x \in P : f \text{ is } \mathcal{L} - increasing at x\}$ and $B \subseteq \{x \in P : f \text{ is strictly } \mathcal{L} - decreasing at x\}$. Suppose that $P = \overline{A}$ (resp. $P = \overline{B}$). We have: a) B (resp. A) is of first category with respect to P; b) If $E = P \setminus (A \cup B)$ is countable then B (resp. A) is nowhere dense in P.

Proof. Let $\sigma_x = \{y : y = x \text{ or } (f(y) - f(x))/(y - x) \ge 0, y \ne x\} \cap (0, 1) \text{ for } x \in A \text{ and let } \sigma_x = \{y : y = x \text{ or } (f(y) - f(x))/(y - x) < 0, y \ne x\} \cap (0, 1) \text{ for } x \in B.$ Let $\delta(x) \in (0, 1)$ be the δ given by condition (3.4) for $x \in A \cup B$. Hence, if $x, y \in A \cup B$ such that $|x - y| < \min\{\delta(x), \delta(y)\}$ then $\sigma_x \cap \sigma_y \cap (-\infty, x) \ne \emptyset$ and $\sigma_x \cap \sigma_y \cap (y, +\infty) \ne \emptyset$. Suppose that $P = \overline{A}$ (the second part follows analogously). a) Let $G_n = \bigcap_{x \in A} (x - \delta(x)/n, x + \delta(x)/n)$ and let $H = P \cap (\bigcap_{n=1}^{\infty} G_n)$.

Then H is a dense G_{δ} set in P, $A \subset H \subset P$. We prove that $B \cap H = \emptyset$. Suppose on the contrary that $B \cap H \neq \emptyset$. Let $y \in B \cap H$. Let n be a natural number such that $1/n < \delta(y)$. Then $y \in G_n$, hence there exists $x \in A$ such that $y \in (x - \delta(x)/n, x + \delta(x)/n)$. Since $\delta(x)/n < 1/n < \delta(y)$, it follows that $|y - x| < \min\{\delta(x), \delta(y)\}$. Suppose, for example, that x < y (the case y > x is similar). Then we have two situations: 1) $f(x) \le f(y)$ and 2) f(x) > f(y).

1) Let $z \in (-\infty, x) \cap \sigma_x \cap \sigma_y \neq \emptyset$ (see condition (3.5)). Then $f(z) \leq f(x)$ and f(z) > f(y), a contradiction. 2) Let $z \in (y, +\infty) \cap \sigma_x \cap \sigma_y \neq \emptyset$ (see condition (3.6)). Then $f(z) \geq f(x)$ and f(z) < f(y), a contradiction. It follows that $B \cap H = \emptyset$, hence $B \subset P \setminus H$ which is a set of first category with respect to P.

b) Suppose on the contrary that $\emptyset \neq (c,d) \cap P \subset \overline{B}$. Let $A_{mn} = \{x \in (c,d) \cap A \cap [m/n,(m+1)/n] : \delta(x) \in (1/n,1/(n-1))\}$ and let $B_{mn} = \{x \in (c,d) \cap B \cap [m/n,(m+1)/n] : \delta(x) \in (1/n,1/(n-1))\}$, where $n = 2, 3, \ldots, m = 0, 1, 2, \ldots, n-1$. Then $(c,d) \cap P = \bigcup_{n,m} (A_{mn} \cap B_{mn}) \cap E$. By the Baire Category Theorem it follows that there exists an open interval $(a,b) \subset (c,d)$ such that

either 1) $\emptyset \neq (a,b) \cap P \subset \overline{A}_{mn}$ or 2) $\emptyset \neq (a,b) \cap P \subset \overline{B}_{mn}$, for some *n* and *m*. 1) Let $y \in (a,b) \cap B$ and let $x \in (y - \delta(y), y + \delta(y)) \cap A_{mn} \cap (a,b)$. Then $|x-y| < \min\{\delta(x), \delta(y)\}$, a contradiction (as at a), 1) and 2)). 2) Let $x \in (a,b) \cap A$ and let $y \in (x - \delta(x), x + \delta(x)) \cap B_{mn} \cap (a,b)$. Then $|x-y| < \min\{\delta(x), \delta(y)\}$, a contradiction (as at a), 1) and 2)).

Theorem 2. (An extension of Theorem 3 of [8]). Let $F : [0,1] \to R$ and let \mathcal{L} be a local system with intersection condition (3.4) such that $\mathcal{L} - DF(x)$ exists (finite or infinite) at each point $x \in [0,1]$. Then $\mathcal{L} - DF(x)$ is B_1 on [0,1].

Proof. Let $f(x) = \mathcal{L} - DF(x)$. Suppose that $f \notin B_1$. By (A.3) (Theorem A), there exist a closed subset P of [0, 1] and real numbers a < b such that $\overline{E_a(f; P)} = \overline{E_a(f; P)} = \overline{E^a(f; P)} = \overline{E^b(f; P)} = P$. Applying Lemma 2, a) to F(x) - axand F(x) - bx it follows that $E_a(f; P)$, $E^a(f; P)$, $E_b(f; P)$, $E^b(f; P)$ are of first category with respect to P. Hence $\{x \in P : f(x) = a\}$ and $\{x \in P : f(x) = b\}$ are residual sets with respect to P, a contradiction.

Definition 11. ([4], p. 69 and [9], p. 236). A function $F : [0,1] \to R$ is said to be <u>AC</u> on a set $E \subset [0,1]$ if for each $\varepsilon > 0$ there exists $\delta > 0$ such that $\Sigma(F(b_i) - F(a_i)) > -\varepsilon$ for each finite set $\{[a_i, b_i]\}$ of nonoverlapping intervals with endpoints in E and $\Sigma(b_i - a_i) < \delta$. $F \in \overline{AC}$ on E if $-F \in \underline{AC}$ on E. $AC = \overline{AC} \cap \underline{AC}$.

Definition 12. Let $f:[0,1] \to R$ and let $E \subset [0,1]$. We say that $f \in \underline{L}$ on E if there exists $\lambda \in R$ such that $f(y) - f(x) > \lambda(y-x), \ y > x, \ x, y \in E$. $f \in \overline{L}$ on E if $-f \in \underline{L}$ on E.

Let P be a closed subset of [0,1]. We denote by P^+ (resp. P^-) the set $\{x \in P : x \text{ is a right (resp. left) accumulation point of } P\}$.

Definition 13. Let $f:[0,1] \to R$ and let P be a perfect subset of [0,1]. We say that $f \in \underline{L}'$ (resp. \underline{L}'') on P if there exists $\lambda \in R$ such that $f(y) - f(x) > \lambda \cdot (y-x), \ y > x, \ x \in P^+, \ y \in P^-$ (resp. $x \in P^-, \ y \in P^+$). $f \in \overline{L}'$ (resp. \overline{L}'') on P if $-f \in \underline{L}'$ (resp. \underline{L}'') on P.

Definition 14. Let $f : [0,1] \to R$ and let P be a perfect subset of [0,1]. We say that $f \in \underline{AC'}$ (resp. $\underline{AC''}$) on P if for each $\varepsilon > 0$ there exists $\delta > 0$ such that if $I_k = [a_k, b_k], \ k = 1, 2, \ldots$, is a sequence of nonoverlapping intervals with $a_k \in P^+$, $b_k \in P^-$ (resp. $a_k \in P^-$, $b_k \in P^+$) and $\Sigma(b_k - a_k) < \delta$ then $\Sigma(f(b_k) - f(a_k)) > -\varepsilon$. $f \in \overline{AC'}$ (resp. $\overline{AC''}$) on P if $-f \in \underline{AC'}$ (resp. $\underline{AC''}$) on Ρ.

Remark 4. a) $\underline{L} \subset \underline{AC}$; $\overline{L} \subset \overline{AC}$ for finite functions on a set $E \subset [0,1]$; b) For finite functions on a perfect set P we have: $\underline{L} \subset \underline{L}'$; $\underline{L} \subset \underline{L}''$; $\overline{L} \subset \overline{L}'$; $\overline{L} \subset \overline{L}''$; $\overline{L} \subset \overline{L}'$; $\overline{L} \subset \overline{L}''$; $\overline{L} \subset \overline{L}'''$; $\overline{L} \subset \overline{L}'''$; $\overline{L} \subset \overline{L}'''$; $\overline{L} \subset \overline{L}'$

Lemma 3. Let P be a perfect subset of [0,1] and let (a_n, b_n) be the intervals contiguous to P with respect to (0,1). Let $F:[0,1] \to R$ and $f:[0,1] \to R$ be such that $f(x) = F(x), x \in P$ and f(x) is linear on each $[a_n, b_n]$. If $F \in \underline{AC}$ (resp. VB) on P then $f \in \underline{AC}$ (resp. VB) on [0,1]. (For VB see [14], p. 221.)

Proof. Let $\varepsilon > 0$. For $\varepsilon/3$ we consider $\delta > 0$ given by the fact that $F \in \underline{AC}$ on P. Let $\mathcal{A}_{-} = \{n : F(b_n) < F(a_n)\}, \ \mathcal{A}_{+} = \{n : F(b_n) \ge F(a_n)\}.$ Let \mathcal{A}'_{-} be a finite subset of \mathcal{A}_{-} such that $\sum_{n \in \mathcal{A}_{-} \setminus \mathcal{A}'_{-}} (b_n - a_n) < \delta$. Let $m_{\delta} = \min\{(F(b_k) - F(a_k))/(b_k - a_k), \ k \in \mathcal{A}'_{-}\}$ and let $\eta > 0$ such that $m_{\delta} \cdot \eta > -\varepsilon/3$. Let $\delta_1 = \min\{\delta, \eta\}$. A closed interval $I = [a, b] \subset [0, 1]$ is said of first kind of $a, b \in P$, and of second kind if $(a, b) \subset (0, 1) \setminus P$. If $J = [c, d] \subset [0, 1]$ is not of first or of second kind then $[c, d] \cap P \neq \emptyset$. Let $c_1 = \inf(P \cap [c, d])$ and $d_1 = \sup(P \cap [c, d])$. Then

2) $[c, d] = [c, c_1] \cup [c_1, d_1] \cup [d_1, d]$ and $F(d) - F(c) = F(d) - F(d_1) + F(d_1) - F(c_1) + F(c_1) - F(c)$.

Also $[c_1, d_1]$ is of first kind and $[c, c_1]$ and $[d_1, d]$ are of second kind. Let $J_i = [c_i, d_i]$, be a finite sequence of closed intervals such that $\Sigma(d_i, c_i) < \delta_1$. 1) If each J_i is of first kind, then clearly $\Sigma(f(d_i) - f(c_i)) = \Sigma(F(d_i) - F(c_i)) > -\varepsilon/3$. 2) If each J_i is of second kind then $\Sigma(f(d_i) - f(c_i)) = \sum_{i \in B_1} (f(d_i) - f(c_i)) + \sum_{i \in B_2} (f(d_i) - f(c_i)) + \sum_{i \in B_3} (f(d_i) - f(c_i)) \ge \sum_{n \in \mathcal{A}_- \setminus \mathcal{A}'_-} (F(b_n) - F(a_n)) + \sum_{i \in \mathcal{A}'_-} m_{\delta} \cdot |J_i| > -\varepsilon/3 - \varepsilon/3 = (-2/3)\varepsilon$, where $B_1 = \{i : (c_i, d_i) \subset \bigcup_{n \in \mathcal{A}_- \setminus \mathcal{A}'_-} (a_n, b_n)\}$; $B_2 = \{i : (c_i, d_i) \subset \bigcup_{n \in \mathcal{A}_-} (a_n, b_n)\}$. The general case follows by 1), 2) and (2). The second part follows similarly.

Remark 5. a) Let C be the Cantor ternary set and let (a_n, b_n) , $n \ge 1$ be the intervals contiguous to C with respect to (0,1). Let $f,g:[0,1] \to R$ such that f(x) = g(x) = 0, $x \in C \setminus (\cup \{a_n, b_n\})$; $f(a_n) = g(b_n) = 1$; $f(b_n) = g(a_n) =$ -1, f,g are linear on each $[a_n, b_n]$. Then $f \in \underline{L}'$ on C; $g \in \underline{L}''$ on C; $f,g \notin [VBG]$ on C; f,g are Darboux on [0,1]; $f,g \notin B_1$ on C. Since $\underline{L}' \subset \underline{AC}'$ it follows that we can not replace \underline{AC} by \underline{AC}' in Lemma 3.

b) Lemma 3 is often used in [4] and [9] but without proof. Recall that a function F is VBG on a set X is X can be expressed as the union of a sequence of sets on each of which F is of bounded variation VB; if the sets in the sequence can be

taken to be closed, F is said to be [VBG].

Lemma 4. Let $F : [0,1] \rightarrow R$. If $F \in \underline{AC}$ on [0,1] then $F \in VB$ on [0,1].

Proof. For $\varepsilon = 1$ let $\delta > 0$ given by the fact that $F \in \underline{AC}$ on [0,1]. First we prove the following assertion:

(3) If $[a, b] \subset [0, 1]$, $b - a < \delta$, $a = y_0 < y_1 < \cdots > y_{k-1} < y_k = b$ then

$$\sum_{i=0}^{k-1} |F(y_{i+1}) - F(y_i)| < F(b) - F(a) + 2$$

Let $\mathcal{A}_{-} = \{i : F(y_{i+1}) - F(y_i) < 0, i \in \{0, 1, \dots, k-1\}\}$ and $\mathcal{A}_{+} = \{i : F(y_{i+1}) - F(y_i) \ge 0, i \in \{0, 1, \dots, k-1\}\}$. Since $F(b) - F(a) = \sum_{i=0}^{k-1} (F(y_{i+1}) - F(y_i))$ it follows that $\sum_{i=0}^{k-1} |F(y_{i+1}) - F(y_i)| = \sum_{i \in \mathcal{A}_{+}} (F(y_{i+1}) - F(y_i)) - \sum_{i \in \mathcal{A}_{-}} (F(y_{i+1}) - F(y_i)) = F(b) - F(a) - 2\sum_{i \in \mathcal{A}_{-}} (F(y_{i+1}) - F(y_i)) < F(b) - F(a) + 2$ and we have (3). Now we prove that $F \in VB$ on [0, 1]. Let n be a natural number such that $(n-1) \cdot \delta \le 1 < n \cdot \delta$. Let $0 = x_0 < x_1 < \cdots < x_m = 1$. Let j_i be such that $x_{j_i} \le i/n < x_{j_i+1}$, $i = 1, 2, \dots, n-1$, $j_0 = 0$, $j_n = m$. By (3) we have $\sum_{j=0}^{m} |F(x_{j+1}) - F(x_j)| \le \sum_{i=0}^{n-1} (|F(x_{j_i+1}) - F(i/n)| + |F(x_{j_i+2}) - F(x_{j_i+1})| + \cdots + |F((i+1)/n) - F(x_{j_i+1})|) < \sum_{i=0}^{n-1} (2 + F((i+1)/n) - F(i/n)) = 2n + F(1) - F(0)$, hence $F \in VB$ on [0, 1].

Remark 6. Let P, F, f be defined as in Lemma 3. If F is <u>AC</u> on P then F is VB on P. Indeed, if $F \in \underline{AC}$ on P then by Lemma 3, f is <u>AC</u> on [0,1]. By Lemma 4, $f \in VB$ on [0,1], hence F is VB on P. This assertion is often used in [4] but without proof.

Lemma 5. Let $F : [0,1] \to R$, $F \in \underline{AC}$. If $F'(x) \ge 0$ a.e. where F'(x) exists then F is increasing on [0,1].

Proof. By Lemma 4 it follows that F is VB, hence F is derivable on a measurable set A, |A| = 1. By Vitali's covering theorem, applied to A and by the fact that $F \in \underline{AC}$, it follows that F is increasing on [0, 1].

<u>Remark 7</u>. Lemma 5 follows also by [9] (Theorem V, p. 237) and [10] (Lemma, p. 4).

Lemma 6. Let $F : [0,1] \to R$. Let P be a perfect subset of [0,1] and let (a_n, b_n) be the intervals contiguous to P with respect to (0,1). If F is <u>AC'</u> on P and F is increasing on each interval $[a_n, b_n]$ then F is <u>AC</u> on [0,1].

Proof. Let $\varepsilon > 0$ and let $\delta > 0$ be given by the fact that F is $\underline{AC'}$ on P. Let $\{[c_i, d_i]\}_i$, be a sequence of closed subintervals of [0, 1] such that $\Sigma(d_i - c_i) < \delta$. Let $\mathcal{A} = \{i : (c_i, d_i) \cap P \neq \emptyset\}$. If $i \notin \mathcal{A}$ then $(c_i, d_i) \subset (0, 1) \setminus P$, hence there exists n such that $[c_i, d_i] \subset [a_n, b_n]$. Since F is increasing on each $[a_n, b_n]$ it follows that $F(d_i) - F(c_i) \ge 0$. For $i \in \mathcal{A}$ let $c'_i = \inf(P \cap (c_i, d_i))$ and $d'_i = \sup(P \cap (c_i, d_i))$. Then $c'_i \in P^+$ and $d'_i \in P^-$. Clearly $(c_i, c'_i) \subset (0, 1) \setminus P$ and $(d'_i, d_i) \subset (0, 1) \setminus P$, hence $F(d_i) - F(d'_i) \ge 0$ and $F(c'_i) - F(c_i) \ge 0$. Then $\sum_{i=1}^{\infty} (F(d_i) - F(c_i)) \ge \sum_{i \in \mathcal{A}} (F(d_i) - F(c_i)) = \sum_{i \in \mathcal{A}} (F(d_i) - F(d'_i) + F(d'_i) - F(c'_i) + F(c'_i) - F(c_i)) \ge \sum_{i \in \mathcal{A}} (F(d'_i) - F(c'_i)) > -\varepsilon$, hence $F \in \underline{AC}$ on [0, 1].

Lemma 7. Let $F : [0,1] \to R$, $F \in uCM$. Let P be the collection of all x for which there exists no open interval containing x on which F is increasing. If there exists a portion $(a,b) \cap P$ such that $F'(x) \ge 0$ a.e. where F is derivable and (i) $F \in \underline{AC'}$ on $(a,b) \cap P$ or (ii) $F \in \overline{L''}$ with constant $\lambda \in (-\infty,0)$ on $(a,b) \cap P$, then $P = \emptyset$, hence F is increasing on [0,1].

Proof. It is easy to show that the complement of P is an open set U and F is increasing on each component of U. Since F is uCM it follows that F is increasing on the closure of each component interval of U, which implies that P is a perfect set. Suppose on the contrary that P is nonempty. By hypothesis there exists a portion $(a, b) \cap P \neq \emptyset$ such that we have (i) or (ii). (i) Since F is increasing on the closure of each component interval of U, by Lemma 6, it follows that F is \underline{AC} on (a, b). Since $F'(x) \ge 0$ a.e. on (a, b) it follows that F is increasing, a contradiction. (ii) Suppose that there exists $(c, d) \subset (a, b) \cap P$. By Remark 4, c), F is \overline{L} with constant λ on (a, b) and $F'(x) \le \lambda < 0$ a.e. on (c, d), a contradiction. Hence $(a, b) \cap P$ is nowhere dense. Let $(r, s) \subset (a, b)$ be a component of U. Then $F(s) - F(r) < \lambda \cdot (s - r) < 0$, a contradiction (since F is increasing on [r, s]). It follows that $P = \emptyset$, hence F is increasing on [0, 1].

Lemma 8. Let \mathcal{L} be a local system with intersection condition (I.C.). Let $F: [0,1] \to R$, $A = \{x : \mathcal{L} - \underline{D}F(x) > -\infty\}$, such that $E = [0,1] \setminus A$ is at most countable and for each $x \in E$ there exists a bilateral set $E_x \in \mathcal{L}(x)$ such that

$$\begin{array}{cccc} \overline{\lim} & F(y) \leq F(x) \leq & \underline{\lim} & F(y). \\ y \nearrow x & & y \searrow x \\ y \in E_x & & y \in E_x \end{array}$$

If $\mathcal{L} - \underline{D}F(x) \ge 0$ a.e. then F is increasing on [0, 1].

Proof. Clearly F is uCM on [0,1]. Let P and $U = \bigcup (a_n, b_n)$ be defined as in Lemma 7. Suppose that $P \neq \emptyset$. Since $F \in uCM$ it follows that F is increasing on

each $[a_n, b_n]$, hence P is a perfect subset of [0, 1]. Let $f: A \to R, -\infty < f(x) < \mathcal{L} - \underline{D}F(x)$ for each $x \in A$. Let $\sigma_x = \{y: y = x \text{ or } (F(y) - F(x))/(y - x) > f(x)\} \in \mathcal{L}(x)$ for $x \in A$ and $\sigma_x = E_x$ for $x \in E$. Let $\delta(x), x \in [0, 1]$, be a positive function such that whenever $0 < y - x < \min\{\delta(x), \delta(y)\}$ then $\sigma_x \cap \sigma_y \cap [x, y] \neq \emptyset$. Let $A_n = \{x \in A : f(x) > -n\}$. Let A_{nj} be a δ -decomposition of A_n . Since $P \subset E \cap (\bigcup_{n,j} A_{nj})$, by the Baire Category theorem, it follows that there exists an open interval (a, b) such that $(a, b) \cap P \neq \emptyset$ and $(a, b) \cap P \subset \overline{A}_{nj}$ for some n and j. We prove that F is $\underline{L'}$ with constant -n on $(a, b) \cap P$, hence F is $\underline{AC'}$ on $(a, b) \cap P$.

1) Let x < y, $x, y \in A_{nj} \cap (a, b)$. Then for $t \in \sigma_x \cap \sigma_y \cap [x, y] \neq \emptyset$ we have $F(t) - F(x) \ge -n(t-x)$ and $F(y) - F(t) \ge -n(y-t)$. Hence $F(y) - F(x) \ge -n(y-x)$.

2) Let $x < y, x \in A \cap P^+ \cap (a, b), y \in A_{nj} \cap (a, b)$. Let $x_k \searrow x, x_k \in A_{nj} \cap (x, x + \delta(x)), x_k < y$. By Remark 1, (ii), let $z_k \in \sigma_x \cap \sigma_{x_k} \cap [x, x_k] \neq \emptyset$. Hence $F(y) - F(x) = F(y) - F(x_k) + F(x_k) - F(z_k) + F(z_k) - f(x) > -n(y - x_k) - n(x_k - z_k) + f(x)(z_k - x) = -n(y - z_k) + f(x)(z_k - x)$. If $k \to \infty$ then $F(y) - F(x) \ge -n(y - x)$.

3) Let $x \in P^+ \cap E \cap (a, b)$, $y \in A_{nj} \cap (a, b)$, x < y. Let $x_k \searrow x$, $x_k \in A_{nj}$, $x_k \in (x, x + \delta(x))$, $x_k < y$. Let $z_k \in E_x \cap \sigma_{x_k} \cap [x, x_k] \neq \emptyset$. Then $F(y) - F(x) > -n(y - x_k)$; $F(x_k) - F(z_k) > -n(x_k - z_k)$; $\lim_{k \to +\infty} F(z_k) \geq F(x)$. Hence $F(y) - F(x) \geq F(y) - \lim_{k \to \infty} F(z_k) \geq -n(y - x)$. By Lemma 7, it follows that $P = \emptyset$, a contradiction.

Lemma 9. Let \mathcal{L} be a bilateral local system with intersection conditions I.C. and E.I.C. [m]. Let $F : [0,1] \to R$ and let $A = \{x \in [0,1] : \mathcal{L} - \underline{D}F(x) > -\infty\}$ such that $E = [0,1] \setminus A$ is at most countable and for each $x \in E$, $\varepsilon > 0$ the sets $\{z \in (x - \varepsilon, x) : F(z) < f(x) + \varepsilon\}$ and $\{z \in (x, x + \varepsilon) : F(z) > F(x) - \varepsilon\}$ are uncountable. If $\mathcal{L} - \underline{D}F(x) \ge 0$ a.e. then F is increasing on [0,1].

Proof. We observe that $F \in uCM$ and $F'(x) \ge 0$ a.e. where F is derivable. Let P and $U = \bigcup (a_n, b_n)$ be the sets defined in Lemma 7 and suppose that P is nonempty. Since $F \in uCM$ it follows that F is increasing on each $[a_n, b_n]$, hence P is a perfect subset of [0,1]. Let $f : A \to R$ be a finite function such that $-\infty < f(x) < \mathcal{L} - \underline{D}F(x)$. Let $\sigma_x = \{y : y = x \text{ or } (F(y) - F(x))/(y - x) >$ $f(x)\} \in \mathcal{L}(x)$ for $x \in A$. For each $x \in E$ let σ_x be a fixed set of $\mathcal{L}(x)$. Let $A_n = \{x \in A : f(x) > -n\}, n = 1, 2, \dots$ Let $\delta(x), x \in [0,1]$ be a positive function such that whenever $0 < y - x < \min\{\delta(x), \delta(y)\}$ then $\sigma_x \cap \sigma_y \cap [x, y] \neq$ \emptyset ; $\sigma_x \cap \sigma_y \cap (y, y + m(y - x) \neq \emptyset; \quad \sigma_x \cap \sigma_y \cap (x - m(y - x), x) \neq \emptyset$. Let $\{A_{nj}\}, j \ge 1$, be a d-decomposition of A_n . By the Baire Category Theorem there exists an open interval (a, b) such that $\emptyset \neq (a, b) \cap P \subset \overline{A}_{nj}$ for some n and j. We prove that $F \in \underline{L}'$ with constant -n on $(a, b) \cap P$. 1) If $x, y \in A_{nj}, x < y$

then F(y) - F(x) > -n(y - x) (see Remark 1, (i), condition I.C. and 1) of the proof of Lemma 8). 2) If $x \in A \cap (a,b) \cap P^+$ and $y \in A_{nj} \cap (a,b), x < y$ then $F(y) - F(x) \ge -n(y-x)$ (see 1), Remark 1, (ii) and 2) of the proof of Lemma 8). 3) Let $x \in P^+ \cap A \cap (a, b), y \in P^- \cap E \cap (a, b), x < y$ (the cases $x \in P^+ \cap E \cap (a, b), \ y \in P^- \cap A \cap (a, b) \text{ and } x \in P^+ \cap E \cap (a, b), \ y \in P^- \cap E \cap (a, b) \text{ are } b$ similar). Then $F(y) - F(x) \ge -n(y-x)$. Indeed, let G(x) = F(x) + nx. Suppose on the contrary that G(x) > G(y). Let $\varepsilon < \min\{(y-x)/2, (G(x)-G(y))/2\}$. Since $y \in E$ it follows that $\{z \in (y - \varepsilon, y) : G(z) < G(y) \in \varepsilon\}$ is uncountable. We have two situations: (i) there exists $z \in (y - \varepsilon, y) \cap A \cap P_0$ such that $G(z) < G(y) + \varepsilon$, where $P_0 = \{x \in P : x \text{ is a bilateral accumulation point of } P\}$. Then by 2), $G(x) \leq G(z) < G(y) + \varepsilon < G(x)$, a contradiction. (ii) there exists $z \in (a_1, b_1) \subset$ $(y - \varepsilon, y)$ for some i such that $G(z) < G(y) + \varepsilon$. Since F is increasing on $[a_i, b_i]$ it follows that G is strictly increasing on $[a_i, b_i]$ and $G(u) < G(y) + \varepsilon$, for each $u \in [a_i, z]$. Let $t \in A_{nj}$, $t < a_i$, $m(a_i - t) < z - a_i$, $a_i - t < \min\{\delta(a_i), \delta(t)\}$ and $v \in \sigma_t \cap \sigma_{a_i} \cap (a_i, a_i + m(a_i - t)) \subset (a_i, z)$ (see E.I.C. (m)). Then by 2), $G(x) < G(v) < G(y) + \varepsilon < G(x)$, a contradiction. By Lemma 7 it follows that P is empty.

Theorem 3. Let \mathcal{L} be a bilateral system with intersection conditions I.E. and E.I.C. [m]. Let $F : [0,1] \to R$, $F \in uCM$. Let $A = \{x : \mathcal{L} - \underline{D}F(x) > -\infty\}$, $B = \{x : \mathcal{L} - \underline{D}F(x) = -\infty \text{ and } \mathcal{L} - \overline{D}F(x) < 0\}$ such that $E = [0,1] \setminus (A \cup B)$ is at most countable and for each $x \in E$ there exists a bilateral set $E_x \in \mathcal{L}(x)$ with

$$\begin{array}{cccc} \overline{\lim} & F(y) \leq F(x) \leq & \underline{\lim} & F(y) \\ y \nearrow x & & y \rightarrow x \\ y < x, y \in E_x & & y > x, y \in E_x \end{array}$$

If $\mathcal{L} - \underline{D}F(x) \ge 0$ a.e. on [0,1] then F is increasing on [0,1].

Proof. Let P and $U = \bigcup(a_n, b_n)$ be the sets defined in Lemma 7. Suppose that P is nonempty. Let $F : A \cup B \to R$ be a finite function such that $-\infty < f(x) < \mathcal{L} - \underline{D}F(x)$ if $x \in A$ and $\mathcal{L} - \overline{D}F(x) < f(x) < 0$ if $x \in B$. Let $\sigma_x = \{y : y = x \text{ or } (F(y) - F(x))/(y - x) > f(x)\} \in \mathcal{L}(x)$ if $x \in A$, $\sigma_x = E_x$ if $x \in E$ and $\sigma_x = \{y : y = x \text{ or } ((F(y) - F(x))/(y - x) < f(x)\} \in \mathcal{L}(x)$ if $x \in B$. Let $\delta(x), x \in [0,1]$ be a positive function such that whenever $0 < |y - x| < \min\{\delta(x), \delta(y)\}$ then $\sigma_x \cap \sigma_y \cap [x, y] \neq \emptyset$, $\sigma_x \cap \sigma_y \cap (y, y + m(y - x) \neq \emptyset$ and $\sigma_x \cap \sigma_y \cap (x - m(y - x), x) \neq \emptyset$. Let $A_n = \{x \in A : f(x) > -n\}$ and $B_n = \{x \in B : f(x) < -1/n\}$. Let $\{A_{nj}\}, j \ge 1$ be a δ -partition of A_n and $\{B_{nj}\}, j \ge 1$ a δ -partition of B_n . Since $P \subset \bigcup_{n,j} (A_{nj} \cup B_{nj} \cup E)$. By the Baire Category Theorem it follows that there exists an open interval (a, b) such that $(a, b) \cap P \neq \emptyset$ and (i) F is \underline{L}' with constant -n on $(a, b) \cap P \subset \overline{A}_{nj}$ for some n and j or (ii) F is \overline{L}'' with constant -1/n on $(a,b) \cap P \subset \overline{B}_{nj}$ for some n and j.

(i) We have four situations: a) If x < y, $x, y \in A_{nj} \cap (a, b)$ then F(y) – $F(x) \geq -n(y-x)$ (see Remark 1, (i) and condition I.C.). b) If $x < y, x \in$ $A \cap P^+ \cap (a,b), y \in A_{nj} \cap (a,b)$ then $F(y) - F(x) \geq -n(y-x)$. Indeed, let $x_k \in (x, x + \delta(x)) \cap A_{nj}, \ x_k \searrow x, \ x_k < y, \ k = 1, 2, \dots \text{ and let } z_k \in \sigma_k \cap$ $\sigma_{x_k} \cap [x, x_k] \neq \emptyset$ (see Remark 1, (ii) and condition I.C.). Then $F(z_k) - F(x) > 0$ $f(x)(z_k-x); F(x_k)-F(z_k) > -n(x_k-z_k) \text{ and by a}, F(y)-F(x_k) > -n(y-x_k).$ It follows that $F(y) - F(x) > -n(y - z_k) + f(x)(z_k - x)$. If $k \to +\infty$ then $F(y) - F(x) \ge -n(y-x)$. c) If $x < y, x \in B \cap P^+ \cap (a,b), y \in A_{nj} \cap (a,b)$ then $F(y) - F(x) \ge -n(y-x)$. Indeed, let $x_k \searrow x, x_k \in (x, x + \delta(x)) \cap A_{nj} \cap (a, b)$, $x_k < y$ and let $z_k \in \sigma_x \cap \sigma_{x_k} \cap (x - m(x_k - x), x)$ (see Remark 1, (ii) and condition E.I.C. [m]). Then $F(z_k) - F(x) \ge -f(x)(x-z_k)$, $F(x_k) - F(z_k) \ge -n(x_k-z_k)$ and by a), $F(y) - F(x_k) > -n(y - x_k)$. Hence $F(y) - F(x) \ge -n(y - z_k) - f(x)(x - z_k)$. If $k \to \infty$ then $z_k \nearrow x$, hence $F(y) - F(x) \ge -n(y-x)$. d) If $x < y, x \in$ $E \cap P^+ \cap (a,b), y \in A_{nj} \cap (a,b)$ then $F(y) - F(x) \geq -n(y-x)$. Indeed, let $x_k \in (x, x + \delta(x)) \cap A_{nj} \cap (a, b), \ x_k \searrow x, \ x_k < y.$ Let $z_k \in E_x \cap \sigma_{x_k} \cap [x, x_k] \neq \emptyset$ (see Remark 1, (ii) and condition I.C.). Then $F(x_k) - F(z_k) \ge -n(x_k - z_k)$ and by a), $F(y) - F(x_k) \ge -n(y - x_k)$. Since $F(x) \le \underline{\lim}_{k\to\infty} F(z_k)$ it follows that $F(y) - F(x) \ge -n(y-x).$

(ii) Let $K_0 = \{x \in P \cap (a, b) : x \text{ is a bilateral accumulation point for } P \cap (a, b)\}.$ We have four situations: A) If x < y, $x, y \in B_{nj} \cap (a, b)$ then $F(y) - F(x) \leq C_{nj}$ (-1/n)(y-x) (see Remark 1, (i) and condition I.C.). B) If $x < y, x \in A \cap$ $P^- \cap (a,b), y \in B_{nj} \cap (a,b)$ then $F(y) - F(x) \leq (-1/n)(y-x)$. Indeed, let $x_k \in B_{nj}, x_k \nearrow x, x_k \in (x - \delta(x), x) \text{ and let } z_k \in \sigma_{x_k} \cap \sigma_x \cap (x_k - m(x - x_k))$ $(x_k), x_k)$. If $k \to \infty$ then $z_k \nearrow x, z_k \in \sigma_x$. We have $F(x_k) - F(z_k) \le (-1/n)$ $(x_k - z_k), F(y) - F(x_k) < (-1/n)(y - x_k) \text{ and } F(x) - F(z_k) > (x - z_k)f(x),$ hence $F(y) - F(z_k) + F(z_k) - F(x) < (-1/n)(y - z_k) + (z_k - x)f(x)$. If $k \to \infty$ it follows that $F(y) - F(x) \leq (-1/n)(y - x)$. C) Since F is increasing on each $[a_n, b_n]$ and $\mathcal{L}(x)$ is bilateral it follows that $B \cap P \cap (a, b) \subset K_0$. If $x < y, x \in$ $B \cap P^+ \cap (a,b), y \in B_{nj} \cap (a,b)$ then $F(y) - F(x) \leq (-1/n)(y-x)$. Indeed, let $x_k \in (x, x + \delta(x)) \cap B_{nj}, x_k \searrow x, x_k < y, k = 1, 2, \dots$ and let $z_k \in \sigma_x \cap \sigma_{x_k} \cap$ $[x, x_k] \neq \emptyset$ (see Remark 1, (ii) and condition I.C.). Then $F(z_k) - F(x) < f(x)(z_k - x_k)$ $(x_k), F(x_k) - F(z_k) < (-1/n)(x_k - z_k) \text{ and by } A), F(y) - F(x_k) < (-1/n)(y - x_k).$ It follows that $F(y) - F(x) < (-1/n)(y - z_k) + f(x)(z_k - x)$. If $k \to \infty$ then $F(y) - F(x) \leq (-1/n)(y-x)$. D) If $x \in E \cap P^- \cap (a, b), y \in B_{nj} \cap (a, b), x < y$ then $F(y)-F(x) \leq (-1/n)(y-x)$. Indeed, let $x_k \in B_{nj}$, $x_k \nearrow x$, $x_k \in (x-\delta(x), x)$ and let $z_k \subset \sigma_{x_k} \cap E_x \cap (x_k - m(x - x_k), x)$. Then $z_k \nearrow x, \underline{z_k} \in E_x$ and $F(x_k) - F(z_k) < C_x$ $(-1/n)(x_k - z_k), F(y) - F(x_k) < (-1/n)(y - x_k), \overline{\lim}_{k \to \infty} F(z_k) \le F(x).$ Hence $F(y) - F(x) \leq \overline{\lim}_{k \to \infty} (F(y) - F(z_k)) \leq \overline{\lim}_{k \to \infty} (-1/n)(y - z_k) \leq (-1/n)(y - x).$ By Lemma 7 it follows that P is empty, a contradiction.

Theorem 4. (An extension of Theorem 4 of [8], p. 378). Let \mathcal{L} be a bilateral c-dense system which satisfies intersection conditions I.C. and E.I.C. [m]. Let $F : [0,1] \to R$, $F \in uCM$, and let E be a subset of [0,1] such that if $x \notin E$ and $\mathcal{L} - \underline{D}F(x) = -\infty$ then $\mathcal{L} - \overline{D}F(x) < 0$. If (i) $\mathcal{L} - \underline{D}F(x) \ge 0$ a.e. on [0,1]; (ii) E is countable; (iii) F is \overline{B}_1 on \overline{E} ; (iv) for each $x \in E$ and $\varepsilon > 0$ the sets $\{z \in (x - \varepsilon, x) : F(z) < F(x) + \varepsilon\}$ and $\{z \in (x, x + \varepsilon) : F(z) > F(x) - \varepsilon\}$ are uncountable; then F is increasing on [0, 1].

Proof. Let $A = \{x : \mathcal{L} - \underline{D}F(x) > -\infty\}$ and $B = \{x : \mathcal{L} - \underline{D}F(x) = -\infty$ and $\mathcal{L} - \overline{D}F(x) < 0\}$. Then we observe that $[0, 1] = A \cup B \cup E$. First we prove

(4) For each $x \in A$ and $\varepsilon > 0$, the sets $\{z : F(z) > F(x) - \varepsilon\} \cap (x, x + \varepsilon)$ and $\{z : F(z) < F(x) + \varepsilon\} \cap (x - \varepsilon, x)$ are uncountable.

Let $x \in A$, $\varepsilon > 0$ and let $p \ge 1$ be a natural number such that $\mathcal{L} - \underline{D}F(x) > -p$. Then $S_x = \{y : y = x \text{ or } (F(y) - F(x))/(y - x) > -p\} \in \mathcal{L}(x)$ is bilaterally *c*-dense in itself. If $z \in [x, x + \varepsilon/p) \cap S_x$ then $F(z) > F(x) - p(z - x) > F(x) - p\varepsilon/p = F(x) - \varepsilon$. Similarly, if $z \in (x - \varepsilon/p, x]$ then $F(z) < F(x) + p(x - z) < F(x) + \varepsilon$. It follows that the sets $\{z : F(z) > F(x) - \varepsilon\} \cap (x, x + \varepsilon)$ and $\{z : F(z) < F(x) + \varepsilon\} \cap (x - \varepsilon, x)$ are uncountable, hence we have (4). Let P and $U = \cup (a_n, b_n)$ be the sets defined in Lemma 7 and suppose that P is nonempty. By Theorem 3 it follows that F is increasing on each component interval of $(0, 1) \setminus \overline{E}$, hence $\overline{E} \supset P$. But clearly $E \subset P$, hence $P = \overline{E}$. By (iii) F is \overline{B}_1 on P. Let $P_0 = P \setminus (\cup \{a_n, b_n\} \cup E)$. Since $F \in uCM$ it follows that F is increasing on each $[a_n, b_n]$, hence P is a perfect subset of [0, 1]. In what follows we prove

(5) If $x \in P^+ \cap E$ (resp. $x \in P^- \cap E$) and $\varepsilon > 0$ then the set $\{z \in (x, x + \varepsilon) \cap P_0 : F(z) > F(x) - \varepsilon\}$ (resp. $\{z \in (x - \varepsilon, x) \cap P_0 : F(z) < F(x) + \varepsilon\}$) is nonempty.

Suppose on the contrary that there exists $x_0 \in P^+ \cap E$ and $\varepsilon_0 > 0$ such that the set $A_0 = \{z \in (x_0, x_0 + \varepsilon_0) \cap P_0 : F(z) > F(x_0) - \varepsilon_0\}$ is empty. Let $B_0 = \{b_k \in (x_0, x_0 + \varepsilon_0) : F(b_k) > F(x_0) - \varepsilon_0/2\}$. For $a \in (x_0, x_0 + \varepsilon_0)$ let $\mathcal{A}_a = \{n : (a_n, b_n) \subset (x_0, a)\}$. Then \mathcal{A}_a is infinite. Indeed, suppose on the contrary that \mathcal{A}_a has p elements, i.e., $a_1 < a_2 < \ldots < a_p < a$. Then $x_0 < a$ (since $x_0 \in P^+$) and $[x_0, a_1] \subset P$, a contradiction (see (iv) and the fact that A_0 is empty). We prove that B_0 is nonempty and contains no islated points. Let $\varepsilon < \varepsilon_0/2$. By (iv), since A_0 is empty, it follows that there exists $z \in (a_k, b_k) \subset (x_0, x_0 + \varepsilon) \subset (x_0, x_0 + \varepsilon_0)$ for some natural number $k \in \mathcal{A}_{\varepsilon+x_0}$ such that $F(z) > f(x_0) - \varepsilon$. Since F is increasing on $[a_k, b_k]$ it follows that $F(b_k) \ge F(z) > F(x_0) - \varepsilon > F(x_0) - \varepsilon_0/2$. Hence $b_k \in B_0$ and B_0 is nonempty. Suppose on the contrary that B_0 contains an isolated point b_n . Then there exists $0 < \delta < \min\{x_0 + \varepsilon_0 - b_n : F(b_n) - F(x_0) + \varepsilon_0/2\}$ such that

 $(b_n, b_n + \delta) \cap \{z : F(z) > F(x_0) - \varepsilon_0/2\} \cap (\bigcup_{i=1}^{\infty} [a_i, b_i] = \emptyset$. Since $A_0 = \emptyset$ it follows that $(b_n, b_n + \delta) \cap \{z : F(z) > F(x_0) - \varepsilon_0/2\} \cap P_0 = \emptyset$. Hence $(b_n, b_n + \delta) \cap \{z : F(z) > F(b_n) - \delta\}$ is at most countable (since $F(b_n) - \delta > F(x_0) - \varepsilon_0/n$) but this contradicts (4).

Since \mathcal{L} is bilateral and F is increasing on $[a_n, b_n]$ it follows that $b_n \in A \cup E$. Hence \overline{B}_0 is a nonempty perfect subset of P. Since F is \overline{B}_1 on P it follows that there exists a sequence of sets Q_n , $n \ge 1$, $Q_n = \overline{Q}_n \subset P$, such that $\{x \in \overline{B}_0 : F(x) < 0\}$ $F(x_0) - \varepsilon_0/2 = \bigcup Q_n$. Since $A_0 = \emptyset$ it follows that $D = \{x \in \overline{B}_0 : F(x) \ge F(x_0) - \emptyset \}$ $\varepsilon_0/2 \subset E \cup (\cup \{a_n, b_n\})$ is countable. Since $\overline{B}_0 = D \cup (\cup Q_n)$, by the Baire Category Theorem, there exists an open interval (a, b) such that $\emptyset \neq (a, b) \cap \overline{B}_0 \subset Q_n$ for some natural number n. Let $b_i \in (a, b) \cap B_0$. Then $F(b_i) > F(x_0) - \varepsilon_0/2$, a contradiction. It follows that A_0 is nonempty and we have (5). Let $f: A \cup B \to R$ be a finite function such that $-\infty < f(x) < \mathcal{L} - \underline{D}F(x)$ if $x \in A$ and $\mathcal{L} - \overline{D}F(x) < f(x) < 0$ if $x \in B$. Let $\sigma_x = \{y : y = x \text{ or } (F(y) - F(x))/(y - x) > f(x)\} \in \mathcal{L}(x)$ if $x \in A, \ \sigma_x = \{y : y = x \text{ or } (F(y) - F(x))/(y - x) < f(x)\} \in \mathcal{L}(x) \text{ if } x \in B$ and let $\sigma_x \in \mathcal{L}(x)$ be a fixed set if $x \in E$. Let $\delta(x), x \in [0,1]$ be a positive function such that whenever $0 < y - x < \min\{\delta(x), \delta(y)\}$ then $\sigma_x \cap \sigma_y \cap [x, y] \neq 0$ $\emptyset, \ \sigma_x \cap \sigma_y \cap (y, y + m(y - x)) \neq \emptyset \text{ and } \sigma_x \cap \sigma_y \cap (x - m(y - x), x) \neq \emptyset.$ Let $A_n = \{x \in A : f(x) > -n\}$ and $B_n = \{x \in B : f(x) < -1/n\}$. Let $\{A_{nj}\}, j \ge 1$, be a δ -partition of A_n and $\{B_{nj}\}, j \ge 1$ a δ -partition of B_n . By the Baire Category Theorem it follows that there exists an open interval $(a, b) \cap P \neq \emptyset$ such that (i) $(a,b) \cap P \subset \overline{A}_{nj}$ for some n and j or (ii) $(a,b) \cap P \subset \overline{B}_{nj}$ for some n and j.

(i) We prove that F is \underline{L}' with constant -n on $P \cap (a, b)$.

- a) If x < y, $x, y \in A_{nj}$ then $F(y) F(x) \ge -n(y-x)$.
- b) If x < y, $x \in A \cap P^+ \cap (a, b)$, $y \in A_{nj} \cap (a, b)$ then $F(y) F(x) \ge -h(y-x)$.
- c) If x < y, $x \in B \cap P^+ \cap (a, b)$, $y \in A_{nj} \cap (a, b)$ then $F(y) F(x) \ge -n(y-x)$. (For the proof of a), b), c) see the proof of Theorem 3.)
- d) If x < y, $x \in E \cap P_0$ such that $F(z) > F(x) \varepsilon_0$. By b) and c), $F(y) F(z) \ge -n(y-z)$, hence $F(y) F(x) + \varepsilon \ge -n(y-x) n(x-z)$. Since $|x-z| < \varepsilon$ and ε is arbitrary, it follows that $F(y) F(x) \ge -n(y-x)$.

(ii) We prove that F is \overline{L}'' with constant -1/n on $P \cap (a, b)$.

- A) If $x < y, x, y \in B_{nj}$ then $F(y) F(x) \le (-1/n)(y x)$.
- B) If x < y, $x \in A \cap P^- \cap (a, b)$, $y \in B_{nj} \cap (a, b)$ then $F(y) F(x) \le (-1/n)(y x)$.

- C) If x < y, $x \in B \cap P^+ \cap (a, b)$, $y \in B_{nj} \cap (a, b)$ then $F(y) F(x) \le (-1/n)(y x)$.
- D) If x < y, $x \in E \cap P^- \cap (a, b)$, $y \in B_{nj} \cap (a, b)$ then $F(y) F(x) \leq (-1/n)(y x)$. Let $\varepsilon > 0$, $x - \varepsilon > a$. By (5) it follows that there exists $z \in (x - \varepsilon, x)$ such that $F(z) < F(x) + \varepsilon$. By B) and C), $F(y) - F(z) \leq (-1/n)(y - z)$, hence $F(y) - F(x) - \varepsilon < F(y) - F(z) < (-1/n)(y - x + x - z)$. Since $|x - z| < \varepsilon$ and ε is arbitrary it follows that $F(y) - F(x) \leq (-1/n)(y - x)$.

By Lemma 7 it follows that P is empty, a contradiction.

<u>Remark 7</u>. A local system $\mathcal{L} = \{\mathcal{L}(x) : x \in R\}$ will be said to be:

- a) of ordinary type if $\mathcal{L}(x) = \{S : S \text{ contains an open interval about the point } x\}$ (see [2], p. 99 or [11], p. 4);
- b) of (1,1) density type if $\mathcal{L}(x) = \{S : S \text{ has density 1 at } x\}$ (see [2], p. 99 or [11], Definition 12.1, p. 22);
- c) of (ρ, λ) density type if $\mathcal{L}(x) = \{S : S \text{ has right lower density exceeding } \rho$ and left lower density exceeding λ at $x\}$ (see [2], p. 99);
- d) of qualitative type if $\mathcal{L}(x) = \{S : S \text{ is residual in a neighborhood of } x\}$ (see [2], p. 99).

By [11] (Lemma 15.6, p. 34 and Lemma 15.7, p. 35) or by [2] (the proof of Theorem 3.5, p. 102), the ordinary; the (ρ, λ) density, $\rho > 1/2$, $\lambda > 1/2$ and the qualitative type systems are bilaterally *c*-dense and satisfy conditions I.C. and E.I.C [m].

If \mathcal{L} is of ordinary type we obtain the ordinary lower derivative $\underline{D}F(x)$; if \mathcal{L} is of (1,1) density type we obtain the approximately lower derivative $\underline{D}_{ap}F(x)$; if \mathcal{L} is of (ρ, λ) density type we obtain the $ap_{(\rho,\lambda)} - \underline{D}F(x)$ (see [12], part I, p. 75). For $\rho = \lambda = 1/2$ we obtain the lower preponderant Denjoy derivative $\underline{D}_{pr}F(x)$; if \mathcal{L} is of qualitative type we obtain the lower qualitative Marcus derivatives $\underline{D}_qF(x)$ (see [1], p. 166).

Systems of (1/2, 1/2) density type do not satisfy in general an E.I.C.[m] but all the theorems of the present paper can be extended to them by decomposing the line into a sequence of sets $\{X_n\}_{n=3}^{\infty}$ so that for $x \in X_n$, the density of each $S \in \mathcal{L}(x)$ exceeds (n+2)/(2n), and then the E.I.C.[m] can be used to yields results on each set of the sequence. Thus, those theorems that use the E.I.C.[m] apply to preponderant derivative, but with some technical modifications (see [2], p. 103).

Using Definition 8, the Preiss Theorem can be written in the following way:

Theorem 4 (Preiss). Let $f : (a, b) \to R, F \in uP$ and let E be a subset of (a, \overline{b}) such that if $x \notin E$ and $\underline{f'}_{ap}(x) = -\infty$ then $f'_{ap}(x) = -\infty$. If

- (i) $\underline{f}'_{ap}(x) \ge 0$ a.e. on (a, b).
- (ii) E is countable.
- (iii) F is B_1 with respect to the set \overline{E} .
- (iv) for each $x \in E$ and $\varepsilon > 0$ the sets $\{z \in (x \varepsilon, x) : f(z) < f(x) + \varepsilon\}, \{z \in (x, x + \varepsilon) : f(z) > f(x) \varepsilon\}$ are uncountable; then f is increasing on (a, b).

Our Theorem 4 is a real extension of Preiss Theorem since:

- a) $uP \subsetneq uCM$ (see Proposition 2) b).
- b) The Preiss conditions on the set E are stronger than ours.
- c) Preiss assumed that "F is B_1 with respect to the set \overline{E} " and we suppose only "F is \overline{B}_1 with respect to the set \overline{E} ". We think that this is the most important improvement of the Preiss Theorem.
- d) Our Theorem 4 relates to several kinds of derivatives.

Example 3. Let C be the Cantor ternary set and let (a_i, b_i) , $i \ge 1$ be the intervals contiguous to C. There exists a function $F: [0,1] \rightarrow [0,1]$ such that:

- a) F(0) = 0; F(1) = 1
- b) F is increasing on [0,1]
- c) $F'(x) = +\infty$, for each $x \in C$
- d) F is constant on each $(a_i, b_i), i \ge 1$
- e) $F \notin \ell CM$ and $F \in uCM$, hence $F \notin CM$.

Proof. By [1] (Lemma 1.2, p. 124) there exists a function $G : [0,1] \rightarrow [0,1]$ such that:

- (i) G(0) = 0 and G(1) = 1
- (ii) G is continuous and strictly increasing on [0,1]

(iii) $G'(x) = +\infty$ for each $x \in \mathbb{C}$

Let $F(x) = \begin{cases} G(x), x \in \mathbb{C} \\ G(c_i), x \in (a_i, b_i), \text{ where } c_i = (a_i + b_i)/2, i \ge 1. \end{cases}$ a),b),d),e) are evident. c) Let $x \in \mathbb{C}$. Since $G'(x_0) = +\infty$ it follows that for $\alpha > 0$ there exists $\delta > 0$ such that

(6)
$$G(x) - G(x_0) > \alpha(x - x_0), \text{ for each } x \in [x_0, x_0 + \delta)$$

We have three situations:

- 1) If $x \in \mathbb{C} \cap (x_0, x_0 + \delta)$ then by (6), $F(x) F(x_0) > \alpha(x x_0)$
- 2) If $x \in (a_i, c_i) \cap [x_0, x_0 + \delta)$ for some *i*, then by (6)

$$F(x) - F(x_0) = G(c_i) - G(x_0) \ge G(x) - G(x_0) > \alpha(x - x_0)$$

3) If $x \in [c_i, b_i) \cap [x_0, x_0 + \delta)$ then by (6)

$$F(x) - F(x_0) = G(c_i) - G(x_0) > \alpha(c_i - x_0) > \frac{\alpha}{2}(x - x_0).$$

It follows that $G'^+(x_0) = +\infty$. Similarly $G'^-(x_0) = +\infty$, hence we have c).

Remark. Using the property of function G from Example 3, Preiss defines in [8] (p. 374) a function f_1 which has the same properties as our function F, but in contrast with the proof in [8], our proof is elementary.

Example 4 (Preiss). Let $F : [0,1] \to [0,1]$ be the function defined in Example 3. Let $G : [0,1] \to R$ be defined as follows:

$$G(x) = \begin{cases} 1 - F(x), & x \in C \setminus (\bigcup_{i=1}^{n} \{a_i, b_i\}) \\ 1 - F(x), & x \in \left[a_i + \frac{b_i - a_i}{2^{i+1}}, b_i - \frac{b_i - a_i}{2^{i+1}}\right], i \ge 1 \\ 0, & x \in \{a_1, a_2, \ldots\} \\ 1, & x \in \{b_1, b_2, \ldots\} \end{cases}$$

On $(a_i, a_i + \frac{b_i - a_i}{2^{i+1}})$ and $(b_i - \frac{b_i - a_i}{2^{i+1}}, b_i)$ we define G(x) such that G is continuous and increasing on each $[a_i, b_i]$ and G'(x) exists on (a_i, b_i) , for each $i \ge 1$. Then we have:

a) G satisfies Darboux condition on [0,1]

b) $G \notin \overline{B}_1$, $G \notin \underline{B}_1$ on [0,1]

c)
$$G'_{ap}(x)$$
 exists (finite or infinite) n.e. on $(0,1)$ and $G'_{ap}(x) \ge 0$ a.e. on $[0,1]$.

Proof. For a) and c) see [8], p. 375. b) The set $\{x : G(x) > 0\} = (\bigcup_{i=1}^{\infty} (a_i, b_i)) \cup (C - \{a_1, a_2, \ldots\})$ which is not of F_{σ} -type. Indeed if $\{x : G(x) > 0\}$ is of F_{σ} -type then $\{x : G(x) > 0\} \cap C = \mathbb{C} - \cup \{a_1, a_2, \ldots\}$ is of F_{σ} -type. Suppose that there exists a sequence of closed sets $\{K_j\}_{j\geq 1}$ such that $C - \cup \{a_1, a_2, \ldots\} = \bigcup_{j\geq 1} K_j$. Then by Baire Category Theorem, there exist $\alpha, \beta \in [0, 1]$ such that $\emptyset \neq [\alpha, \beta] \cap (C \setminus \{a_1, a_2, \ldots\})$ is not closed. Hence $F \notin \underline{B}_1$. Similarly we prove that the set $\{x : F(x) < 1\}$ is not of F_{σ} -type, hence $F \notin \overline{B}_1$.

<u>Remark</u>. Example 4 shows that in Theorem 4 we can not omit condition (iii).

Example 5 (Preiss). Let $F : [0,1] \to [0,1]$ be the function defined in Example 3. Let $H : [0,1] \to R$ be defined as follows:

$$\begin{cases} 1 - F(x), \quad x \in C \setminus \left(\bigcup_{i=1}^{\infty} \{a_i, b_i\} \right) \\ 1 - F(x), \quad x \in \left[a_i + \frac{b_i - a_i}{2^{i+1}}, \ b_i - \frac{b_i - a_i}{2^{i+1}} \right], \ i \ge 1 \\ 0, \qquad x \in \{a_1, a_2, \ldots\} \\ 1, \qquad x \in \{b_1, b_2, \ldots\} \\ -1, \qquad x \in \bigcup_{i=1}^{\infty} \{a_i + \frac{b_i - a_i}{2^{i+2}}\} \\ 2, \qquad x \in \bigcup_{i=1}^{\infty} \{b_i - \frac{b_i - a_i}{2^{i+2}}\} \end{cases}$$

On the intervals $\left(a_i, a_i + \frac{b_i - a_i}{2^{i+2}}\right)$; $\left(a_i + \frac{b_i - a_i}{2^{i+2}}, a_i + \frac{b_i - a_i}{2^{i+1}}\right)$; $\left(b_i + \frac{b_i - a_i}{2^{i+1}}, b_i + \frac{b_i - a_i}{2^{i+2}}\right)$; $\left(b_i + \frac{b_i - a_i}{2^{i+2}}, b_i\right)$ we define H such that

- (i) H is continuous on $[a_i, b_i]$, $i \ge 1$
- (ii) H' exists on $(a_i, b_i), i \ge 1$

(iii)
$$H'^+(a_i) = -\infty$$
 and $H'^-(b_i) = -\infty, \ i \ge 1$

- (iv) H is increasing on $\left[a_i + \frac{b_i a_i}{2^{i+2}}, b_i \frac{b_i a_i}{2^{i+2}}\right], i \ge 1$
- (v) *H* is decreasing on each $\left[a_i, a_i + \frac{b_i a_i}{2^{i+2}}\right]$ and $\left[b_i + \frac{b_i a_i}{2^{i+2}}, b_i\right], i \ge 1$ Then we have
- a) H satisfies the Darboux property on [0, 1]

- b) $H \notin \overline{B}_1, H \notin \underline{B}_1$ on [0,1]
- c) $H'_{ap}(x)$ exists (finite or infinite) for each $x \in (0, 1)$.

Proof. For a) and c) see [8], p. 375 and for b) see the proof of Example 4) b).

We are indebted to Professor Solomon Marcus, the referees, and Professor Weil for their help in preparing this article.

References

- [1] A.M. Bruckner: Differentiation of Real Functions, Lecture Notes in Mathematics, 659, Springer-Verlag, New York (1978).
- [2] A.M. Bruckner, R.J. O'Malley, B.S. Thomson: Path derivatives: a unified view of certain generalized derivatives, Trans. Amer. Math. Soc., 283(1984), 97-125.
- [3] V. Ene: Semicontinuity conditions and monotonicity, Real Analysis Exchange, 14(1988-89), 393-412.
- [4] C.M. Lee: An analogue of the theorem Hake-Alexandroff-Looman, Fund. Math., C (1978), 69-74.
- [5] R.J. O'Malley: Selective Derivatives and the M₂ or Denjoy-Clarkson Properties, Acta Math. Acad. Sci. Hungar., 36(1980), 195-199.
- [6] S. Marcus: On a theorem of Denjoy and on approximate derivatives, Monatsh. Math., 66(1962), 435-440.
- [7] S.N. Mukhopadhyay: On a certain property of the derivative, Fund. Math., 67(1970), 279-284.
- [8] D. Preiss: Approximate derivatives and Baire classes, Czech. Math. J., 21(96), (1971), 373-382.
- [9] J. Ridder: Uber den Perronschen Integralbegriff und seine Beziehung zu den R-, L- und D- Integralen, Math. Z., 34(1932), 234-269.
- [10] J. Ridder: Uber approximative stetige Denjoy-Integrale, Fund. Math., 21(1933), 1-10.

- [11] B.S. Thomson: *Real Functions*, Lecture Notes in Mathematics, 1170, Springer-Verlag, New York (1985).
- [12] B.S. Thomson: Derivation Bases on the Real Line I II, Real Analysis Exchange, 8(1982-83).
- [13] Z. Zahorski: Sur la première derivée, Trans. Amer. Math. Soc., 69(1950), 1-54.
- [14] S. Saks: Theory of the integral, 2nd. rev. ed., Monografie Matematyczne, PWN, Warsaw (1937).

Received February 26, 1991