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 A Symmetric Porosity Conjecture of Zajíček

 Section 1 - Introduction

 If A is a subset of the real line IR and x € IR, then the porosity of A at x
 is defined to be

 A(A,x,r)
 lim sup
 r- o+ r

 where A(A, x, r ) is the length of the longest open interval contained in either
 (x, x + r) fi Ac or (x - r, x) l~l A° and Ac denotes the complement of A. A
 set is said to be porous at x if it has positive porosity at x and is called a
 porous set if it is porous at each of its points. A set is said to be strongly
 porous at x if it has porosity one at x and is called a strongly porous set if
 it is strongly porous at each of its points. A set is called a-porous if it is a
 countable union of porous sets. Right porosity and left porosity are defined
 in the obvious manner and a set is called bilaterally porous at x if it is both
 right and left porous at x. Likewise, a set is said to be bilaterally strongly
 porous at x if it has both left and right porosity one at x, and is called a
 bilaterally strongly porous set if it is bilaterally strongly porous at each of its
 points. Thomson's book [5] and the survey articles by Bullen [2] and Zajíček
 [6] are good sources for historical information on porosity and on some of its
 applications.

 Recently, Zajíček [7] has found an application for a notion of porosity even
 stronger than that of bilateral porosity, a concept which he calls symmetric
 porosity. It is closely related to the "index" of Denjoy [3, 4], who utilized it in
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 his study of second order symmetric differentiation. The symmetric porosity
 of A at X is defined as

 7 (A,x,r)
 lim sup -
 r- >0+ r

 where 7 (A,x,r) is the supremum of all positive numbers h such that there
 is a positive number t with t + h < r such that both of the intervals
 (x - t - h,x - t) and (x + ť, x + t + h) lie in Ac. A set A is symmetri-
 cally porous if it has positive symmetric porosity at each of its points and is
 called strongly symmetrically porous if it has symmetric porosity one at each
 of its points. With asymmetric porosity given its natural meaning, Zajíček
 [7] extended a result in [1], by showing that a certain exceptional set, which
 was known to be <r-porous, is actually cr-symmetrically porous.

 While it is clear that the notion of symmetric porosity is strictly stronger
 than that of porosity, it is not as obvious that <j-symmetric porosity is strictly
 stronger than <r-porosity. In [6] Zajíček conjectured that it is. Indeed, he
 asserted, "It seems to be probable that there exist strongly bilaterally porous
 sets which are not ^-symmetrically porous and that the analogue of Propo-
 sition 2.15 for symmetric porosity does not hold", where Proposition 2.15 in
 [6] reads

 Let c < 1 . Then any a -porous set A C H may be expressed as the
 union of a sequence of sets {An} such that the porosity of each
 { An} at each of its points is at least c.

 A proof of this proposition can be found in [5]. The purpose of the next
 section is to verify that Zajiček's intuition was right on target. We accomplish
 this via two elementary examples, each of which involves a symmetric Cantor
 set. In Section 3 we undertake a somewhat deeper investigation of symmetric
 porosity for symmetric Cantor sets.

 Section 2 - Two Specific Examples

 Theorem 1 There is a strongly bilaterally porous set of real numbers which
 is not asymmetrically porous.
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 Proof: First, we shall define a certain symmetric Cantor set E. The set
 we seek will then be a certain residual subset of E. For readers familar with

 the notation commonly used for symmetric Cantor sets ( e.g. see [6]), the set
 E will be the set C(an), where {an} is the sequence {l/(4n+3)}. Specifically,
 E is defined as the intersection of the closed sets En, where Eq = [0, 1], and
 for n > 1, En is the union of the 2n disjoint closed intervals obtained by
 partitioning each of the 2n_1 disjoint closed intervals whose union is En-'
 into 4n + 3 equal subintervals and deleting the middle open interval. These
 2n_1 open intervals removed from En- 1 to create En are denoted

 In,l i In, 2 j ' ' ' 1 In,2n-Ì i

 where the second subscript orders the intervals from left to right.
 For X € En, let In,jx denote that interval among In,i, In,2i • • • , In,2»-*,

 which is closest to x. Then, if the reflection of In,jx about x has nonempty
 intersection with

 n- 1 2m_1

 U U Im, ji
 m=l j=l

 then

 < 'Iņ,jx' _
 dist (x,In,jx) ~ n'In,j,' n

 From this, it easily follows that E has symmetric porosity 0 at each of its
 points.

 Now, according to a theorem of Denjoy [4] (cf. [5], p. 188), for every
 perfect and nowhere dense set F of real numbers, the set of points in F at
 which F is bilaterally strongly porous is residual in F. Let S be the set of
 points in the set E at which E is bilaterally strongly porous.

 Suppose that S were ^-symmetrically porous, say

 s= 'JS„
 n=l

 where each Sn is symmetrically porous. Since S is residual in E, there
 would exist an open interval I and a natural number no such that I D E is
 nonempty and Sno is dense in I l~l E. However, this leads to a contradiction,
 for if x 6 Sno n/n£, then has positive symmetric porosity at x, while E
 has symmetric porosity 0 at a;, an impossible situation due to the denseness
 of Sno in E f) I-
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 This completes the proof that the set S has the properties we claimed it
 to have.

 Theorem 2 There is a set of real numbers which has symmetric porosity
 at least one-half at each of its points, but which cannot be expressed as a
 countable union of sets each having symmetric porosity greater than four-
 fifths at each of its points.

 Proof: This time, our set E will be the Cantor "middle halves" set;
 i.e., E is the symmetric Cantor set, C(a), where a is the constant sequence
 { §, . . . }. Specifically, E is defined as the intersection of the closed sets En,
 where E0 = [0,1], and for n > 1, En is the union of the 2n disjoint closed
 intervals obtained by deleting from each of the 2n_1 disjoint closed intervals,
 whose union is En- 1, the central open interval having length one-half that of
 the closed interval. These 2n_1 open intervals removed from En- 1 to create
 En are denoted

 In,l 1 1n, 2 » • " i ^n,2n_1 ,

 where the second subscript orders the intervals from left to right.
 For X G En, let Injx denote that interval among /n.i, ^n,2, • • • ,

 which is closest to x. Let L(x) denote the length of the interval obtained by
 intersecting the reflection of In,jx about x with U^ļ"1 Im¿, and let

 /M = J(x>
 dist(x, + 'In,js'

 Then it is an elementary calculus exercise to see that / has an absolute
 minimum value of 1/2, attained at the points x which are endpoints of their
 respective In,jx, and an absolute maximum value of 4/5, which is attained at
 the midpoint of each of the 2n closed intervals whose union is En. Therefore,
 it readily follows that the symmetric porosity of E at each of its points is at
 least 1/2, but is at most 4/5.

 Now, suppose that E could be expressed as

 E = Ū S"
 n= 1

 where each Sn has symmetric porosity exceeding 4/5 at each of its points.
 There would exist an open interval / and a natural number no such that
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 I n E is nonempty and 5„0 is dense in I fi E. As in the previous example,
 this is an untenable situation because E has symmetric porosity at most 4/5
 at each of its points.

 Section 3 - Symmetric Cantor Set Results

 Here, we undertake a more in depth study of the symmetric porosity
 characteristics of symmetric Cantor sets, in general. We begin by establishing
 some notation. Let E denote the set of all finite sequences of O's and l's. If
 cr G S we denote the length of a by |<r| and will write a in expanded form
 as <t(1)<t(2)<t(3) . . . <r(n). If 0 < an < 1 for all n 6 N, then {an} determines
 a symmetric Cantor set, C(an), in [0, 1]. We identify certain intervals which
 arise in the construction of this Cantor set using the subscripts from E in
 a natural way, i.e. J® = (| - ļļS | + Jo and J' are the right and left
 hand components of the complement of 1$ respectively; Jo and Ii are the
 open intervals of length 0*2(1 - ori )/2 centered in Jq and J' respectively, and
 so on. The Cantor set is then

 CM = ñ U J'
 n=l |<r|=n

 and the collection of the Ic's forms the set of contiguous intervals to this
 Cantor set. Note that

 W = «»d M =
 »1=1 ¿

 In the proof of Theorem 2 we noted that the symmetric porosity of C(l/2)
 is bounded above by 4/5 at each of its points. This is a striking difference
 between porosity and symmetric porosity, because, as we noted earlier, any
 perfect nowhere dense set contains a residual subset at each point of which
 the set has porosity one. Our first theorem in this section shows that this
 behavior is not peculiar to C( 1/2).

 Theorem 3 Let {c*n} be a sequence of numbers such that 0 < an < 1 and
 let a = lim sup an. The symmetric porosity ofC(an) at each of its points is
 bounded above by
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 Proof. Let a 6 E and suppose |<r| = n. For each x € R, lying to the left
 of /<,, we let s(íc, a) = sup{l - 6 : (x + ôh, x + h) Ç I„ and (x - h,x - 6h) Ç
 IT for some r such that |r| < |<r|}.

 If p is the midpoint of J0q, then

 / '

 lP' ì -

 If x < p, then

 / ' <

 ' ~~ dis t(x,Ia) + 'I„ I - dist(p, I,,) + 'IC' 3an+i + 1'

 If x > p, then

 / x < 1^1 - 2(x - P) < 'I*'-2(x-p) 4an+1
 ~ dist(z, /<,) + 17*1 ~ dist(p, Ic) - (s - p) + 17^1 ~ 3an+i + 1 '

 Defining a(x,<r) analogously for x to the right of I„, we obtain in a sym-
 metric fashion that

 *(*>*) ^ <tan+l oQ4Qn+! + i 1 • <tan+l + i 1

 Since this inequality holds for each a € S and a = lim sup an, it readily
 follows that the symmetric porosity of C(an) at each of its points is at most

 4a

 3or+l *

 This theorem has the following result as an immediate consequence.

 Corollary 1 // lim^oo an = 0, then C(an ) has symmetric porosity zero at
 each of its points.

 Note that this corollary permits the construction of many examples ex-
 hibiting the phenomena illustrated by Theorem 1 in the previous section;
 that is, if lima„ = 0, then C(an) will contain a set S , which is bilaterally
 strongly porous, but is not a- symmetrically porous.

 If we next consider the case of a symmetric Cantor set determined by
 a constant sequence, then we can obtain an upper bound on the symmetric
 porosity of the set at each of its points, which is smaller than that guaranteed
 by Theorem 3.
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 Theorem 4 If 0<a = an<l for all n, then the symmetric porosity of
 C(a) at each of its points is bounded above by l+^_a2 •

 Proof. Let <r € E. As in the proof of Theorem 3, for each x € IR, lying
 to the left of Ic, we let s(x,a) = sup{l - S : (x + Sh,x + h) Ç and (x -
 h, X - 6h ) Ç Ir for some r such that |r| < |<r|}.

 If it is the right endpoint of oo, then

 . < '¡A
 dist(l£, + 'Ia' 'Ia o| + I J rOl I + 'h'

 a|Jg|

 _

 a (^) 1*^1 + (^) 'J<r' + a'J*'
 4a

 1 + 4 a - a2

 If x < u, then

 / x < VA < 'h' _ 4 a
 - dist(x, /<,) + 'I„ I ~~ dist(u, I„) + 'IC I 1 + 4a - a2 '

 If v is the left endpoint of Jaoi, then

 < N-M _ 'h'-'U
 SKV,a) < - dist(w,/„) + |J„| _ |J.oi| + |/,|

 a|jg| - aļJgoļ <»'->A - <* (rr) 'M

 I¥]W+^W (î^)2|J„| + a|J„|
 2a 4a 4a

 1 + a 1 + 4a - a2 + (a - l)2 < 1 + 4a - a2

 If x > v, then

 / ' < 'Iq' ~ M ~ 2(x - t?) I I<t' - |/go| - 2(x - v )
 - dist(x, I„) + 'Ia' ~ dist(u, I„) - (x - u) + 'Ia I

 4a

 1 + 4a - a2
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 Consequently, for any x G IR fi C(a), lying to the left of I„ ,we have

 t ' ^ < 4a
 six, t a) ' < ^

 1 + 4a - a2

 Defining s(x, a) analogously for x G IR to the right of /<,, we obtain in a
 symmetric fashion that

 í ' s < 4a
 S[X,<7) í v ' ' ; - < s -

 S[X,<7) v ' ; - - 1

 Since this inequality holds for each <r G E, it readily follows that the sym-
 metric porosity of C{a) at each of its points is at most x+^_ai •

 We next turn our attention to computing lower bounds on the symmetric
 porosity of symmetric Cantor sets. In stating and proving these results we
 have found the following notation to be convenient. We consider reformu-
 lating the definition of the symmetric porosity of a set A at the point x in
 the following manner, which is obviously equivalent to the formulation fol-
 lowed in the introduction. For each positive number h we let the symmetric
 porosity ratio of A at x determined by h be

 spr(>l, x, h) = sup{l - 6 : (x - k,x - 6h) U (x + Sh, x + h) Ç Ac}.

 Then the symmetric porosity of A at x is

 sp(i4,ar) = limsupsp(j4, x,h).
 /i-0+

 If the set A is understood, then we simply write spr(x, h) and sp(x).
 The next result shows that if limsup(an) = 1, then the obvious upper

 bound of 1 for the symmetric porosity of C(an) at each of its points is also
 the lower bound.

 Theorem 5 If limsupn_>00(an) = 1, then C(a„) is strongly symmetrically
 porous.

 Proof: Suppose {anfc } - ► 1. Let c > 0 and a be such that |<r| = n* - 1

 where < e. Note that iJ^ol = ł2~^* 'h' < e'Ia |. Let IT (|r| < |er|) be
 contiguous to Ja. For notational convenience we assume IT is left of Ja. We
 consider two cases depending on the relative lengths of /T and Ja o
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 1. Case 'IT' > -^'Jao'- Then for X G JaOt

 spr spr(x, (x h n) ) > > L ~
 spr spr(x, (x h n) ) > > L+M

 where L = inf{|/T|, 1/^1} and h is measured from x to the most distant
 endpoint of the shorter of Ir and Ia. As | J^ol < min{-y/ē|/T|, e ļ | } it
 follows that

 spr(l'A) rlr M - í ^ - 2^7'l ' spr(l'A) rlr M - - mmlTMlVW í - ' I

 . fl - 2y/l 1 - 2ei
 = mm <

 '

 2. Caseļ/T| < -fyJeol- In this case we consider the interval Ja> to be the
 J interval which abuts IT on the left and is of the same stage as Ia (ie.
 |cr| = M). If x G J o o we use the intervals Ia and /<,< to compute a
 symmetric porosity ratio. Let h be measured to the right endpoint of
 Ia. Then,

 --/-I, |/.| - 2|7„o| - 'IA
 sMx'h) --/-I, -

 ^ 'h' - 2| J„o' - 7?l«^o| ^ 'I<r' - (2 + ^)e|/„|
 - |/.i + c|/,I - 'o+^'

 1-2 e -y/ł
 1 + e

 Thus, in either case we are led to the conclusion that sp(x) = 1 and the
 theorem is proved.

 Having seen that a symmetric Cantor set need not be strongly symmetri-
 cally porous at a residual subset of points, we can ask just how symmetrically
 porous such a set must be at a residual subset of points. The following tech-
 nical theorem not only adds insight into this behavior, but also permits the
 construction of examples that help pin down the possibilities.
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 Theorem 6 Let {anjfe} be a subsequence of {an} that converges to a, and
 assume that {anfc+i} converges as well, say to ß. Then there exists a residual
 subset E ofC(an) such that

 'p(C(a.),x)>1+3a^(i_a)
 for all X € E.

 Proof: Let a € E, then there is a shortest r of the form r = crOll • • • 1
 such that 'JT I < I /<,1 and 1 + |r| € {anjJ. Let Kt , = [A, B) where A is the
 righthand endpoint of ITi and B = A + If x G Kc choose h = h(x, a)
 and 6 = S(x, o-) so that x - h is the lefthand endpoint of IT and x - 6h is the
 righthand endpoint of IT. Then

 (x - h,x - 6h) U (x + Sh, x + h) C [0, 1] ' C(an).

 Then

 .„r/» " ^ ^ I7'1
 h x - (x - h) B - (x - h)

 'Ir'
 'KC' + 'IT1' + 'JTW' + 'IT'

 i |/ti1 I I N ' Krf i T^rf I 'Jt' I m

 Since 'JT' = rinii(łzrIL) and |/T| = aļTļ+i|JT|, this equals

 + 2anjk+i - 2anjkanļk+1 + 1 - an*+i - «n* + <*nk<Xnk+i + 4anjfe

 =

 H + 1 + 3anjk + anfc+i(l - anJ
 Let

 E = {x £ C(an) : x € K„ for infinitely many a}.

 267



 Then E is a dense Gg and hence is residual. For x € E, there exists a se-
 quence {<rm} such that x = Cl^=1 Kam . Then

 sp(x) x 7 > lim spr(ar, x h(x,<rm)) v ' 7 x 7 m- ► oo x v ' 7

 . 4anfc
 . > lim -ļ

 fe->0° -ļ + 1 + 3 a„fc + an*+i(l - <*nk)

 _ 4a
 1 + 3a + 0(1 - a)'

 completing the proof.

 Corollary 2 If {an} ■/* 0, then there is a residual subset A ofC(an) such
 that C(an) is symmetrically porous at every point of A.

 Corollary 3 With hypotheses as in the theorem, if ß = 0 (respectively,
 ß = 1), then there is a residual subset E ofC(an) such that sp(C(an),a?) >

 (respectively, sp(C(an),x) > for all x € E.

 Before stating the next corollary, we define an equivalence relation on
 the collection of Cantor sets C(an) by considering two such sets, C(an) and
 C(An), to be equivalent if and only if

 lim sup an = lim sup An.
 n- ► oo u- ► oo

 We let Ca denote the equivalence class consisting of those C(an) such that
 lim sup^oo an = a. Then we have the following result.

 Corollary 4 Let a G [0,1]. For each C( An) € Ca there exists a residual
 subset E( An) ofC( An) such that

 Sp(C(A„),x) > 1 + ¿a_a,

 for all x € E(Xn) . Further, is the best (i.e., the largest) such lower
 bound for the equivalence class.
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 Proof: We assume that {anjk} converges to a. Then {anjk+i} is a bounded
 sequence and there is no loss of generality in assuming that it converges as
 well, say to limit ß. Then ß < a and so

 4a 4a

 1 + 3a + ß(l - a) - 1 + 4a - a2 '

 and so 1+4^_aa is a lower bound as stated. That it is the largest such lower
 bound for the equivalence class follows from the fact that the symmetric
 Cantor set C(a) determined by the constant sequence a was shown to have
 symmetric porosity at most 1+4^_oł at each of its points in Theorem 4.

 It is interesting to note that within a given Ca there are sets C (an) where
 the universal upper bound on the symmetric porosity guaranteed by
 Theorem 3 is actually achieved at a residual subset of points of C(an). As
 pointed out in Corollary 3, this can be done by arranging ß = 0. Further,
 note that in the case of a constant sequence {a}, there is a residual subset
 of C(a) at each point of which the symmetric porosity of C(a) is exactly
 i +4a-ai • latter setting, we can actually obtain a positive lower bound
 on the symmetric porosity of C(oc ) at each of its points. Toward this end,
 for 0 < a < 1, define an integer £(a) to be the smallest integer such that

 a /1 - a'^a)
 2 - V 2 J '

 Theorem 7 If 0<a = an<l for all n, then C(a) is symmetrically porous
 with symmetric porosity at least at each of its points.

 Proof: Let a € S be given and define k(a) = <r011...1 where |fc(cr)| - |cr| =

 £(a). As I > ^ it follows that 2|J¿(<r)| ^ l-Trl- Now, let I be any
 interval of length 'I„'. We show that I ' C(a ) contains an interval of length
 I ■/*(?) I . Let r be such that |r| = |fc(<r)| + 1. Then

 i^(¥r=(x)w<^
 If I intersects JT and JT/, where r ^ t' and |r| = |r'| = |fc(cr)| + 1, then
 I contains a contiguous interval from a stage before the | A;(<r) 1ť/l stage and
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 the conclusion is verified. If I intersects at most one such JT then I ' C (a)
 contains an interval of length at least But,

 'I' - 'Jr' _ 'h' - 'Jr'
 2 2

 if /l-a'w /1 -a'|fc(*)l+1"
 ~ 2 [a I 2 ) ' 2 )
 1 /1 -a'|fcWI |7l -aNW-W*)! 1 - a'

 ~ 2a ' 2 ) [l~2~ ) ~ 20"

 This completes the verification that I ' C (a) contains an interval of length
 I /*(„)!. Let x 6 Jao and consider the interval Ix = 2x - Ic. As 'IX' = 'Ia'
 it follows that Ix D (U|r|<|fc(<r)| ^r) contains an interval whose length exceeds
 I -//t(cr) I > That is, there is an h = h(x,a) and a t = t(x, a) such that

 (x + h, X + h + ł) U (x - h - t, X - h) C [0, l]'C(a),

 and,

 '(x + h,x + h + t)' > |/fc(g)|
 |(x,x + /i + ť)| ~ 'J„l' + 'Ic'

 20(^)1^)1-^1
 1 + a

 2 a n-a'^a)
 a+l V 2 J

 The conclusion now follows.

 By Theorems 4 and 7 we can now say more about the type of example
 constructed in Theorem 2. Namely, we can give specific bounds for the
 symmetric porosity at x in a Cantor set determined by constant sequence
 {a}. For example, £(a) can be taken to be 1 if and only if a > | and in this
 case

 2a /1 - a' 4a

 ¡T+T (.-J - á SP(I) á 1 + 4or - a1
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 for all X € C(a). Likewise, £(a) can be taken to be 2 if and only if a > 2 - y/3
 and in this case

 J?L V (LZSLV ) - < spW K > < - a + 1 V 2 ) - spW K > -

 for all X 6 C(a). In the context of Theorem 2, we now have intervals of
 numbers that can play the role of the interval [1/2, 4/5] in that theorem. For

 instance, we can observe that for any a > |, the set C(a) has symmetric
 porosity at least °f its points, yet cannot be written as a
 countable union of sets each of which has symmetric porosity greater than

 i+4a~Q2 each of its points.
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