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 REAL NUMBERS WITH REDUNDANT
 REPRESENTATIONS

 Abstract

 Let (Pj)j=i,2,3,... be a sequence of sets Pj of real numbers such that each
 Pj is countable and has more than one point. Let A denote the set of all
 numbers x that can be uniquely expressed x = o.j (a¿ G Pj). Let B
 denote the set of numbers y that can be expressed in at least two ways:
 y = i *>j = cj (Pj G Pj, Cj € Pj) such that bj ^ Cj for at least one
 index j. Here we prove that if A U B is a second category subset of R, then
 A U B is a subset of the closure of B. In particular, if A U B is a dense second
 category subset of R , then B is dense in R; if B is a nowhere dense subset
 of R , then A is a first category subset of R. This unifies and generalizes
 results of M. Petkovsek [P] and of M. Starbird and T. S tar bird [SS].

 1. In this paper (P¿)í=i,2,3,... will be a sequence of sets of real numbers and
 each Pi will be a finite or denumerably infinite set containing at least two ele-
 ments. Let A denote the set of real numbers x that can be uniquely expressed as
 x = 52Si ai (a«' £ -Pi)- Let B denote the set of all real numbers y that can be so ex-
 pressed in at least two ways: to wit as y = a« = 1 where a,- G P,, 6,- € Pi
 and ai -fi bi for some index i. Throughout this paper we assume that A U B is
 a nonvoid set. At least one number can be so expressed. We will generalize and
 unify two propositions suggested in [P] and [SS].

 Proposition 1. Let A U B = R. Then B is a dense subset of R.

 Proposition 2. Let B be void. Then R'A is an uncountable dense subset of
 R.

 1980 Mathematics Subject Classification (1985 Revision). Primary 40A05.

 282



 Proposition 1 is proved in [SS]. An earlier version appeared in [P] in which each
 Pi is assumed to be a finite set containing 0, and any series °i (ai £ Pi) is
 assumed to converge. Proposition 2 appeared in [P] under this same hypothesis.
 Proposition 2 is not addressed in [SS].

 We will prove:

 Theorem I. Let A U B be a second category subset of R. Then A is a subset
 of B closure.

 Thus if A U B is a dense second category subset of R, B must be dense in
 R. This generalizes Proposition 1. If B is void or a nowhere dense subset of R,
 then A must be a first category subset of R. This generalizes Proposition 2. Thus
 Theorem I unifies Propositions 1 and 2 as well.

 Next we consider results when each Pi is assumed to be a finite set. We will
 prove:

 Theorem II. Let each Pi be a finite set containing at least two elements. Then

 (1) A U B is the union of countably many closed sets,

 (2) If AU B is a second category subset of R, then there exist real numbers
 r and s such that any x in the unit interval [0, 1] can be expressed x =
 r + sa« (a«' £ Pi) in at least one way.

 Of course part (2) is an immediate consequence of part (1).

 2. We present some notation and definitions to be used.
 For any integer n, let T(n) denote the set of all sums of the form Y^n a«' (a» €

 Pi). Hence T(l) = A U B.
 For any integer n and e > 0, let T(n, e) denote the set of all numbers that can

 be represented in the form a» (at- € Pi) such that 1 °»l < £ f°r j > 0
 and k > 0. Let |T(n, e)| denote the set {|u| : u G T(n, e)}.

 For any integer n, e > 0, and a € Pn, let S(n, e, a) denote the set of all sums
 J2i^nai (a«' € Pi) in T(n,e) such that an = a. Thus for any e > 0, T(n,e) and
 S(n, e, a) are non void for large enough n because A U B is a non void set.

 Definition. We say that the system (P,) is regular if there is an e > 0 such
 that

 lim sup I 1 T(n, v e)| ' 1 = 0. n- ► oo 1 v ' 1

 Otherwise we say that the system (Pi) is irregular.
 For example, Pi = {0, 1/i} provides an irregular system; on the other hand

 Pi = {0, 1/2'} provides a regular system.
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 Note that if (P,) is irregular, then for any e > 0, we have

 limsupsup{x : x € T(n,e)} > 0, or
 n- ► oo

 limsupsup{- x : x 6 T(n,e)} > 0, or both.
 n- ►oo

 This is true because, if (Pi) is not regular, then

 lim sup sup {| a: | : x € T(n, e)} > 0.
 n- *oo

 The plan is to dispose of Theorems I and II quickly for irregular systems (Pi).
 Then we will concentrate on the regular systems.

 3. Theorems I and II can be inferred from Lemma 1 when the system (Pj) is
 irregular.

 Lemma 1. Let (Pj) be an irregular system and let A U B be nonvoid. Then
 AUB is an unbounded interval of one of the forms (u, oo), [«, oo), (- oo, it), (- oo, u],
 (- oo, oo). Moreover the interior of A U B is a subset of B.

 Proof. Let x = aj (aj € Pj) be a point in A U B. For any
 e > 0, limsup^^ sup |T(n,e)| > 0 because (Pj) is irregular. Without loss of
 generality we let lim sup^^ sup T(n,e) > 0 for each e > 0. (The proof for
 limsup^^ sup -T(n,e) > 0 will be analogous.)

 Fix any number t > x. The plan is to prove that t € B, and hence A U B will
 be an interval unbounded on the right. To this end, we will construct a sequence
 of points bij (i = 0, 1, 2, 3, . . .) in A U B. Let &o¿ = aj for all j > 1.

 Select any positive integer no and let €% = |(ť - x) > 0. Let Si = | limsup^^
 sup T(n, £i). Then £' > 0 and Si > 0. Choose an index ni > n0 and J2%-ni ci (cj £
 Pj) in T(ni,ei) such that

 oo i ni+ť+fc i

 Y] Cj > -Si and I ^ ctj' < -Sļ for all i > 0, k > 0.
 j=ni j=ni +«'

 Let bij = aj = boj for 1 < j < ri' - 1, and b'j = Cj for j > n i. Then <
 Cj < ex, £' - > 0, and

 ni- 1 j ni- 1 oo ļ
 t = X 4- 2êi > ^2 aj ~ 7^1 + 2ei > a j + $3 ci + - 7^1

 i=l j- 1 i=n l

 = ^2 bij + €i - jSi 4 > bij 3=1 4 j=l
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 00 ni- 1 00 00 1 00

 D ¿i 3 = s °i+ £ ci ^ £°¿ - 7¿i + Ž c3
 ¿=1 i=l j=ni j=l ¿=ni

 > ^2 ai + 7^1 - ^2^0 j+ -6ļ.
 j= 1 4 j= 1 4

 Put £2 = |(Í - E^=i hj) and S2 = | limsup^^ sup T(n, e2)- As in the pre-
 ceding argument there is a point Ejrf hj (hj € Pj) and an index n2 > «i such
 that hj is in T(n2,e 2), 62i = ¿>ij for 1 < j < n2 - 1, i > E£Li hj and
 E£i hj > E£i hj + 'h-

 By induction on k, we construct a sequence of points Ej^i hj {hj € Pj) and
 indices n0 < ni < n2 < TI3 < • • • < nk < • • • such that for each k > 1

 (1) t > E£x 6«,

 (2) E£n* is in £k) where ek = |(i - E£i h-i j),

 (3) fefcj = 6fc_u for 1 < j < nk - 1,

 (4) E£Li hj > YfjLi h-i,j + 'Sk where Sk = ' lim sup^^ sup T(n, ek) .

 Now put dj = bkj for 1 < j < nk - 1. By (3), dj is well defined, and indeed
 dj € Pj for each j > 1. Let xk = E/Li hj- Then xo < xi < x2 < x3 < - • • < xk <
 • • • < t by (4) and (1). We claim that limjt-K» xk = t.

 To prove this claim, suppose to the contrary that t' - lim^oo xk and t' < t.
 Then ek > |(ť - ť), for each k. Put e = |(í - 1') and 6 = | lim sup^^ sup T(n, e).
 Then ^+1 > S for each k because ek > e. Choose k so large that xk> t' - By

 (4) 1 1
 œjfe+i > Xk + > xk + -6 > t',

 which is impossible. This contradiction proves that lim*-^ xk = t.
 But ek = i (t - xjfc_i) by (2), so lim*-«, ek = 0. Thus 'xk - Ej^ī1 hj' <
 I Ey=n* hj' < e k also by (2), and it follows that Ejij"1 hj = t. By the
 definition of dj, it follows that lim*-«» E?¿iX dj = t. Moreover

 n n

 I S dá' = I X) hj I < £k for nk<n< nk+1 by (2)
 j=nk j=nk

 and it follows that lim^oo E£=i dj = t.
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 Thus t is in A U B. Recall that h i > Vr Let p be an index so large
 that i h i > Sj=i boj. We repeat the construction with p in place of no and
 Y,j boj or Y,j bij in place of aj to express t as the sum of two series, one with a
 partial sum Y,Pj= i &o j and the other with a partial sum£*=1 b'j. Clearly t is in B.

 Finally, let u = inf(A U B). The preceding arguments show that any number
 t > u is in B. So A U B is (it, oo) or [it, oo), and («, oo) C B. □

 Our next lemma is much like [SS, Lemma 1], and regularity plays no role in it.

 Lemma 2. Let T(l) = A U B be a second category subset of R. Then for each
 e > 0, T(n, e) is a second category set for all but finitely many indices n.

 Proof. Evidently A U B is a subset of the union

 U U ((E«/)+n«,í))-
 n=2 ajÇPj j= 1

 There are countably many sets in this union because each Pj is countable. Then
 one of these sets, say aj + T(N, e) is a second category set. But it is only a
 translate of T(N,e ), so T(N,e) is a second category set.

 Now T(N, e) C (JocPn (° + T(N + 1, e)), and there are countably many sets
 in this union because Pn is countable. Thus some one of the a + T(N + l,e) is a
 second category set. It follows that T(N + l,e) is a second category set. Likewise
 we prove that T(N + 2, e), T(N + 3, e), T(N + 4, e), . . . are second category sets. □

 In Lemmas 3, 4 and 5 we will consider two different kinds of regular systems.

 Lemma 3. Let the system (Pj) be regular. Let there be an a > 0 such that
 for any e with 0 < e < a, the set {a : S(n,e,a) is nonvoid} is a finite set for all
 but finitely many indices n. Then there is a ß > 0 such that for any e, 0 < e < ß,
 the set T(n,e) is a closed set for all but finitely many indices n.

 Proof. Assume to the contrary that for any ß > 0 there is an e > 0, depending
 on ß , such that 0 < e < ß and T(n, e) is a nonclosed set for infinitely many indices
 n. Choose ß such that 0 < ß < a. Let e satisfy 0 < e < ß, and T(n,e)
 is a nonclosed set for infinitely many indices n. Let N be an index such that
 {a : S(n,e,a) is nonvoid} is a finite set for n > N. Choose k > N such that
 T(k,e) is not a closed set. Let (x,) be a sequence of points in T(k,e) converging
 to X g T(k,e). Say Xi = K {K £ Pj )•

 Now 16, j' < e for each i and j. We select a subsequence (x¿^) of (a:,) where

 = Yl'jLk ^ an(ł (bik)i converges, say to <4- We select a subsequence (xļfc+1')
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 of (x^) so that (6^+1)), and (6$b+V)i converge, say to dk and dk+ 1. Again we select

 a subseqence (x|fc+2^) of (x<*+1^) so that (b'k+2^)i, (b'^+ļ)i and (b^^)* converge,
 say to dk, dk+ 1 and dk+2- We continue in this manner to find dj for all j > k.

 Note that each (j > k) lies in a finite set {a : S(j, e, a) is nonvoid}, and this
 set also contains dj. Hence dj £ Pj for all j > k. Because for fixed v, lim¿_» oo -

 dj (v > j > k), we see that b'f = dj for large enough i (v > j > k).
 Now J2j=k dj cannot sum to x, for otherwise it is easy to see that J2%k dj = x

 must lie in T(k,e). Let 8 > 0 be a number such that

 |x - > 26
 j=k

 for infinitely many indices p.
 Fix an index q> k. We find an index p > q and an x'p^ such that

 (1) b'f = dj for k < j < p, and

 (2)

 From (1) and (2) we obtain |52j^p+i b'f' > Because q is arbitrarily large,
 we get

 lim sup sup T(p, e) > S > 0.
 p- ► OO

 But e < ß and ß is arbitrarily small, so we see that (Pj) is an irregular system,
 contrary to hypothesis. □

 Next we find some numbers that are the sum of more than one of our series.

 Lemma 4. Let (Pj) be a regular system satisfying all the hypotheses of Lemma
 3. Furthermore let A U B be a second category set. Then for each e > 0 there is
 an index N(e ) such that for any n > N(e ), T(n, e) contains a point x that can be
 represented in two different ways as a sum YiJLn aj (aj £ Pj)-

 Proof. Take any e > 0. By Lemmas 2 and 3 there is a A and an index N(e)
 such that 0 < A < e and such that T(n, A) is a closed second category set for all
 n > N(e). Fix n > N(e). Now T(n, A) C T(n,e), so it suffices to prove that
 T(n, A) contains the desired point x.

 There is a compact interval J C T(n, A) because T(n, A) is a closed second
 category set. Let u G J, v G J and u > v. Say u = bj a°d v = cj (bj £
 Pjicj € Pj). Select an index p so that YijZlbj > J2jZhcj- Then u € ]0jZi bj +
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 T(p, A) and v € ci + T(p, A). Each set aj + T(p, A) (a¿ 6 Pj) is a closed
 set and

 J C T(n, A) C U ((E«i) + r(RA)).
 o>€P> J=n

 Moreover, there are only countably many of the closed sets in the union, and two
 different ones contain u and v respectively. By [E] there is an a; € J that lies in two
 distinct such sets, and has two distinct series representations, x = aj (aj €
 Pj). Finally, x € T(n, A) C T(n,e). □

 The next lemma is reminiscent of [SS, Proposition 1], and regularity plays no
 role in it.

 Lemma 5. For each a > 0, let there be an e , 0 < e < a, such that the set
 {a : S(n, e , a) is nonvoid} is an infinite set for infinitely many indices n. Let A'JB
 be a second category set. Then for any ß > 0 there are finitely many indices n for
 which T(n,ß) contains a point x that can be represented in two different ways as
 a sum (°j € Pj)-

 Proof. Choose ß > 0. Choose e so that 0 < e < ß, and use Lemma 2 to
 choose an index N, such that the set {o : S(n, 'e, a) is nonvoid} is infinite for
 infinitely many n and T(n, Le) is a second category set for n > N. Fix n > N
 satisfying these conditions. Now { a : S(n , |e,a) is nonvoid} is an infinite subset
 of the interval [- e,e] and must have an accumulation point. Also T(n + 1, |e) is
 a second category set whose closure contains a compact interval I. Choose points
 an, bn € Pn such that 0 < |an - 6n| < |m(7). Then the intersection of the intervals
 an + 1 and bn + 1 contains a compact interval J. Thus J is a subset of the closures
 of an + T(n + 1, and of bn + T(n + 1, jg). Put 6 = min(e, m( J))/4.

 Let fx > 0 and let ci, . . . , cm be numbers. We say that the sequence Ci, . . . ,
 cm, • • • , Ck ft-extends ci, . . . , cTO if | c¿| < fi for m + 1 < p < q < k.

 Again by Lemma 2, T(k, 8) is a second category set for large enough k. We
 truncate an appropriate sum in T(n+1, to e/4-extend an to on, an+i, . . . ,

 such that I3j=n_1 ai is in the middle third of J and T(fc(l), 8) is a second category

 set. Let Ji be a compact interval lying in the closure of (X3i=n-1 aj) + í1(fc(l), Í). It

 follows that Ji is in the closure of (5Zj=n_1 aj) + ^(¿(l), |e) and Ji C J. Likewise
 we use a member of T(n + 1, e/4) to e/4-extend 6„ to 6n, 6n+i, • • • , &fc(2)-i (^(2) >
 A:(l)) and find a compact interval Jļ C J' such that Ji lies in the closure of
 (Zjin-1 bj) + T(k( 2),e/8). (This time put 8 = min(e,m(Ji))/8.)

 We use 2-,e-extensions to find an increasing sequence of indices n + 1 = k( 0) <
 ¿(1) < k( 2) < k( 3) < • • • and a contracting sequence of compact intervals J' D

 288



 Ji D Jz D J* D • • • and series T,%n ai and T,%n bj such that J, is in the closure of

 k(q)~ i

 ( E + for «=1,3,5,7,---,
 j=n

 Jq is in the closure of

 fc(g)-i

 ( E y + r(%),2"H£) for 9 = 2,4,6,8,..., and
 3=n

 ®n) • • • » ^k(q)i • • • ) ®k(j+2)-i2 ' £ extends on, . . . , Qk(q)- i for ļ 1, 3, 5, 7, ... ,

 bļ », . . . , . • • , &fc(g-|-2)- i2 ® £ extends 6n, . . . , for ç 2, 4, 6, 8, ... ,

 It follows from this and |an| < 'e, |6„| < 'e, that the series J2%naá an<^
 converge, and indeed their sums are in T(n, e).

 On the other hand, the diameter of Jq cannot exceed the diameter of
 T(k(q),2~q~1s), so m(Jq) < 2~®e. Thus fļg Jq is a singleton; say f|g Jq = {®}-

 Moreover x lies in the closure of (5Z¿=n-1 aj)+î1(A:(g), 2-,-1e) and |(I3i=n_1 aj)~
 x' < 2~qe because x € Jq. It follows that x = Y^Ln ai- Likewise x = YlJLn V But
 on ^ 6n, so x is the desired point. Recall that e < ß, so x € T(n,e) C T(n,ß). □

 Lemma 6. Let ( Pj ) be a regular system . Let AU ß be a second category
 set. Then for any e > 0, there are infìnitely many integers n > 0 for which the set
 T(n,e) contains a point x that can be represented in two different ways as a sum

 X = ££„«,• («j e Pj).

 Proof. Lemmas 4 and 5. □

 Proof of Theorem I. Take any e > 0 and any y € A U B. In view of Lemma
 1 we can (and do) assume that (Pj) is regular. Let y = c¿ (c¿ G Pj). Then
 there is an index p such that | Cj - y' < e and T(p, e) contains a point x as
 described in Lemma 6. Let w = x + Cj. It follows that |to - y' < 2e, and
 w € B. Hence y € B closure, and A U B C B closure. □

 Proof of Theorem II. We deduce from Lemma 3 that A U B is the union of

 countably many translates of closed sets of the form T(n,e). This proves part (1).
 In part (2), at least one of these closed sets is a second category set and contains
 an interval. We omit the rest of the proof of part (2). □
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