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 Extendable Functions and Almost Continuous
 Functions with a Perfect Road

 The main results obtained in this paper are (1) if g : I2 - ► I is a connectivity
 function and z is an interior point of the range of g not equal to 0 or 1, then
 g~l(z ) separates J2; and (2) if /:/->/ is an extendable function, then / has
 the strong Cantor intermediate value property (SCIVP). Examples are given that
 show that (3) the first main result is false for Darboux functions and for almost
 continuous functions and (4) there exists an almost continuous function /:/-►/
 with a perfect road at each point that does not have the SCIVP. Hence / is not
 extendable. In this paper, I = [0, 1] and Ā is the closure of the set A.

 Gibson and Roush, in [3], defined the Cantor intermediate valve property
 (CIVP) and conjectured that if / : I - ► I is an extendable function, then /
 has the CIVP. In this paper, we define the strong Cantor intermediate valve prop-
 erty (SCIVP) and then prove the conjecture by showing that if /:/-►/ is an
 extendable function, then / has the SCIVP (The SCIVP implies the CIVP).

 Stallings defined almost continuous functions in [14] and proved that if f : I -*
 I is an extendable function, then / is almost continuous. In [4], Gibson and Roush
 (1) defined the weak Cantor intermediate valve property (WCIVP), (2) constructed
 an almost continuous function /:/-►/ that does not have the WCIVP, and (3)
 proved that if / : I - ► I is extendable, then / has the WCIVP (The CIVP implies
 the WCIVP). Hence almost continuity does not imply extendability.

 In [5], Gibson and Roush gave an example of an almost continuous function
 /:/-►/ that does not have a perfect road and proved that if / is an extendable
 function, then / has a perfect road. They asked in [5] whether there exists an
 almost continuous function /:/->/ that has a perfect road and is not an
 extendable function. In this paper, we give an affirmative answer to this question
 by constructing an almost continuous function /:/-►/ that has a perfect road
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 but does not have the CIVP. The example is dense in I2 and is not Borei measurable
 because it is not Marczewski measurable [12].

 We now give the definition of the properties and functions needed in this paper.

 Let X and Y be topological spaces and let f : X Y. Then:

 D.: / is a Darboux function if f(C) is connected whenever C is connected in X.

 Conn.: / is connectivity function if the graph of / restricted to C, denoted f'C,
 is connected in X x Y whenever C is connected in X.

 A.C.: / is an almost continuous function if whenever U C X x Y is an open set
 containing the graph of /, then U contains the graph of a continuous function
 g : X -> Y.

 Ext.: / is an extendable function if there exists a connectivity function g : Xxi - ►

 Y such that f(x) = g(x, 0) for any x G X.

 P.C.: / is peripherally continuous if for each x G X and for each pair of open
 sets U and V such that x G U and f(x) G V , there exists an open set W
 containing x such that W C U and f(bd(W)) C V where bd = boundary.

 Let / : [a, 6] - > R be a function. Then:

 P.R.: / has a perfect road if for each x in [a, 6], there exists a perfect set P having
 x as a bilateral limit point such that f'P is continuous at x. If x is an
 endpoint, then the bilateral condition is replaced with a unilateral condition.

 CIVP.: / has the CIVP if for p and q in [a, b] such that p ^ q and /(p) ^ f(q)
 and for any Cantor set K between f(p) and /(<?), there exists a Cantor set
 C between p and q such that f(C) C K.

 WCIVP.: / has the WCIVP if for p and q in [a, 6] such that p ^ q and f(p) ^ /(?),
 there exists a Cantor set C between p and q such that f(C) is between f(p)
 and f(q).

 SCIVP.: / has the SCIVP if for p and q in [a, b] such that p ^ q and f(p) ^ f(q)
 and for any Cantor set K between f(p) and f(q), there exists a Cantor set
 C between p and q such that /(C) C K and f'C is continuous.

 249



 Let / : /n - ► /, n > 1. If n > 1 and / is a connectivity function, then / is
 almost continuous [14]. However, if n = 1 and / is almost continuous, then / is a
 connectivity function. For functions / : In - > I, n > 1, the set W in the definition
 of peripherally continuous functions can be selected so that W and bd(W) are
 connected [14]. Also for functions /:/"-»/, n > 1, Conn. = P.C. [8], [17].

 If / is a real- valued function defined on an interval [a, 6], then / is a connectiv-
 ity function if and only if the entire graph of / is connected. Now / is a Darboux
 function if and only if / has the intermediate value property. Also if / is a con-
 nectivity function, then f is a, Darboux function; and if / is a Darboux function,
 then / is a peripherally continuous function. However, for real- valued functions
 defined on an interval that are of Baire Class 1, Ext. = A.C. = Conn. = D. =
 P.C. = P.R. [1].

 Blocking set: A blocking set H of a function / : X - ► Y is a closed subset
 of X X Y that contains no point of / but intersects every continuous function
 h : X Y.

 If /:/-►/ is not almost continuous, then there exists a minimal blocking set
 Hoff and the projection ki(H) of H into the x-axis is a non- degenerate connected
 set [10].

 We now give the results stated in the introduction. For convenience, we make
 the following definition.

 Leaf: If h : X - ► Y is a function and y 6 Y, then a component of h~1(y) is
 called a leaf. If B is a subset of Y , then a leaf L of h~1(B) means that there exists
 a y G B such that L is a leaf of h~1(y).

 Theorem 1. Let g : I2 - » I be a connectivity function. Then for each e > 0,
 the restriction of g to the union A of all leaves of g~x(I) which have diameter
 greater than or equal to e is continuous.

 Proof. Let {La} be the collection of all leaves of <7_1(/) which have diameter
 greater than or equal to e. Then A = 'JaLa.

 Select any x G A and let xn be a sequence in A which converges to a;. If xn
 converges to x along a leaf, then x is in that leaf and g(xn) = g(x) for each n [14].

 Without loss of generality, we may assume that each xn is in a different leaf Ln,
 and suppose that g(xn) does not converge to g(x). We may also assume, without
 loss of generality, that g(x) is not a cluster point of g(xn).

 Let TV be a neighborhood of x with diameter < ^ e such that the complement,
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 Ñ, is connected. Then
 OO

 B = ({jLn)(JÑU{x}
 71=1

 is connected, but (x,jr(x)) is an isolated point of the graph of g'B. This is a
 contradiction. Hence g(xn) converges to g(x) and g'A is continuous at x. Conse-
 quently, g'A is continuous.

 Theorem 2. If g : I2 - ► I is a connectivity function and A is the same as in
 theorem 1, then g'Ā is continuous.

 Proof: Select any x E Ā and let xn G Ā be a sequence such that xn converges
 to X.

 Suppose each xn G A. If xn converges to x along a leaf, then x G A and
 g(xn) = g(x) for each n. Without loss of generality, we may assume that each
 xn is in a different leaf Ln. Suppose g(xn) does not converge to g(x). We may
 assume that g(x) is not a cluster point of g(xn). Let N be a neighborhood of x
 with diameter < ^ e such that N is connected. Then

 OO

 B = (U£n)U7VU{*}
 71=1

 is connected, but ( x,g(x )) is an isolated point of the graph of g'B. This is a
 contradiction. So g(xn) converges to g(x).

 Now, without loss of generality, we may assume that each xn € Ā - A. We
 show that for any 8 > 0 there exists a positive integer M such that if n > M, then
 |<7(xn) - <7(x)| < 6. Let 8 > 0 be given. Construct a sequence yn G A such that
 yn converges to x and |p(x„) - g(yn) ' < To do this, select yn G A such that
 distance ( xn,yn ) < 1/n. From above, g(yn) converges to g(x). Thus there exists
 a positive integer M such that if n > M, then 'g(yn) - ^(®)| < So if n > M,
 then |^(x„) - g(x) ' < 'g(xn ) - g(yn) | + 'g{yn) - ^(®)| < '8 + '8 = 8. So g(xn)
 converges to g(x) and g'A is continuous at x. Hence g'A is continuous.

 Theorem 3. If g : I2 - ► I is a connectivity function and A is the same as in
 Theorem 1, then Ā = A.

 Proof. Since A = (Jo LQ, we need to show that if xn is in Ln for a sequence
 {Ln} in {Lq} and xn converges to x, then x is in a leaf with diameter > e.

 Since the space of continua in I2 is compact, we may choose a subsequence
 {Ln(m)} of {Ln} which converges. The limit is a continuum L and contains x.
 Also the diameter of L is > e.
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 Let a G L and let am G ¿n(m) be a sequence such that am converges to a.
 Then g(am) = g(xn(m)). Since g(xn(m)) converges to g(x) and g(am) converges to
 g(a), g(x) = g(a). Thus L is contained in a leaf with diameter > e.

 Before continuing, we make the following definitions.

 Quasi-component: If A is any set and p is any point of A, then by a
 quasi-component of A containing p is meant the set consisting of p together with
 all points X of A such that A is not separated between p and x; i.e., there exists
 no separation A = Ap U Ax where Āp fi Ax = Ap n Āx = 0, p G Ap, and x E Ax.
 For a reference see [16].

 The quasi-components of any set A are disjoint and closed in A. A quasi-
 component of A may not be connected, but each component of A is contained in a
 single quasi-component. In general, the quasi-components of a set may be different
 from the components of this set.

 Semi-closed: K is a semi-closed subset of a metric space X if and only if each
 component of K is closed in X and any convergent sequence of components of K
 whose limit set intersects X - K converges to a single point.

 Theorem 4. If g : I2 - ► I is a connectivity function and z is an interior point
 of the range of g not equal to 0 or 1, then any point of H = <7-1([0, z )) and any
 point of K = <7-1((z, 1]) lie in different quasi-components of 1 2 - g~1(z).

 Proof. Part of the proof of this theorem is contained in the proof of theorem
 2.1 of Hunt [9]. For completeness we give that part here.

 It follows from theorem 3.1 of Hagan [7] that g~1(z) is a semi-closed subset of
 P.

 From 5.2 on page 132 of Whyburn [16], we have that the components of the
 semi-closed set g~l{z) and the single points of I2 - g~l(z) form an upper semi-
 continuous decomposition S of I2.

 From the theorem on page 127 of [16], the natural projection x : I2 -* ir (I2) = S
 is a monotone function onto the decomposition space S . Since ir is continuous, by
 2.21 on page 138 of [16], 7r(/2) = S is a unicoherent Peano continuum. By 2.2 on
 page 138 of [16], Tr(g~1(z)) is totally disconnected in ir (I2). By lemma 1 of Cornette
 and Girolo [2], the quasi-components of ir(I2 - g~1(z)) = ir(I2) - n(g~1(z j) are
 connected. From 5.3 on page 132 of [16],

 x| (I2 - g~'z)) : (I2 - g~'z)) -, *(I2 - g~'z))

 is a homeomorphism. So the quasi-components of 1 2 - g~l{z) are connected.
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 Let a € H and 6 € K. Then g(a ) € [0, z) and g(b) G (z, 1]. If a and b were in
 the same quasi-component Q of I2 - g -1(z) = H U K, then Q is connected and
 z € g(Q)- This is a contradiction and the theorem is proved.

 Theorem 5. If g : I2 - ► I is a connectivity function and z is an interior point
 of the range of g not equal to 0 or 1, then g~x(z) separates I2.

 The conclusion of this theorem is not true for Darboux functions and for almost

 continuous functions. Consider the following example.

 Example 1: Define h : [-1, 1] x [0, 1] - ► [-1, 1] by

 h{x,y ) = sin(l/y) if y > 0, and

 /i(x,0) = x otherwise

 Now h is a Darboux function and an almost continuous function but not a con-

 nectivity function.
 Let A be the set consisting of the line segment joining the points (0, 0, 0) and

 (0,1,0), the line segments that are the intersection of the graph of h(x,y) =
 sin(l /y) and the x¡/-plane, and the point (1,0,0). This set A is connected, but the
 graph of the h'A is not connected.

 Now 0 separates 1 and -1. But /i-1(0) does not separate each point of
 h~1( 1) from each point of 1 ( - 1), since (1,0) and (-1,0) are in the same quasi-
 component of /i-1(0).

 Theorem 6. If g : I2 - ► I is an extension of f : I - ► I and g is a connectivity
 function, then f has the SCIVP.

 Proof. Let a, 6 E I such that a < b and f(a) = <7(0, 0) ^ g(b, 0) = f{b). Let
 K be a Cantor set between g{a, 0) and <7(6,0). Select any z' 6 K such that z' is
 not an endpoint of an interval removed. Then g~l{z' ) separates (a,0) from (6,0)
 in I2. So there exists a leaf Lļ of g~1{zi) such that L' separates (a,0) from (6,0)
 in I2 according to theorem 4.12 on page 51 of Wilder [15]. Let (®i,0) be a point
 of Lļ D (I x {0}) such that a < x' < 6.

 Select Z2 € K such that z2 is not an endpoint of an interval removed and z 2 is
 between z' and </(6,0). Then <¡r-1(z2) separates (ii,0) from (6,0) in I2. So there
 exists a leaf Lļ of g~1(zļ) such that L2 separates (a;i,0) from (6,0). Let (x2,0) be
 a point of Lļ fi (I x {0}) such that X' < X2 < 6.

 Let K* = K D [21,22] or K* = K C I [zļ,zi]. Then K* is a Cantor set such that
 K* C K.
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 Select any e > 0 such that e < min{diam(Z-i),diairi(L2)) 1}- Then the union
 F of all leaves of g-1 (K*) with diameter > e is closed and g restricted to F is
 continuous. Now there exist c-many points of g~l(K*) in Ix {0} between (xi,0)
 and (x2,0). So F D ([xi,x2] x {0}) is closed and contains c-many points. Thus it
 contains a Cantor set C x {0}.

 Since g'F is continuous, g'(C x {0}) is continuous and g(C x {0}) C K. Since
 C C [xi,x2] C /, g'(C x {0}) = f'C. Therefore f(C) C K and f'C is continuous.

 Example 2: There exists a connectivity function g : I2 - ► I such that for
 some xo € I the restriction h = g'(I x {x0}) is a connectivity function onto I
 whose graph is dense in I x {xo} x I.

 From the example in [6] of a connectivity function g : I2 - ► 7, there exists a
 dense G¿-subset G of I2 on which the values of g can be chosen to be either 0 or
 1. From [13], there exists an xo G / such that Go = G fi (7 x {xo}) is a dense
 (j^-subset of 7 X {xo}.

 Let Z be a Bernstein subset of 7; see theorem 1, page 514, of [11]. Then each of
 A = Go H (Z x {xo}) and B = Go fl ((/ x {xo}) - (Zx {xo})) is dense in I x {x0}.
 Redefine g in the example in [6] so that g(A) = 0 and g(B) = 1 keeping g fixed
 otherwise. Now h = g'(I x {x0}) is a connectivity function dense in I x {xo} x I
 and onto I. To prove these claims, consider the following.

 Let (a, 6) x {xo} x (r, 5) be an open square in I x {xo} x I. Then (a, b) x {xo}
 is an open interval in I x {xo}. So Go D ((a, b) x {xo}) is a dense G^-subset of
 (a, 6) X {xo}, and hence it contains a Cantor set, page 53 of [16]. Thus there exist
 points xi,x2 G ( a,b ) such that (xi,xo) 6 A and (x2,xo) € B. Hence A and B are
 dense in Ix {x0}.

 Now <7(xi,xo) = 0 and g(x 2,xo) = 1. Select any y G (r, s). By the intermediate
 value property, there exists an x between xi and x2 such that g(x, x0) = y. Thus
 (x,x0,<7(x,x0)) € (a, b) x {x0} x (r,s) and h = g'(I x {x0}) is dense in Ix {x0} x 7.
 Clearly h is onto I.

 Example 3: There is an almost continuous function f : I -* I which has a
 perfect road and does not have the CIVP. Hence / is not extendable.

 There exists a connectivity function g : I2 - * I such that for some p € I the
 restriction h = g'(I x {p}) is dense in I x {p} x I and onto I. If we let I be
 embedded in I2 as I x {p}, we can think of h as being an extendable function from
 I - ► I. So h is almost continuous and has a perfect road. Also h has the SCIVP.

 Let a, b G I with h(a) ^ h(b), and let K be a Cantor set between h(a) and
 h(b). Since h has the SCIVP, the set /i-1(/ť) contains a Cantor set. By transfinite
 induction there exists a set B C h~l(K) which contains no perfect set and meets
 every perfect subset of h~l(K) in c-many points and each point of B is a bilaterial

 254



 limit point of B , see page 514 of [11].
 A function / can be defined on B so that / meets every perfect set F in

 I x {p} X I for which 7Tļ(F) D B contains c-many points, [4]. Let / = h on
 (Jx{p})-B.

 We now show that / is almost continuous. Assume / is not. Then there exists
 a minimal blocking set H contained in I x {p} x I such that the graph of / contains
 no point of H and 7Ti (H) is connected [10]. Therefore 7Ti (H) fl B ^ 0. Otherwise,
 if 7Ti (H) fl B = 0, then the graph of h contains no point of H, a contradiction to
 h being almost continuous. Then tti (H) fi B contains c-many points because each
 point of B is a bilateral limit point of B and 7Ti (H) is connected. By construction,
 the graph of / meets H , a contradiction.

 Let x € I X {p}. We now construct a perfect road at x for /. Choose closed
 intervals In in / - K such that

 diameter(/n U {f(x)}) < 1/n.

 For each n, select different points yn, y'n G In- Since h is Darboux and its graph is
 dense in I x {p} x /, the graph of h meets the intervals

 [x - 1/n, x] x {j/n} in some point (xn, yn) = ( xn , h(xn )),

 [x, x + 1/n] X {yn} in some point (zn, yn) = (zn, h(zn )),

 [x - 1/n, i] x {y;} in some point (x'n,y'n) = (x'n,h(x'n)), and

 [x,x + 1/n] x { y'n } in some point (z'n,y'n) = ( z'n,h(z'n )).

 Since B C /i-1(/ť), xn, zn , x'n , z'n are not in B. Thus

 Vn - h(Xrì) =

 Vn = h(zn) = f(zn),

 y'n = MO = /(*'»)» and

 y'n = h(z'n) = /«).

 As n - » oo, xn -+ X, i;n x, x'n x, z'n -> x, /(xn) ^ /(x), f(zn) -»•
 /(®), /«) - /(*), and /(z'J -, f(x).

 Since the extendable function h has the WCIVP, there exist two sequences of
 Cantor sets C', C2, . . . and

 C[,C'2,... in (Ix{p})-B

 such that Cn is between xn and x^, C'n is between zn and z'n, f(Cn) - h(Cn) C
 and f(C'n) = h(C'n ) C In ■ It follows that the set
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 P = ( ļj cn) U {a;} U ( (J C'n) is a perfect set and
 n=l n= 1

 f'P is continuous at x.

 Lastly, we show that / does not have the CIVP. Assume there exists a Cantor
 set C between a and b such that f(C) C K. Let y € I - K . Since C x {y} is a
 perfect set and C fl B contains c-many points, / must meet C x {y}. So there is
 some ieC such that f(t) = y which implies that f(C) (£. K, a contradiction.

 Question. Does there exist an almost continuous function f : I -* I that has
 the SCIVP but is not extendable?
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