REAL NUMBERS WITH REDUNDANT REPRESENTATIONS

Abstract

Let $\left(P_{j}\right)_{j=1,2,3, \ldots}$ be a sequence of sets P_{j} of real numbers such that each P_{j} is countable and has more than one point. Let A denote the set of all numbers x that can be uniquely expressed $x=\sum_{j=1}^{\infty} a_{j}\left(a_{j} \in P_{j}\right)$. Let B denote the set of numbers y that can be expressed in at least two ways: $y=\sum_{j=1}^{\infty} b_{j}=\sum_{j=1}^{\infty} c_{j}\left(b_{j} \in P_{j}, c_{j} \in P_{j}\right)$ such that $b_{j} \neq c_{j}$ for at least one index j. Here we prove that if $A \cup B$ is a second category subset of R, then $A \cup B$ is a subset of the closure of B. In particular, if $A \cup B$ is a dense second category subset of R, then B is dense in R; if B is a nowhere dense subset of R, then A is a first category subset of R. This unifies and generalizes results of M. Petkovsek [P] and of M. Starbird and T. Starbird [SS].

1. In this paper $\left(P_{i}\right)_{i=1,2,3, \ldots}$ will be a sequence of sets of real numbers and each P_{i} will be a finite or denumerably infinite set containing at least two elements. Let A denote the set of real numbers x that can be uniquely expressed as $x=\sum_{i=1}^{\infty} a_{i}\left(a_{i} \in P_{i}\right)$. Let B denote the set of all real numbers y that can be so expressed in at least two ways: to wit as $y=\sum_{i=1}^{\infty} a_{i}=\sum_{i=1}^{\infty} b_{i}$ where $a_{i} \in P_{i}, b_{i} \in P_{i}$ and $a_{i} \neq b_{i}$ for some index i. Throughout this paper we assume that $A \cup B$ is a nonvoid set. At least one number can be so expressed. We will generalize and unify two propositions suggested in [P] and [SS].

Proposition 1. Let $A \cup B=R$. Then B is a dense subset of R.
Proposition 2. Let B be void. Then $R \backslash A$ is an uncountable dense subset of R.

Proposition 1 is proved in [SS]. An earlier version appeared in [P] in which each P_{i} is assumed to be a finite set containing 0 , and any series $\sum_{i=1}^{\infty} a_{i}\left(a_{i} \in P_{i}\right)$ is assumed to converge. Proposition 2 appeared in [P$]$ under this same hypothesis. Proposition 2 is not addressed in [SS].

We will prove:
Theorem I. Let $A \cup B$ be a second category subset of R. Then A is a subset of B closure.

Thus if $A \cup B$ is a dense second category subset of R, B must be dense in R. This generalizes Proposition 1. If B is void or a nowhere dense subset of R, then A must be a first category subset of R. This generalizes Proposition 2. Thus Theorem I unifies Propositions 1 and 2 as well.

Next we consider results when each P_{i} is assumed to be a finite set. We will prove:

Theorem II. Let each P_{i} be a finite set containing at least two elements. Then
(1) $A \cup B$ is the union of countably many closed sets,
(2) If $A \cup B$ is a second category subset of R, then there exist real numbers r and s such that any x in the unit interval $[0,1]$ can be expressed $x=$ $r+\sum_{i=1}^{\infty} s a_{i}\left(a_{i} \in P_{i}\right)$ in at least one way.

Of course part (2) is an immediate consequence of part (1).
2. We present some notation and definitions to be used.

For any integer n, let $T(n)$ denote the set of all sums of the form $\sum_{i=n}^{\infty} a_{i}\left(a_{i} \in\right.$ $\left.P_{i}\right)$. Hence $T(1)=A \cup B$.

For any integer n and $\varepsilon>0$, let $T(n, \varepsilon)$ denote the set of all numbers that can be represented in the form $\sum_{i=n}^{\infty} a_{i}\left(a_{i} \in P_{i}\right)$ such that $\left|\sum_{i=n+j}^{n+j+k} a_{i}\right|<\varepsilon$ for all $j \geq 0$ and $k \geq 0$. Let $|T(n, \varepsilon)|$ denote the set $\{|u|: u \in T(n, \varepsilon)\}$.

For any integer $n, \varepsilon>0$, and $a \in P_{n}$, let $S(n, \varepsilon, a)$ denote the set of all sums $\sum_{i=n}^{\infty} a_{i}\left(a_{i} \in P_{i}\right)$ in $T(n, \varepsilon)$ such that $a_{n}=a$. Thus for any $\varepsilon>0, T(n, \varepsilon)$ and $S(n, \varepsilon, a)$ are nonvoid for large enough n because $A \cup B$ is a nonvoid set.

Definition. We say that the system $\left(P_{i}\right)$ is regular if there is an $\varepsilon>0$ such that

$$
\lim _{n \rightarrow \infty} \sup |T(n, \varepsilon)|=0
$$

Otherwise we say that the system $\left(P_{i}\right)$ is irregular.
For example, $P_{i}=\{0,1 / i\}$ provides an irregular system; on the other hand $P_{i}=\left\{0,1 / 2^{i}\right\}$ provides a regular system.

Note that if $\left(P_{i}\right)$ is irregular, then for any $\varepsilon>0$, we have

$$
\begin{aligned}
& \underset{n \rightarrow \infty}{\limsup } \sup \{x: x \in T(n, \varepsilon)\}>0, \text { or } \\
& \underset{n \rightarrow \infty}{\limsup } \sup \{-x: x \in T(n, \varepsilon)\}>0, \text { or both. }
\end{aligned}
$$

This is true because, if $\left(P_{i}\right)$ is not regular, then

$$
\limsup _{n \rightarrow \infty} \sup \{|x|: x \in T(n, \varepsilon)\}>0
$$

The plan is to dispose of Theorems I and II quickly for irregular systems (P_{i}). Then we will concentrate on the regular systems.
3. Theorems I and II can be inferred from Lemma 1 when the system $\left(P_{j}\right)$ is irregular.

Lemma 1. Let $\left(P_{j}\right)$ be an irregular system and let $A \cup B$ be nonvoid. Then $A \cup B$ is an unbounded interval of one of the forms $(u, \infty),[u, \infty),(-\infty, u),(-\infty, u]$, $(-\infty, \infty)$. Moreover the interior of $A \cup B$ is a subset of B.

Proof. Let $x=\sum_{j=1}^{\infty} a_{j}\left(a_{j} \in P_{j}\right)$ be a point in $A \cup B$. For any $\varepsilon>0, \limsup { }_{n \rightarrow \infty} \sup |T(n, \varepsilon)|>0$ because $\left(P_{j}\right)$ is irregular. Without loss of generality we let $\limsup { }_{n \rightarrow \infty} \sup T(n, \varepsilon)>0$ for each $\varepsilon>0$. (The proof for $\limsup { }_{n \rightarrow \infty} \sup -T(n, \varepsilon)>0$ will be analogous.)

Fix any number $t>x$. The plan is to prove that $t \in B$, and hence $A \cup B$ will be an interval unbounded on the right. To this end, we will construct a sequence of points $\sum_{j=1}^{\infty} b_{i j}(i=0,1,2,3, \ldots)$ in $A \cup B$. Let $b_{0 j}=a_{j}$ for all $j \geq 1$.

Select any positive integer n_{0} and let $\varepsilon_{1}=\frac{1}{2}(t-x)>0$. Let $\delta_{1}=\frac{1}{2} \limsup n_{n \rightarrow \infty}$ $\sup T\left(n, \varepsilon_{1}\right)$. Then $\varepsilon_{1}>0$ and $\delta_{1}>0$. Choose an index $n_{1}>n_{0}$ and $\sum_{j=-n_{1}}^{\infty} c_{j}\left(c_{j} \in\right.$ $\left.P_{j}\right)$ in $T\left(n_{1}, \varepsilon_{1}\right)$ such that

$$
\sum_{j=n_{1}}^{\infty} c_{j}>\frac{1}{2} \delta_{1} \text { and }\left|\sum_{j=n_{1}+i}^{n_{1}+i+k} a_{j}\right|<\frac{1}{4} \delta_{1} \text { for all } i \geq 0, k \geq 0
$$

Let $b_{1 j}=a_{j}=b_{0 j}$ for $1 \leq j \leq n_{1}-1$, and $b_{1 j}=c_{j}$ for $j \geq n_{1}$. Then $\frac{1}{2} \delta_{1}<$ $\sum_{j=n_{1}}^{\infty} c_{j} \leq \varepsilon_{1}, \varepsilon_{1}-\frac{1}{4} \delta_{1}>0$, and

$$
\begin{aligned}
t & =x+2 \varepsilon_{1} \geq \sum_{j=1}^{n_{1}-1} a_{j}-\frac{1}{4} \delta_{1}+2 \varepsilon_{1} \geq \sum_{j=1}^{n_{1}-1} a_{j}+\sum_{j=n_{1}}^{\infty} c_{j}+\varepsilon_{1}-\frac{1}{4} \delta_{1} \\
& =\sum_{j=1}^{\infty} b_{1 j}+\varepsilon_{1}-\frac{1}{4} \delta_{1}>\sum_{j=1}^{\infty} b_{1 j}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{j=1}^{\infty} b_{1 j} & =\sum_{j=1}^{n_{1}-1} a_{j}+\sum_{j=n_{1}}^{\infty} c_{j} \geq \sum_{j=1}^{\infty} a_{j}-\frac{1}{4} \delta_{1}+\sum_{j=n_{1}}^{\infty} c_{j} \\
& >\sum_{j=1}^{\infty} a_{j}+\frac{1}{4} \delta_{1}=\sum_{j=1}^{\infty} b_{0 j}+\frac{1}{4} \delta_{1} .
\end{aligned}
$$

Put $\varepsilon_{2}=\frac{1}{2}\left(t-\sum_{j=1}^{\infty} b_{1 j}\right)$ and $\delta_{2}=\frac{1}{2} \limsup _{n \rightarrow \infty} \sup T\left(n, \varepsilon_{2}\right)$. As in the preceding argument there is a point $\sum_{j=1}^{\infty} b_{2 j}\left(b_{2 j} \in P_{j}\right)$ and an index $n_{2}>n_{1}$ such that $\sum_{j=n_{2}}^{\infty} b_{2 j}$ is in $T\left(n_{2}, \varepsilon_{2}\right), b_{2 j}=b_{1 j}$ for $1 \leq j \leq n_{2}-1, t>\sum_{j=1}^{\infty} b_{2 j}$ and $\sum_{j=1}^{\infty} b_{2 j}>\sum_{j=1}^{\infty} b_{1 j}+\frac{1}{4} \delta_{2}$.

By induction on k, we construct a sequence of points $\sum_{j=1}^{\infty} b_{k j}\left(b_{k j} \in P_{j}\right)$ and indices $n_{0}<n_{1}<n_{2}<n_{3}<\cdots<n_{k}<\cdots$ such that for each $k \geq 1$
(1) $t>\sum_{j=1}^{\infty} b_{k j}$,
(2) $\sum_{j=n_{k}}^{\infty} b_{k j}$ is in $T\left(n_{k}, \varepsilon_{k}\right)$ where $\varepsilon_{k}=\frac{1}{2}\left(t-\sum_{j=1}^{\infty} b_{k-1, j}\right)$,
(3) $b_{k j}=b_{k-1, j}$ for $1 \leq j \leq n_{k}-1$,
(4) $\sum_{j=1}^{\infty} b_{k j}>\sum_{j=1}^{\infty} b_{k-1, j}+\frac{1}{4} \delta_{k}$ where $\delta_{k}=\frac{1}{2} \lim \sup _{n \rightarrow \infty} \sup T\left(n, \varepsilon_{k}\right)$.

Now put $d_{j}=b_{k j}$ for $1 \leq j \leq n_{k}-1$. By (3), d_{j} is well defined, and indeed $d_{j} \in P_{j}$ for each $j \geq 1$. Let $x_{k}=\sum_{j=1}^{\infty} b_{k j}$. Then $x_{0}<x_{1}<x_{2}<x_{3}<\cdots<x_{k}<$ $\cdots<t$ by (4) and (1). We claim that $\lim _{k \rightarrow \infty} x_{k}=t$.

To prove this claim, suppose to the contrary that $t^{\prime}=\lim _{k \rightarrow \infty} x_{k}$ and $t^{\prime}<t$. Then $\varepsilon_{k} \geq \frac{1}{2}\left(t-t^{\prime}\right)$, for each k. Put $\varepsilon=\frac{1}{2}\left(t-t^{\prime}\right)$ and $\delta=\frac{1}{2} \limsup _{n \rightarrow \infty} \sup T(n, \varepsilon)$. Then $\delta_{k+1} \geq \delta$ for each k because $\varepsilon_{k} \geq \varepsilon$. Choose k so large that $x_{k}>t^{\prime}-\frac{1}{4} \delta$. By (4)

$$
x_{k+1}>x_{k}+\frac{1}{4} \delta_{k+1} \geq x_{k}+\frac{1}{4} \delta>t^{\prime}
$$

which is impossible. This contradiction proves that $\lim _{k \rightarrow \infty} x_{k}=t$.
But $\varepsilon_{k}=\frac{1}{2}\left(t-x_{k-1}\right)$ by (2), so $\lim _{k \rightarrow \infty} \varepsilon_{k}=0$. Thus $\left|x_{k}-\sum_{j=1}^{n_{k}-1} b_{k j}\right| \leq$ $\left|\sum_{j=n_{k}}^{\infty} b_{k j}\right| \leq \varepsilon_{k}$ also by (2), and it follows that $\lim _{k \rightarrow \infty} \sum_{j=1}^{n_{k}-1} b_{k j}=t$. By the definition of d_{j}, it follows that $\lim _{k \rightarrow \infty} \sum_{j=1}^{n_{k}-1} d_{j}=t$. Moreover

$$
\left|\sum_{j=n_{k}}^{n} d_{j}\right|=\left|\sum_{j=n_{k}}^{n} b_{k j}\right| \leq \varepsilon_{k} \text { for } n_{k} \leq n<n_{k+1} \text { by (2) }
$$

and it follows that $\lim _{n \rightarrow \infty} \sum_{j=1}^{n} d_{j}=t$.

Thus t is in $A \cup B$. Recall that $\sum_{j=1}^{\infty} b_{1 j}>\sum_{j=1}^{\infty} b_{0 j}$. Let p be an index so large that $\sum_{j=1}^{p} b_{1 j}>\sum_{j=1}^{p} b_{0 j}$. We repeat the construction with p in place of n_{0} and $\sum_{j} b_{0 j}$ or $\sum_{j} b_{1 j}$ in place of $\sum_{j} a_{j}$ to express t as the sum of two series, one with a partial sum $\sum_{j=1}^{p} b_{0 j}$ and the other with a partial sum $\sum_{j=1}^{p} b_{1 j}$. Clearly t is in B.

Finally, let $u=\inf (A \cup B)$. The preceding arguments show that any number $t>u$ is in B. So $A \cup B$ is (u, ∞) or $[u, \infty)$, and $(u, \infty) \subset B$.

Our next lemma is much like [SS, Lemma 1], and regularity plays no role in it.
Lemma 2. Let $T(1)=A \cup B$ be a second category subset of R. Then for each $\varepsilon>0, T(n, \varepsilon)$ is a second category set for all but finitely many indices n.

Proof. Evidently $A \cup B$ is a subset of the union

$$
\bigcup_{n=2}^{\infty} \bigcup_{a_{j} \in P_{j}}\left(\left(\sum_{j=1}^{n-1} a_{j}\right)+T(n, \varepsilon)\right)
$$

There are countably many sets in this union because each P_{j} is countable. Then one of these sets, say $\sum_{j=1}^{N-1} a_{j}+T(N, \varepsilon)$ is a second category set. But it is only a translate of $T(N, \varepsilon)$, so $T(N, \varepsilon)$ is a second category set.

Now $T(N, \varepsilon) \subset \bigcup_{a \in P_{N}}(a+T(N+1, \varepsilon))$, and there are countably many sets in this union because P_{N} is countable. Thus some one of the $a+T(N+1, \varepsilon)$ is a second category set. It follows that $T(N+1, \varepsilon)$ is a second category set. Likewise we prove that $T(N+2, \varepsilon), T(N+3, \varepsilon), T(N+4, \varepsilon), \ldots$ are second category sets.

In Lemmas 3, 4 and 5 we will consider two different kinds of regular systems.
Lemma 3. Let the system $\left(P_{j}\right)$ be regular. Let there be an $\alpha>0$ such that for any ε with $0<\varepsilon<\alpha$, the set $\{a: S(n, \varepsilon, a)$ is nonvoid $\}$ is a finite set for all but finitely many indices n. Then there is a $\beta>0$ such that for any $\varepsilon, 0<\varepsilon<\beta$, the set $T(n, \varepsilon)$ is a closed set for all but finitely many indices n.

Proof. Assume to the contrary that for any $\beta>0$ there is an $\varepsilon>0$, depending on β, such that $0<\varepsilon<\beta$ and $T(n, \varepsilon)$ is a nonclosed set for infinitely many indices n. Choose β such that $0<\beta<\alpha$. Let ε satisfy $0<\varepsilon<\beta$, and $T(n, \varepsilon)$ is a nonclosed set for infinitely many indices n. Let N be an index such that $\{a: S(n, \varepsilon, a)$ is nonvoid $\}$ is a finite set for $n \geq N$. Choose $k>N$ such that $T(k, \varepsilon)$ is not a closed set. Let $\left(x_{i}\right)$ be a sequence of points in $T(k, \varepsilon)$ converging to $x \notin T(k, \varepsilon)$. Say $x_{i}=\sum_{j=k}^{\infty} b_{i j}\left(b_{i j} \in P_{j}\right)$.

Now $\left|b_{i j}\right|<\varepsilon$ for each i and j. We select a subsequence $\left(x_{i}^{(k)}\right)$ of $\left(x_{i}\right)$ where $x_{i}^{(k)}=\sum_{j=k}^{\infty} b_{i j}^{(k)}$ and $\left(b_{i k}^{(k)}\right)_{i}$ converges, say to d_{k}. We select a subsequence $\left(x_{i}^{(k+1)}\right)$
of $\left(x_{i}^{(k)}\right)$ so that $\left(b_{i k}^{(k+1)}\right)_{i}$ and $\left(b_{i, k+1}^{(k+1)}\right)_{i}$ converge, say to d_{k} and d_{k+1}. Again we select a subseqence $\left(x_{i}^{(k+2)}\right)$ of $\left(x_{i}^{(k+1)}\right)$ so that $\left(b_{i k}^{(k+2)}\right)_{i},\left(b_{i, k+1}^{(k+2)}\right)_{i}$ and $\left(b_{i, k+2}^{(k+2)}\right)_{i}$ converge, say to d_{k}, d_{k+1} and d_{k+2}. We continue in this manner to find d_{j} for all $j \geq k$.

Note that each $b_{i j}(j \geq k)$ lies in a finite set $\{a: S(j, \varepsilon, a)$ is nonvoid $\}$, and this set also contains d_{j}. Hence $d_{j} \in P_{j}$ for all $j \geq k$. Because for fixed $v, \lim _{i \rightarrow \infty} b_{i j}^{(v)}=$ $d_{j}(v \geq j \geq k)$, we see that $b_{i j}^{(v)}=d_{j}$ for large enough $i(v \geq j \geq k)$.

Now $\sum_{j=k} d_{j}$ cannot sum to x, for otherwise it is easy to see that $\sum_{j=k}^{\infty} d_{j}=x$ must lie in $T(k, \varepsilon)$. Let $\delta>0$ be a number such that

$$
\left|x-\sum_{j=k}^{p} d_{j}\right| \geq 2 \delta
$$

for infinitely many indices p.
Fix an index $q>k$. We find an index $p>q$ and an $x_{i}^{(p)}$ such that
(1) $b_{i j}^{(p)}=d_{j}$ for $k \leq j \leq p$, and
(2) $\left|\sum_{j=k}^{\infty} b_{i j}^{(p)}-\sum_{j=k}^{p} d_{j}\right| \geq \delta$.

From (1) and (2) we obtain $\left|\sum_{j=p+1}^{\infty} b_{i j}^{(p)}\right| \geq \delta$. Because q is arbitrarily large, we get

$$
\limsup _{p \rightarrow \infty} \sup T(p, \varepsilon) \geq \delta>0
$$

But $\varepsilon<\beta$ and β is arbitrarily small, so we see that $\left(P_{j}\right)$ is an irregular system, contrary to hypothesis.

Next we find some numbers that are the sum of more than one of our series.
Lemma 4. Let $\left(P_{j}\right)$ be a regular system satisfying all the hypotheses of Lemma 3. Furthermore let $A \cup B$ be a second category set. Then for each $\varepsilon>0$ there is an index $N(\varepsilon)$ such that for any $n \geq N(\varepsilon), T(n, \varepsilon)$ contains a point x that can be represented in two different ways as a sum $\sum_{j=n}^{\infty} a_{j}\left(a_{j} \in P_{j}\right)$.

Proof. Take any $\varepsilon>0$. By Lemmas 2 and 3 there is a λ and an index $N(\varepsilon)$ such that $0<\lambda<\varepsilon$ and such that $T(n, \lambda)$ is a closed second category set for all $n \geq N(\varepsilon)$. Fix $n \geq N(\varepsilon)$. Now $T(n, \lambda) \subset T(n, \varepsilon)$, so it suffices to prove that $T(n, \lambda)$ contains the desired point x.

There is a compact interval $J \subset T(n, \lambda)$ because $T(n, \lambda)$ is a closed second category set. Let $u \in J, v \in J$ and $u>v$. Say $u=\sum_{j=n}^{\infty} b_{j}$ and $v=\sum_{j=n}^{\infty} c_{j}\left(b_{j} \in\right.$ $P_{j}, c_{j} \in P_{j}$). Select an index p so that $\sum_{j=n}^{p-1} b_{j}>\sum_{j=n}^{p-1} c_{j}$. Then $u \in \sum_{j=1}^{p-1} b_{j}+$
$T(p, \lambda)$ and $v \in \sum_{j=n}^{p-1} c_{j}+T(p, \lambda)$. Each set $\sum_{j=1}^{p-1} a_{j}+T(p, \lambda)\left(a_{j} \in P_{j}\right)$ is a closed set and

$$
J \subset T(n, \lambda) \subset \bigcup_{a_{j} \in P_{j}}\left(\left(\sum_{j=n}^{p-1} a_{j}\right)+T(p, \lambda)\right)
$$

Moreover, there are only countably many of the closed sets in the union, and two different ones contain u and v respectively. By [E] there is an $x \in J$ that lies in two distinct such sets, and has two distinct series representations, $x=\sum_{j=n}^{\infty} a_{j}\left(a_{j} \in\right.$ P_{j}). Finally, $x \in T(n, \lambda) \subset T(n, \varepsilon)$.

The next lemma is reminiscent of [SS, Proposition 1], and regularity plays no role in it.

Lemma 5. For each $\alpha>0$, let there be an $\varepsilon, 0<\varepsilon<\alpha$, such that the set $\{a: S(n, \varepsilon, a)$ is nonvoid $\}$ is an infinite set for infinitely many indices n. Let $A \cup B$ be a second category set. Then for any $\beta>0$ there are finitely many indices n for which $T(n, \beta)$ contains a point x that can be represented in two different ways as $a \operatorname{sum} \sum_{j=n}^{\infty} a_{j}\left(a_{j} \in P_{j}\right)$.

Proof. Choose $\beta>0$. Choose ε so that $0<\varepsilon<\beta$, and use Lemma 2 to choose an index N, such that the set $\left\{a: S\left(n, \frac{1}{4} \varepsilon, a\right)\right.$ is nonvoid $\}$ is infinite for infinitely many n and $T\left(n, \frac{1}{4} \varepsilon\right)$ is a second category set for $n \geq N$. Fix $n \geq N$ satisfying these conditions. Now $\left\{a: S\left(n, \frac{1}{4} \varepsilon, a\right)\right.$ is nonvoid $\}$ is an infinite subset of the interval $[-\varepsilon, \varepsilon]$ and must have an accumulation point. Also $T\left(n+1, \frac{1}{4} \varepsilon\right)$ is a second category set whose closure contains a compact interval I. Choose points $a_{n}, b_{n} \in P_{n}$ such that $0<\left|a_{n}-b_{n}\right|<\frac{1}{2} m(I)$. Then the intersection of the intervals $a_{n}+I$ and $b_{n}+I$ contains a compact interval J. Thus J is a subset of the closures of $a_{n}+T\left(n+1, \frac{1}{4} \varepsilon\right)$ and of $b_{n}+T\left(n+1, \frac{1}{4} \varepsilon\right)$. Put $\delta=\min (\varepsilon, m(J)) / 4$.

Let $\mu>0$ and let c_{1}, \ldots, c_{m} be numbers. We say that the sequence c_{1}, \ldots, $c_{m}, \ldots, c_{k} \mu$-extends c_{1}, \ldots, c_{m} if $\left|\sum_{j=p}^{q} c_{j}\right|<\mu$ for $m+1 \leq p \leq q \leq k$.

Again by Lemma $2, T(k, \delta)$ is a second category set for large enough k. We truncate an appropriate sum in $T\left(n+1, \frac{1}{4} \varepsilon\right)$ to $\varepsilon / 4$-extend a_{n} to $a_{n}, a_{n+1}, \ldots, a_{k(1)-1}$ such that $\sum_{j=n}^{k(1)-1} a_{j}$ is in the middle third of J and $T(k(1), \delta)$ is a second category set. Let J_{1} be a compact interval lying in the closure of $\left(\sum_{j=n}^{k(1)-1} a_{j}\right)+T(k(1), \delta)$. It follows that J_{1} is in the closure of $\left(\sum_{j=n}^{k(1)-1} a_{j}\right)+T\left(k(1), \frac{1}{4} \varepsilon\right)$ and $J_{1} \subset J$. Likewise we use a member of $T(n+1, \varepsilon / 4)$ to $\varepsilon / 4$-extend b_{n} to $b_{n}, b_{n+1}, \ldots, b_{k(2)-1}(k(2)>$ $k(1))$ and find a compact interval $J_{2} \subset J_{1}$ such that J_{2} lies in the closure of $\left(\sum_{j=n}^{k(2)-1} b_{j}\right)+T(k(2), \varepsilon / 8)$. (This time put $\delta=\min \left(\varepsilon, m\left(J_{1}\right)\right) / 8$.)

We use $2^{-q} \varepsilon$-extensions to find an increasing sequence of indices $n+1=k(0)<$ $k(1)<k(2)<k(3)<\cdots$ and a contracting sequence of compact intervals $J_{1} \supset$
$J_{2} \supset J_{3} \supset J_{4} \supset \cdots$ and series $\sum_{j=n}^{\infty} a_{j}$ and $\sum_{j=n}^{\infty} b_{j}$ such that J_{q} is in the closure of

$$
\left(\sum_{j=n}^{k(q)-1} a_{j}\right)+T\left(k(q), 2^{-q-1} \varepsilon\right) \text { for } q=1,3,5,7, \cdots
$$

J_{q} is in the closure of

$$
\begin{gathered}
\left(\sum_{j=n}^{k(q)-1} b_{j}\right)+T\left(k(q), 2^{-q-1} \varepsilon\right) \text { for } q=2,4,6,8, \ldots, \text { and } \\
a_{n}, \ldots, a_{k(q)}, \ldots, a_{k(q+2)-1} 2^{-q-1} \varepsilon-\text { extends } a_{n}, \ldots, a_{k(q)-1} \text { for } q=1,3,5,7, \ldots, \\
b_{n}, \ldots, b_{k(q)}, \ldots, b_{k(q+2)-1} 2^{-q-1} \varepsilon-\text { extends } b_{n}, \ldots, b_{k(q)-1} \text { for } q=2,4,6,8, \ldots,
\end{gathered}
$$

It follows from this and $\left|a_{n}\right| \leq \frac{1}{4} \varepsilon,\left|b_{n}\right| \leq \frac{1}{4} \varepsilon$, that the series $\sum_{j=n}^{\infty} a_{j}$ and $\sum_{j=n}^{\infty} b_{j}$ converge, and indeed their sums are in $T(n, \varepsilon)$.

On the other hand, the diameter of J_{q} cannot exceed the diameter of $T\left(k(q), 2^{-q-1} \varepsilon\right)$, so $m\left(J_{q}\right) \leq 2^{-q} \varepsilon$. Thus $\bigcap_{q} J_{q}$ is a singleton; say $\bigcap_{q} J_{q}=\{x\}$.

Moreover x lies in the closure of $\left(\sum_{j=n}^{k(q)-1} a_{j}\right)+T\left(k(q), 2^{-q-1} \varepsilon\right)$ and $\mid\left(\sum_{j=n}^{k(q)-1} a_{j}\right)-$ $x \mid \leq 2^{-q} \varepsilon$ because $x \in J_{q}$. It follows that $x=\sum_{j=n}^{\infty} a_{j}$. Likewise $x=\sum_{j=n}^{\infty} b_{j}$. But $a_{n} \neq b_{n}$, so x is the desired point. Recall that $\varepsilon<\beta$, so $x \in T(n, \varepsilon) \subset T(n, \beta)$.

Lemma 6. Let $\left(P_{j}\right)$ be a regular system. Let $A \cup B$ be a second category set. Then for any $\varepsilon>0$, there are infinitely many integers $n>0$ for which the set $T(n, \varepsilon)$ contains a point x that can be represented in two different ways as a sum $x=\sum_{j=n}^{\infty} a_{j}\left(a_{j} \in P_{j}\right)$.

Proof. Lemmas 4 and 5.

Proof of Theorem I. Take any $\varepsilon>0$ and any $y \in A \cup B$. In view of Lemma 1 we can (and do) assume that $\left(P_{j}\right)$ is regular. Let $y=\sum_{j=1}^{\infty} c_{j}\left(c_{j} \in P_{j}\right)$. Then there is an index p such that $\left|\sum_{j=1}^{p-1} c_{j}-y\right|<\varepsilon$ and $T(p, \varepsilon)$ contains a point x as described in Lemma 6. Let $w=x+\sum_{j=1}^{p-1} c_{j}$. It follows that $|w-y| \leq 2 \varepsilon$, and $w \in B$. Hence $y \in B$ closure, and $A \cup B \subset B$ closure.

Proof of Theorem II. We deduce from Lemma 3 that $A \cup B$ is the union of countably many translates of closed sets of the form $T(n, \varepsilon)$. This proves part (1). In part (2), at least one of these closed sets is a second category set and contains an interval. We omit the rest of the proof of part (2).

References

[E] R. Engelking, General Topology, Polish Scientific Publishers, Warsaw, 1977, Theorem 6.1.27, page 440.
[P] M. Petkovsek, Ambiguous Numbers are Dense, American Mathematical Monthly 97 (1990) pages 408-411.
[SS] M. Starbird and T. Starbird, Required Redundancy in the Representation of Reals, will appear in the Proceedings of the American Mathematical Society.

Received February 19, 1991

