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 Chebyshev Inequality in Function Spaces 1
 We study the classical Chebyshev inequality

 ra ra ra

 / x(s)ds / y(s)ds < a x(s)y(s)ds Jo Jo Jo

 and prove new variants, generalizations and abstractions. Among these are
 Chebyshev's inequality for strongly increasing functions, positive convex and
 concave functions, and generalizations of the Ky Fan inequality. Our abstrac-
 tions involve Chebyshev's inequality in Banach function spaces and symmet-
 ric spaces. These considerations lead to generalizations of inequalities of
 Favard and Barnes. The constants that arise are studied and shown to be

 sharp in general.

 1 Introduction.

 Let X and y be positive decreasing functions on I = [0, a], a > 0, then
 Chebyshev's inequality asserts that the product of the integral averages of x
 and y is not larger then the integral average of xy. That is,

 ra ra ra

 I x(s)ds / y(s)ds < a I x(s)y(s)ds.
 Jo Jo Jo

 Since its first proof in 1882 the inequality has been studied extensively and
 numerous variants, generalizations and extensions appeared in the litera-
 ture. For example different proofs were given - we shall give five in the next
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 section, - the monotonicity conditions of the functions were replaced by
 concavity and convexity and the constant arising from these generalizations
 has, in many cases, been shown to be best possible. Other generalizations
 result by introducing weight functions or replace Lebesgue measure by gen-
 eral measures. Then the question is to find all functions and measures for
 which Chebyshev's inequality holds ([14]).

 In this paper we give a number of new variants, generalizations and ab-
 stractions of Chebyshev's inequality.

 The next section contains several proofs of the inequality, remarks and
 observations, and a conditional characterization of functions for which the in-
 equality holds. A proof of Chebyshev's inequality (with different constant) is
 also given for strongly increasing functions (THEOREM 2.8) and the exten-
 sion to products of functions and convex functions is deduced (COR. 2.10).

 In terms of Lebesgue spaces, Chebyshev's inequality is

 (1-1) 1 1"^ I l¿i(0,a)| |î/| |Li(0,o) < alMU^a).

 This suggests that the inequality has an analogue in general Banach function
 spaces. That is, the Xi -norm in (1.1) can be replaced by Banach function
 norms or the norm of symmetric spaces. Of course the endpoint a of the
 interval I = [0, a] in (1.1) will then have a different form. These abstractions
 and generalizations are contained in Section 3. In order to keep the paper
 self-contained various definitions and results (some with proofs) needed in the
 sequel are given here also. THEOREM 3.10 contains Chebyshev's inequality
 in Banach function spaces with constant 2. It is shown that in general the
 constant is sharp, although for symmetric spaces with Fatou property we
 show that the constant is 1 (THEOREM 3.13).

 These abstractions - via a lemma - lead to generalizations of inequali-
 ties of Favard and Barnes and in addition provide new proofs of Gruss' form
 of Chebyshev's inequality for concave functions. These results with some
 abstract formulations of the inequality for concave functions in symmetric
 spaces are contained in Section 4.

 The inequality of Ky Fan has the form

 (1.2) f [ K(s,t)x(s)y(t)dsdt < B f x(s)y(s)ds, Jo Jo Jo

 where K(s,t ) is integrable over I in s and in t with bound B and x,y are
 decreasing functions. In Section 5 we weaken the conditions imposed on
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 K and replace x(s)y(t) by /(s,ť), where / is decreasing in each variable
 separately. The inequality corresponding to (1.2) has then constant 2 B which
 is shown to be sharp (THEOREM b.ï). Hovíevet, vje aXso ptove XXvai fot a,
 large class of functions f, namely the positive set functions the corresponding
 inequality has constant B. We conclude with some brief comments on P.L.
 Chebyshev's professional life.

 Throughout we shall write increasing (function) instead of non-decreasing
 and decreasing shall mean non-increasing. Similarly, positive ( negative ) is to
 be interpreted as non-negative ( non-positive ). The interval I will be the
 closed interval I = [0, a]. In a few instances, however, we write [0, a) and
 (0,a). We also denote by Iß the characteristic function of the set E.

 2 Chebyshev's inequality, proofs and classi-
 cal generalizations.

 We give a number of proofs of Chebyshev's inequality and a new proof of a
 conditional characterization of those functions for which the inequality holds.
 In addition we prove the inequality for strongly increasing functions.

 Theorem 2.1 (Chebyshev). Let x and y be positive decreasing functions on
 I = [0, a] then

 ra ra ra

 (2.1) / x(s)ds I y(s)ds <a x(s)y(s)ds.
 J o ** o «/o

 First proof. Since the hypotheses imply

 (2.2) [x(s) - x(ť)][y(s) - y(ť)] > 0, s, tel

 we obtain

 0 < í i [x(s) - x(t)][y(s) - y(t)]dtds
 JO Jo

 = f f [a:(s)y(s) - ®(s)y(ť) - x(t)y(s) + x(t)y(t)]dtds JO JO

 = f [ax(s)y(s) - x(s) f y(t)dt - y(s) f x{t)dt + f x(t)y(t)dt'ds
 JO Jo Jo Jo
 ra ra ra

 = 2[a / x(s)y(s)ds - / x(s)ds I y(s)ds].
 Jo Jo Jo
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 Thus (2.1) follows.

 Second proof (when either x or y is continuous). Let x be continuous.
 Then by the Mean Value Theorem there is a ce(0, a) such that

 f x(s)ds = x(c)a or f [x(s) - x(c)]ds = 0. Jo Jo

 Therefore

 / [x(s) - x(c)]î/(s)ds = f [x(s) - x(c)][y(s) - î/(c)]ds
 Jo Jo

 and so

 J ' o ra x(s)ds Jo I ra y(s)ds = a Jo I ra ' x(s)ds I y(s)ds = a I x(c)y(s)ds
 o Jo Jo

 = a f x(s)y(s)ds -aí [x(s) - x(c)][y($) - y(c)]ds.
 Jo Jo

 But by assumption [x(s) - x(c)][y(s) - y(c)] > 0 and so (2.1) follows.

 Third proof (Sapogov [23]). For tel, define

 1 ta
 F(t) = x(t)

 a Jo

 Clearly F is decreasing on /, F( 0) > 0 and F (a) < 0. Therefore, there exists
 a eel such that F(t) > 0 for ťe[0, c) and F(t) < 0 for te(c,a]. Hence

 / [x(ť) - - / x(s)ds]y(t)dt = / F(t)y(t)dt
 Jo a, Jo Jo

 = jí F(t)y(t)dt + J F(t)y(t)dt

 > y(c) jí F(t)dt + y(c)J F(t)dt

 = y(c ) f F(t)dt
 Jo

 = y(c) í [x(ť) - - / x(s)ds]dt = 0 JO CL J 0

 and (2.1) follows.

 Fourth proof (Stein [28]). Since x is decreasing, x can be approximated
 by a sum of a finite number of step functions that have a single jump. It
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 suffices then to establish (2.1) in the special case when x(s) = 1 for 0 < s < c
 and x(s) = 0 if c < s < a. But y is decreasing, so

 ra ra ra re

 / x(s)ds / y(s)ds = c y(s)ds <c y(s)ds + cy(c)(a - c)
 J o J o J o J o

 < c i y(s)ds + (a- c) f y(s)ds
 J o J 0

 = a f y{s)ds = a f x(s)y(s)ds */o J 0

 and again the result follows ( Note that we have shown here that integral aver-
 ages of decreasing functions are decreasing as the upper terminal increases ).

 Fifth proof. For tel define / by

 f(t ) = t f x(s)y(s)ds - f x(s)ds f y(s)ds. J o J 0 •/ 0

 Clearly / is continuous and differentiable a.e. and

 f'(t) = f x(s)y(s)ds + tx(t)y(t) - x(t) f y(s)ds - y(t) f x(s)ds JO Jo Jo

 = Jo [ M5) - zWM5) - î/(*)]ds > 0 Jo

 by (2.2). Hence / is increasing on I and so f(a) > /(0) = 0. But that is
 again (2.1).

 Remark 2.2 i) The first proof is due to K.A. Andreiev (1883) and A.N.
 Korkin (1883). However, many authors ascribe the proof to F. Franklin
 (1885). The second proof is due to T. J. Stieltjes (1891), N. Ja. Sonin (1898)
 and H. Brunn (1903). It was also published by 0. Dunkel (1924). For more
 about the history and priority of Chebyshev's inequality we refer to [21].

 ii) If X = y on I, then (2.1) holds (without restrictions) by Holder's
 inequality.

 iii) If w is a positive integrable function on I and v : I - * I is measurable
 (c.f. [28]) then
 ra ra ra ra

 I x(v(s))w(s)ds I y(v(s))w(s)ds < ļ w(s)ds I x(v(s))y(v(s))w(s)ds Jo Jo Jo Jo
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 whenever x and y are positive and decreasing on I. Indeed in terms of
 measures /1, the inequality

 (2.3) J x(s)d/i(s) y(s)dfi(s ) < J dfi(s) x(s)y(s)dfji(s )
 holds for all x and y satisfying (2.2) if and only if n is a positive measure.
 Moreover (2.3) holds for all positive measures if and only if x and y satisfy
 (2.2) ([14]).

 iv) It is obvious from the proof that Chebyshev's inequality holds when-
 ever x and y satisfy (2.2). We say that positive functions x and y are similarly
 ordered (S.O.) on I if (2.2) is satisfied.

 Corollary 2.3 If x and y are S.O. on I then (2.1) holds.

 Of course if x and y are both increasing or both decreasing then they are
 S.O. If x is positive on I and c + inf{x(s) : sel} > 0 then the pairs x, c + x
 and x 2, x are S.O. Also since

 [x(s) + y(s) -x(t) - y(t)][y(s) - y(t)) = [x(s) - x(t)][y(s)-y(t)] + [y(s) - y(t)]2

 and

 [x(s)y(s)-x(ť)y(ť)][y(s)-í/(ť)] = x(5)[í/(s)-x(í)]2+í/(ť)[x(5)-í/(ť)][i/(5)-y(ť)]

 it follows that x + y, y and xy, y are S.O. whenever x,y are.
 One might conjecture that S.O. on I is necessary and sufficient for Cheby-

 shev's inequality. Note however, that the second proof of THEOREM 2.1
 required only that the product [x(s) - x(c)][y(s) - y(c)] > 0, where x is
 continuous in I and c is given by

 f x(s)ds = ax(c). Jo

 It is not difficult to give an example of functions x and y satisfying these
 conditions without being S.O. on I, yet Chebyshev's inequality holds.

 Example 2.4 Let a = 1, x(s) = 2 - s and y(s) = 1 + s - 2s2. Then c = |
 and [®(s) - x(c)][y(s) - í/(c)] = |á(l - 2s)2 > 0. Clearly x decreases on
 [0, 1] while y increases on [0, and decreases on [ì, 1]. Moreover, if se[0, |),
 [x(s) - x(^)][y(s) - J/(^)] < 0, so that x,y are not S.O. while

 f1 f 1 3 5 4 f1
 / x(s)ds / y{s)ds =-■-<-= / x(y)y(s)ds.
 J o Jo ¿ O 0 Jo
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 We now consider the averaging operator of x :

 (Ax)(t) = - f x(s)ds. t Jo

 If x is positive and decreasing on (0, a] so is Ax, although the converse fails
 in general. Now if x and y are decreasing on (0, a] then by (2.1) with t < a,
 (Ax)(t)(Ay)(t) < ( Axy)(t ) and since Ax and Ay are decreasing it follows
 also from (2.1) that

 '- fa(Ax)(t)dł]'- [a(Ay)(t)dt] < - [a(Ax)(t)(Ay)(t)dt la Jo ila Jo J a Jo

 < - / ( Axy)(t)dt .
 a Jo

 But

 f (Ax)(t)dt = f t -1 / x(s)dsdt = / x(s) / t_1dtds = f a;(s)(ln - )ds
 Jo Jo Jo Jo Ja Jo S

 and similarly for other integrals. Therefore the previous inequality has the
 form

 [- / x(s)(ln - )dsļ f- / y(s)('n-)ds < - / x(s)y(s) ln(- )ds.
 La s J La Jo s 1 a Jo s

 Since the argument carries over to second and higher averages we obtain on
 iterating

 Proposition 2.5 If x and y are positive and decreasing on I then for neN

 f ®(s)(ln - )nds f y(s)(ln -)nds < ani f x(s)y(s)(ln - )nds.
 Jo s Jo s Jo s

 The next result due to Steffensen [27] is a conditional characterization of the
 functions for which Chebyshev's inequality holds.

 Theorem 2.6 Let x be a positive decreasing function on I. If y is positive
 and Ay(a) > 0, then (2.1) holds if and only if (Ay)(a) < (Ay)(t) for all
 te( 0, a).

 Note that the function y of EXAMPLE 2.4 satisfies this condition (with
 a = 1) while Ay is increasing on (0, |) and decreasing on [|, 1].

 We shall give another proof of THEOREM 2.6, but for it we require the
 following known Hardy type lemma:
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 Lemma 2.7 Let fi and f2 be positive integrable functions on I and suppose
 that for tel , /0 fi(s)ds < fg f2(s)ds. If g is positive and decreasing on I, then

 f /i(«M«)<íí < / f2(s)g(s)ds. Jo Jo

 Proof. Let f(s) = /2(5)- /i(s) and F(t) = f(s)ds. Then for 0 < í < a,
 F(ť) > 0 and F( 0) = 0. If ^(0+) < 00, integration by parts yields

 / f(t)g(t)dt = f g(t)dF(t) = g(a)F(a) - Í F(t)dg(t) > 0 Jo Jo Jo

 and the result follows.

 If <7(0+) = 00, define ga(s) = <7(0:) if se[0, a] and equal to g(s) if se(a, a].
 Clearly ga(s ) | g(s) as a - > 0 and by what we have shown

 / fi(s)ga(s)ds < f f<2(s)ga(s)ds < f f2(s)g(s)ds. Jo Jo Jo

 Hence by Fatou's lemma

 fa fa fa
 / fi(s)g(s)ds <a ļima_>0+ / fi(»)ga(*)d8 < / f2(s)g(s)ds. J 0 «/o «/0

 Note that if in LEMMA 2.7 g is positive and increasing on I and in addition

 / fļ(s)ds = í f2(s)ds, then f fi(s)g(s)ds > Í fi(s)g(s)ds. Jo Jo Jo Jo

 We are now in a position to prove THEOREM 2.6.
 Proof. Let fi(s) = 1, fļ(s) = ay(s)/ y(u)du, then for tel

 f /i(s)ds = t < t(Ay)(t)/(Ay)(a) = a f y(u)du/ f y(u)du = f f2(s)ds Jo Jo Jo Jo

 and hence by LEMMA 2.7

 / x(s)ds < f x(s)f2(s)ds. Jo Jo

 But this is clearly equivalent to (2.1).
 The converse follows on taking i(s) = l[0tt](s), tei, in (2.1).
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 In a similar way one shows that for decreasing x on I
 ra ra ra ra

 I x(s)w(s)ds I y(s)w(s)ds < / w(s)ds I x(s)y(s)w(s)ds,
 Jo Jo Jo Jo

 where w is positive and integrable on I, holds if and only if ( Awy)(a ) <
 ( Awy)(t ), ie[0,a). Here ( Awy)(t ) = fQy(s)w(s)ds/ fQw(s)ds. For this result
 one defines f' - w and

 /2(5) = y(s)w(s) J w(u)du/ J y{u)w{u)du.

 We noted that THEOREM 2.1 holds also for increasing x and y on I. If
 one strengthens this condition to strongly increasing (i.e. z(s) and s_7z(s),
 are increasing for some 7 > 0) the following result holds:

 Theorem 2.8 Let x and y be positive increasing functions on I such that
 s~ax(s ) and s~@y(s) are increasing for some a>0 and ß > 0. Then

 (2.4) £ x(s)ds l' y(s)i. < J' x(s)y(s)ds.
 If x(s) = C'Sa , y(s) = C2S13, Cu Ci > 0 then equality in (2.Ą) is attained.

 Proof. Without loss of generality assume a < ß. Since xo(s) = s-0(x(s),
 j/o(s) = s~f3y(s) are increasing then by Chebyshev's inequality with weights
 (c./. REMARK 2.2 iii))

 f x(s)ds [ y(s)ds = / xo(s)sads f yo(s)si3~a sa ds
 Jo Jo Jo Jo

 < f sads f xo{s)yo{s)s^~a sa ds Jo Jo

 aor+l ra
 = - r-r / Xo(s)yo(s)sßd8.

 a + 1 Jo

 But sa and xo(s)yo(s) are also increasing, so again by Chebyshev's inequality
 with weight, we obtain

 f sasl3ds f xo(s)yo(s)sßds < f sßds f x0(s)y0(s)sc'sl3ds
 Jo Jo Jo Jo

 aß+ 1 ra

 = ttīL aß+ 1 ra x^*)ds-
 This together with the previous inequality yields (2.4).
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 Remark 2.9 i) It is not difficult to see that a corresponding result holds
 also for decreasing x and y with the property that 5ax(s) and sf3y(s)ì a > 0,
 ß > 0 are decreasing and 0 < a + ß < 1.

 ii) Applying induction on THEOREM 2.8 yields a more general result:
 If Xi, X2, xn are positive increasing functions on I such that s~akx(s), ak >
 0, k = 1,2, ...,n are increasing on (0,a), then

 n l M»)«** < 111^+ alf"'1 í
 As a consequence of this result obtain the following Theorem of Andersson
 [2]:

 Corollary 2.10 Ifxi, Xļ, xn are positive convex functions on I and Xfc(O) =
 0, k = 1,2, ...,n, then

 11 [ xk(s)ds < 2n Jo / II xk(s)ds. k=iJo 2n Jo k=l

 The result follows at once if we show that s-1Xfc(s), k = 1,2, ...,n are in-
 creasing on (0, a). But if 0 < s < t, this follows from the convexity of xk :

 s-1xfc(s) = s-1xfcQť + (l - < t^Xkit).

 We conclude this section with another application of Chebyshev's inequality.

 It is clear that if 0 < xeZ,([0, a]) and 1 < p < q then Holder's in-
 equality implies ||x||p < a1/p-1/?||a:||,. If however we know additionally that
 x0(s) = s-aa;(s), a > 0 is increasing on (0, a) then by Jensen's, respectively,
 Chebyshev's inequality (REMARK 2.2 iii))

 / Jq x(s)pds'ì/p _ ( Xo{s)psapds'qlp /0a x0(s)qsapds
 V Io sapds ) _ V /o sapds ) ~ Io sQPds

 respectively

 i'1 x0{s)psapds r sa^-p)sapds < r sapds r x0(s)qsa(q-p)sapds
 «/o •'O •'O J Q

 = f sapds [ x(s)qds , J 0 J 0
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 from which the following sharper inequality is obtained: If a > 0, 5 aa:(.s) is
 increasing in [0, a] and 1 < p < q, then

 3 Chebyshev's inequality in Banach function
 spaces.

 In this section we define Banach function spaces and symmetric space and
 give some of their fundamental properties. While most of the results may
 be found in the literature ([6], [17], [29]), we present them here to make the
 paper self contained and for easy reference when the Chebyshev inequality
 is proved in this abstract setting. We begin with some definitions.

 L°(I ) denotes the space of all (equivalence classes of) real valued mea-
 surable functions on I with Lebesgue measure. This space is a complete
 topological vector space with convergence in measure as a topology. A Ba-
 nach subspace X = ( X , ||.||jr) of L°(I) is called a Banach function space on
 I or simply Banach function space if it has the ideal property :

 (I) xeL°(I ), yeX and |x| < |y| a.e. on I implies xeX and ||x||x < ||î/||x-

 It follows from this definition that |||xļ|ļx = |M|x for all xeX. Moreover,
 the embedding of X into L°(I) is continuous.

 The Banach function space X, or more precisely the norm j| • ||x :

 a) is order continuous i/0 < xn ļ 0 a.e. implies ||xnļ|x - > 0 as n - * oo.

 b) has the weak Fatou property if 0 < xn f x and sup ||xn||x < oo implies
 xeX.

 c) has the Fatou property if it has the weak Fatou and satisfies ||a;n||^ - ►
 ||x|| as n - ► oo.

 If xeX , then x vanishes a.e. on /i := 7'suppA", where supp X =
 sup{lsupp x '• xeX}. Thus for our purposes we simply remove Ii from I
 and suppose that I = supp X.

 The Küthe dual or associate space X' of a Banach function space X on
 I is the space of all ye L°(I) for which xyeL' for each xeX. For yeX' we
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 dč ^îi6

 (3.1) llî/ll^-' = sup {J^ 'xy'dm : zeXand||a;ļ|A- < 1}.

 where m denotes Lebesgue measure.

 To insure that this is a norm rather than a semi-norm we shall assume, as
 indicated above, that I = supp X. However, always supp X' = supp X. It is
 clear that X' has the Fatou property (since the integral and supremum has)
 and that Holder's inequality holds: If xeX and yeX' , then xy is integrable
 and

 J 'xy'dm < MMIflIx'-

 It follows from (3.1) that the associate space X' is a subspace of the conjugate
 space X*. These spaces are identical if and only if X is order continuous.
 The second associate space is defined by X" = (X )' . It is clear that X can
 be embedded in X" in a natural way and for all xeX , ||a:||.Y» < IMI*.

 The following theorem of Lorentz and Luxemburg ([6, THM. 2.7] or [29,
 THM. 4, p. 472]) is basic:

 Theorem 3.1 X" = X isometrically if and only ifX has the Fatou property.

 This yields at once

 Corollary 3.2 If a Banach function space X is either order continuous
 (since X = X*) or X has the Fatou property, then for xeX

 ''x''x = sup 'xy'dm : yeX' ||y||X' = 1 j.

 Theorem 3.3 (Amemiya flj). IfX has the weak Fatou property, then there
 is a constant j, 0 < j < 1, such that 0 < xn -* x, n -* oo, implies
 i II« II* ^ lim infoco ||a:„||x.

 Proof. As in [1] we prove first that if 0 < xn | x, n - * oo, then for
 some je(0, 1], i||x||x < suPn ll^nllx- If such j cannot be found, then there
 exists xm > 0 and a sequence 0 < xmn Î xm, such that ||xmn||x < 1 and
 ||xm ||x > Tn3 for m = 1,2,..., . Now let

 n

 fn(s) = Y! m_2lmn(i)
 771=1
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 then yneX, yn+í > yn and ''yn''x < E~= im_2 for a11 n • Hence supnyneX
 by the weak Fatou property.

 On the other hand, for n > N, yn(s) > Yln=i m~2xmn(s) and since
 xmn y xm, it follows that supn yn(s) > Yln=i m~2xm(s). This implies that
 D supyn||x > iV- 2 ||a?7v|| jc > Ni for any N in contradiction to supnt/ne X.

 Now, if 0 < xn X, n -> oo , let zn = inf{rc„,a;n+i, ...}, then zn | x as
 n -»■ oo and so i||a:||x < supn ||z„||;r < lim inf ||arnļļjr.

 If X is a Banach function space, we shall assume that l/e X. This is
 equivalent to the continuous embedding of L into X. The assumption also
 guarantees that the fundamental function on X, that is, <px(t) = ||l[o,t]||x>
 tel, is well defined. We note that l¡eX' if and only if X is continuously
 embedded in L' .

 Important classes of Banach function spaces are symmetric or rearrange-
 ment invariant spaces. To define these we need some definitions.

 The distribution function dx of xeL°(I) is defined by

 (3.2) dx(') = m{sel : |x(s)| > A}

 and the decreasing rearrangement x* of x on [0, oo) is the inverse of dx,
 or more precisely x * (t) = inf{A > 0 : dx(X) < ť}. Note that by (3.2),
 dx(X) < m(I) = a, so that x * (t) = 0 for t > a. Therefore x* may be
 regarded as a function defined on I.

 Two functions x,yeL°(I) are equimeasurable if they have the same distri-
 bution function , i.e. dx(A) = cĻ(A), for all A > 0.

 Definition 3.4 A Banach function space X = (X, || • ||x) is said to be sym-
 metric or rearrangement invariant if

 (RI) xeL°(I), yeX and dx = dy implies xeX and ||x||jr = ||y||x-

 Since x * of x is equimeasurable with x, it is clear that X is symmetric
 if ||x||x = ||x* ||x- The conditions (I) and (RI) are equivalent to the single
 condition:

 (S) xeL°(I),yeX and x"(t) < y*(t),tel implies xeX and ||a:||x < IMI*-

 The next result shows that symmetric spaces are "intermediate" between the
 Lebesgue spaces L <*> and L'.
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 Theorem 3.5 ([6, THM. 6.6], [17, THM. 4-1])- If X is a non-trivial sym-
 metric space, then L «> C X C L', with continuous embeddings. Furthermore
 <Px(t)<Px'(ł) = t> teI-

 The Lp, 1 < p < oo spaces, the Lorentz space Lp>q, 1 < p < oo, 1 <
 q < oo and Orlicz Lu spaces are examples of symmetric spaces with the
 Fatou property. A function ip defined on I is said to be quasi-concave if <p is
 increasing on I , <p(t) = 0 if and only if t = 0 and <p(t)/t is decreasing on
 (0,a). The Lorentz space Av, respectively, Marcinkiewicz space Mv consists
 of all xeL°(I) for which the functional

 ''X'UV = Jo f x*(s)d<p(s) := v?(0+)||®||oo + Jo / x*(s)<p'(s)ds, Jo Jo

 respectively ||x||mv = sup0<t<a <p(t) f¿x*(s)ds ^ is finite, where is quasi-
 concave. These spaces are also symmetric with the Fatou property and
 (A v)' = where y*(ť) = t/(p(ť), isometrically (cf. [6, p.p. 69-72], [17,
 p.p. 107-114]).

 If X , yeL°(I), then a well known result of Hardy and Littlewood shows
 that

 J |xy|dm < j x*(s)y*(s)ds,

 while conversely ([6, THMS. 2.6., 2.7], [17, p. 69])

 J x*(s)y"(s)ds = supļ j 'xz'dm : zeL°(I),dz = dy ļ

 holds. Indeed the supremum is attained. This leads to

 Theorem 3.6 Let X be a symmetric space on I. Then the associate space
 X' is symmetric. Moreover

 [If II jc' = sup{ JQ x*(s)y*(s)ds : ||®||* < l|

 and

 Iklk» = sup {jí x*(s)y*(s)ds : ||y||x/ < l|.
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 The special roles of the spaces Mv and Av is reflected in the following facts:
 If X is symmetric with fundamental function <px = <p> then Av C Aģ C X C
 My, where Ģ> is the smallest concave majorant of (p on I. Here inclusion is
 continuous ([6], [17]).

 Also, as an immediate consequence of COROLLARY 3.2 and THEOREM
 3.6 we obtain the following result of Semenov [26]:

 Theorem 3.7 If a symmetric space X is either order continuous or has the
 Fatou property, then X = C'AVy, where fy(s) = f¿ y*{u)du, and the intersec-
 tion is over yeX' with ļ|y||x/ < 1, and ||®||x = sup{||x||A„y : yeX', ||y||x/ <
 !}•

 A symmetric space X on I is said to have the majorant property of

 (M) xeL°(I),yeX and f x*(s)ds < f y*(s)ds, tel Jo Jo

 implies xeX and ||a:||x < ||y||x-

 The majorant property arises in the problem of interpolation between Lļ
 and Loo. In fact - as shown by Calderón and Mitjagin [17] - the symmetric
 space X is an exact interpolation space between Lļ and L^ if and only if X
 has the majorant property.

 Proposition 3.8 The Lp-spaces, 1 < p < oo; Lorentz spaces and Mar-
 cinkiewicz spaces Mv have the majorant property.

 Proof. We prove this for the ip-spaces only since the proof for Av is
 similar and the case Mv is obvious.
 If p = 1 there is nothing to prove and if p = oo, then

 x*(t) < J / x*(s)ds < ' ¡ y*(s)ds < ||y||oo t Jo t Jo

 for all tel. Hence ||£||oo < ||y||«>-
 If 1 < p < oo, then, because (x*)p_1 is decreasing LEMMA 2.7 shows

 that fa fa
 i fa x*(s)pds < i fa y*(s)x*(s)p~1ds.
 Jo Jo

 But for any positive numbers a and 6, ap - bp < pap~1(a - 6), so that

 / [x*(s)p - î/*(s)p]ds < p Í [x*(s)p - x*(s)p~1y*(s)]ds < 0, J o Jo

 225



 and therefore ||x||p < ||t/||p.
 From this and THEOREM 3.7 it is easy to deduce the following general

 result:

 Theorem 3.9 If a symmetric space is either order continuous or has the
 Fatou property, then it has the majorant property.

 After this discussion we can prove Chebyshev's inequality in function
 spaces. We have two proofs of the following:

 Theorem 3.10 Let X be a Banach function space on I, such that 1 ieX. If
 x, yeX are positive, decreasing and xyeX, then

 (3-3) IMkllvlU < tyx{a)''xy''x.

 First proof If s, tel , then

 x(s)y(t) = a;(s)y(ť)l[0,ť](s) + x(s)í/(ť)l(ť,o](s)
 < s(s)y(s)l[0l<](s) + x(ť)y(í)l(ťi0](s)
 = i(í)y(4)l[>l0](ť) +
 < x(s)í/(s)l[0,o](ť) + x(ť)y(í)l[o,a](5).

 Hence

 ll«ll*y(0 < IMUl[o, <>](*) + x(t)y(t)(px(a)
 and so

 IMUllí/llx < <Px(o)''xy''x + yxia^xyWx = 2yx{.o)''xy''x-

 Second proof (if X has the Fatou property). For tel and any 0 < z'eX'
 with ||zi ||x» < 1

 y(t) jQ x(s)z!(s)ds < y(ť)lk l[o,<]IU»
 < y(*)||a: l[o,t]IU ^ II XV l[o,t]IU.

 In the same way, for any 0 < z2eX' with 1(^2 ||jc' < 1

 xtt) Jo y{s)z2(s)ds < ''xy l[o,t]IU.
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 Thus

 Ti [(/.' W^) (/„' »M*«*)]
 < x(t)zx(t ) J y(s)z2(s)ds + y{t)z2(t) x(s)zi(s)ds
 < [zi(t) + Z2(t)]''xy l[o,i]IU.

 Integrating from 0 to a and applying Holder's inequality we obtain
 ra ta řa

 / x(s)zi(s)ds y(s)z2(s)ds < / [zi(t) + z2(t)]''xy l[0,t]''xdt
 Jo Jo Jo

 < ''xy l/ll [ [zx{t) + z2(t)]dt J 0

 < Iky l/||x[wr(<0Mx' + ¥>*(«)M;r']
 < 2(px(a)''xy l/||x-

 Now taking the supremum of Z' with H-^i || jr' < 1 and then over z2 with
 ll^llx' ^ 1) we obtain ||x|ļx«ļļy||x" < 2<^(a)||xy||x and this yields the result.

 Remark 3.11 For symmetric spaces this result with quite different proof
 was also obtained by Sedaev [25]. In this paper the author refers to an
 unpublished report of V.l. Dmitriev and A.A. Sedaev, "Some inequalities for
 symmetric spaces" Voronezh 1977, in which (3.3) was proved with constant
 3.

 The next example shows that there is a symmetric space without Fatou
 property (but weak Fatou property) for which the constant 2 in (3.3) is sharp.

 Example 3.12 Let X = L<»([0, 1]) and for m,n = 1,2, ...,

 II® II = maxi- llxlloo + (1 - - )||x||i,n Jo f ' a:*(s)<i.s}. ļm m Jo )

 Then X = ( X , || • ||) is a symmetric space on [0,1] and yjf(l) = 1. Let
 = l[o,n-i], Vmn = m l[0,n-2] + then xn, ymn are positive decreasing
 functions and ||xn|| = 1. Since

 llî/mn II = maxi I 1 + (l ' - - m/ ) 'n2 + 1 - ļ"), n2/ - n + 'n -2)} n2 J ) 2 - - m I ' m/ 'n2 n2/ n 'n n2 J ) m
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 as n - ► oo and

 "*„¡,„„11 = max{l + (l - Ì) (£ + i - Ì), £ + „(i - Ì)} - 1
 as n - » oo it follows that

 ll^nllllymnll 9

 ¥>(l)ll*»ymn|| ™

 As m - ► 00, this shows that the constant 2 is best possible.

 THEOREMS 3.5 and 3.7 permit us now to prove the main result of this
 section, namely that for symmetric spaces with Fatou property the constant
 in (3.3) is 1 instead of 2.

 Theorem 3.13 Let X be a symmetric space on I, which is either order con-
 tinuous or has the Fatou property. Ifx,yeX are positive decreasing functions
 on I and xyeX, then

 (3-4) IWUIIylU < ¥>x(a)||:rî/|U.

 Proof. Observe that by THEOREM 3.5

 sup|v?2(a) : zeX' ''z''x> = l|

 = sup I jí z*(s)ds : ze X' , ||z||x» = l| = <px(a).

 Let zi, z2eX', ||^i||x' = II^Hx' = 1 and <pi(t) = f¿z*(s)ds, i = 1,2. Then

 0 < Jo / Jo / H$) - x(ť)Ms) - y(t)]d<pi(s)dip2(t) Jo Jo

 = Jo [Jo x(s)y(s)d(?i(s) -y(ł) jí x(s)d<pi(s)

 -x(t) J y(s)d<pi(s) + x(t)y(t)tp'{aķbp2(t)
 ra ra ra

 = ( p2(a ) J x(s)y(s)d(p1(s) - y(t)d(p2(t) x(s)d<pi(s)

 -jí x(t)d(p2(t) Jo y(s)d<pi(s) + <pļ(a) x(t)y(t)dip2(t)
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 and therefore

 f x(s)d<pi(s) f y(t)dcp2(t ) + [ x(t)dip2(t) f y(s)d<pļ(s) Jo Jo Jo Jo

 < tp2(a x(s)y(s)d<pi(s) + ipi(a) x(t)y(t)d<p2(t)

 = V2(a)||xy||Av)1 +V1(a)||xy||A„
 < v?2(a) sup ||®î/||av1 + Vii0) SUP IMUV2

 = ¥>2(a)||«y||x + V»i(a)||®y||*

 where the last inequality follows from THEOREM 3.7. By the above obser-
 vation the last sum is not greater than

 sup v?2(a)+ sup if^auWxyWx = 2ipx(a)''xy''x-
 -IMIx'=1 INIIx'=1

 Hence we have shown that H^Ha,,, ||y||A„2 + IN|a„2 ||î/||av1 < 2<¿>x(a)''xy''x-
 Taking the supremum over zxeX' with ||-2i||x' = 1 we obtain from THE-
 OREM 3.7 |WU||î/||a„2 + IMIaJMU < 2<px{a)''xy''x and then taking
 the supremum over z2eX' with || ^2 1| jř' = 1 we obtain in the same way
 IMUIMU + NUIIylU - Tllis proves the theorem.

 4 Cheby she v inequality for concave functions.
 In this section we discuss Chebyshev's inequality for concave functions. We
 prove a generalization of Favard's inequality (LEMMA 4.2) which together
 with Grüss' theorem (THEOREM 4.1) yields a number of Chebyshev type
 inequalities in the abstract function theoretic setting.

 Recall that a function x on I is concave if for s, tel, 0 < a < 1, the
 inequality ai(s) + (1 - a)x(t) < x(as -f- (1 - a)t) holds. If this inequality is
 reversed, x is said to be convex.

 We shall give two proofs of the following theorem of Grüss [15]:

 Theorem 4.1 Let x, y be positive concave integrable functions on I. Then

 ra ra 3 ra
 (4.1) I x(s)ds I y(s)ds < - a I x(s)y(s)ds.

 J 0 Jo 2 Jo
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 The inequality (4.1) is sharp in the sense that for the concave functions
 x(s) = C'S, y(s) = C2(a - s), Cļ, Cļ > 0 equality in (4.1) holds.

 Before proving this result we give a generalization of Favard's inequality
 to symmetric spaces via the following lemma:

 Lemma 4.2 Let x be a positive concave function on I. Then x* , the rear-
 rangement of x, is also concave on I and for 0 < t < a

 (4.2) f x*(s)ds < -(2 - - ) / x*(s)ds. J o a cl J o

 Moreover, if X is a symmetric space on I with the majorant property, then
 for xeX

 (4.3) ''x''x <2C(X)~ r x{s)ds
 a Jo

 where C(X) = a-1ļļxo||* and xo(s) = s.

 Proof. Let j4x(A) = {sel : x(s) > A}, A > 0, then dx(A) = m(Ax( A)).
 Suppose x is concave and 0 < Al5 A2 < ess sup x, then AX(A) is a convex
 subset of I and for 0 < a < 1, Ax(aAļ+(l- a)A2) D ai4x(Aļ) + (l - a).Ax(A2).
 From this and Brunn's inequality for convex subsets of R we obtain dx(a Aj +
 (1 - a)A2) = m[Ax(a Aj + (1 - a)A2)] > m[a.,4x(Ai) + (1 - a).Ax(A2)] >
 am[Ax(Aļ)] + (1 - a)m[Ax(A2)] = adx( Ax) + (1 - a)dx( A2). Hence dx is
 concave on [0, ess supa:].

 Now for 0 < ¿i, t2 < a and e', e2 > 0, let A,- = x*(U ) - i = 1,2. Then
 dx(Xi) > U, ¿ = 1,2 and

 ťřx(aAi + (1 - a)A2) > ac?x(Ai) + (1 - a)cřx(A2) > ati + (1 - a)ť2,

 that is, x*(ati + (1 - a)h) > aAi + (1 - a)A2 = ax*(ťi) + (1 - a)x*(i2) -
 a€i - (1 - a)e2.

 Also dx(a Ax) > adx( Ax) + (1 - a)dx(0) = adx(Ai) + (1 - a)o > ati +
 (1 - a)a, so that x*(at i + (1 - a)a) > aAļ = ax*(ťi) - ae i = ax*(ťi) + (1 -
 a)x*(a) - ae'. Since E'E-i are arbitrary, it follows that x* is concave.

 To prove (4.2) observe that

 t(a - ^r) í xm(s)ds - -pří x*(s)ds
 2 Jo 2 Jo
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 = ļ (a - s)ds J x*(s)ds - ļ (a - s)ds J x*(s)ds

 = J (a - s)ds x*(s)ds + (a - s)ds - J (a - s)dsj J x*(s)ds

 = j (a - s)ds x*(s)ds - ( a - s)ds J x*(s)ds

 = f f [(a - s)x*(u) - (a - u)x*(s)]duds. Jo Jt

 But for 0 < s < t < a we have u = + (1 - 9-!i)a and by the concavity of
 x*,x*(u) > |5jX*(s) + (l - ^5j)a:*(a) > Hence the above integrand
 - and so the integral - is positive. This proves (4.2).

 To prove (4.3), let sel and define

 ®x(s) = 2 ū~2Xq(s) J x{u)du = 2 a~2(a - s) J x(u)du

 (recall that £o(s) = -s). Then (4.2) takes the form

 j x*(s)ds < J Xļ(s)ds

 for all tel, with equality at t = a. Now the majorant property of X implies
 that

 IMU < 11^1 Ik = 2a_1^w/ x(s)ds,
 which is (4.3). This completes the proof of the lemma.

 Note that if X = Lp, 1 < p < oo, then C(X ) of (4.3) is C(LP) =
 a1/p(p+ l)~'^p, 1 < p < oo and C{L oo) = 1.

 Using LEMMA 4.2 we now give two proofs of Griiss' THEOREM 4.1.

 First proof. Let

 1 fa _ 1 ra
 X = - / x(s)ds and y _ = - / y(s)ds.
 a Jo a Jo

 Then

 1 ra ļ ra ra
 D(x,y): = - x(s)y(s)ds

 CL J 0 CL J 0 JO

 1 fa
 = - [s($) - x][y(s) - y]ds

 a Jo
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 and by Schwarz's inequality D(x,y )2 < D(x, x)D(y, y). Now by (4.3) with
 X = L2(I),

 j x(s)2ds < ^°-1 {J x(s)dsj
 so that

 D(x, x) < ^°-2 (^J x(s)ds^j ~a~2(^J x{s)^j = ~3~(y '
 and similarly

 D(y,y) < y(s)ds ) .
 Therefore D(x,y)2 < sš^-||ap||i||y ||i or |X>(ar, y)| < ^||a:||i||î/||i. But this
 means that - |a~2||®||i||!/||i < D(x,y) < 3-||^||i||ì/||i or equivalently

 (4.4) f x(s)ds Í y(s)ds Jo Jo
 3cl ta ta ta
 < - / ta x(s)y(s)ds <2 ta x(s)ds / ta y(s)ds 2 Jo Jo Jo

 which in particular proves (4.1).

 The second proof of THEOREM 4.1 follows along the lines of that of
 Barnes [4]. Let

 Xļ(s) = 2 a~2s f x(t)dt, yi(s) = 2 a~2s f y(t)dt, Jo Jo

 then from (4.2) of LEMMA 4.2

 J x*(s)ds < x*(s)ds = ^ J x(s)dsj J 2 a~2(a - s)ds
 (4.5) = f Xļ(s)ds

 Jo

 and similarly, y*(s)ds < yļ(s)ds for all 0 < t < a, with equality at t = a.
 Moreover, since y* is concave,

 f yi(s)ds = a~2t 2 f y(s)ds = a~2t2 f y*(s)ds = - f y*(-s'ds
 Jo Jo Jo CL J 0 ' t J

 - {[y'^ts)is+{ï~<ùy'^) Lis
 < j y*(s + ^1 - -^Ja^jds = J y*(a - s)ds.
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 Then from the observation following the proof of LEMMA 2.7 and the in-
 equality of Hardy, Littlewood and Pólya [16, Theorem 378]:

 ra ra ra

 / x*(s)y*(a - s)ds < / x(s)y(s)ds < / x*(s)y*(s)ds
 Jo Jo Jo

 we obtain

 2 fa fa

 -a-1 J x(s)ds J y(s)ds
 ra ra ra

 = 4a-4 I s(a - s)ds I x(s)ds I y(s)ds
 «/0 J 0 «/0

 = [ Xļ(s)yļ(s)ds < f x*(s)yi(s)ds < f x*(s)y*(a - s)ds
 Jo Jo Jo

 < / x(s)y(s)ds < f x*(s)y*(s)ds Jo Jo

 < f xl(s)y*(s)ds < f Xļ(s)yl(s)ds J o Jo
 ra ra ra

 = 4a-4 (a - s)2ds / x(s)ds / y(s)ds J 0 J 0 J 0
 4 ra ra
 = T-a-1 I x(s)ds I y(s)ds.
 3 io Jo

 Again this proves (4.4) and hence THEOREM 4.1.

 From THEOREM 4.1 and LEMMA 4.2 we obtain at once the following:

 Corollary 4.3 Let X be a symmetric space on I with the majorant property.
 If X, yeX are positive concave functions on I , such that xyeX, then

 (4.6) IMWIvlU < 6^IMx.
 Corollary 4.4 Let X and Y be symmetric spaces on I with the majorant
 property. Suppose xeX, yeY are positive concave functions on I. Then

 (4.7) IMUILvIIr < 6C(X)C(K)Ì Jo [' X(s)y(s)J,. a Jo

 Remark 4.5 i) If X = Lp, 1 < p < oo, inequality (4.3) takes the form

 (4.8) - a1-1/p||x||p < x(s)ds.
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 For p = 2 this inequality is due to Frank-Pick (1915) and for general p to
 Favard (1933).

 ii) If X = Lp , Y = Lg , 1 < p, q < oo, inequality (4.7) takes the form

 (4-9) ļ(p + l)1/p(? + l)1/,a1"1/p~1/,||s|Ļ||y||, < Jq x(s)y(s)ds ,

 which was proved by Barnes [4]. Generalizations of (4.8) and (4.9) to a class
 larger than concave functions and to the multidimensional case were given
 by Borell ([7] [8]).

 5 On the Ky Fan inequality and some gen-
 eralizations.

 Let K : I X I -* [ 0, oo) be a function satisfying

 [ K(s,t)ds < Bw(t) Jo

 (5.1) a.e.,

 f K(s,t)dt < Bw(s )
 Jo

 where B is a positive constant and w a positive integrable function.

 If K = C a constant, then (5.1) holds with B = Ca and w = 1. Also, if
 K(s, t) = k(s)£(t), where k and £ are positive integrable functions on /, then
 (5.1) is satisfied with B = max(||&||i, ||^||i) and w(t) = max(fc(ť), £(t)).

 Ky Fan [13] proved the following generalization of Chebyshev's inequality
 for w = 1.

 Theorem 5.1 Suppose K satisfies (5.1). If x and y are positive decreasing
 on I, then

 (5.2) f f K(s,t)x(s)y(t)dsdt < B f w(s)x(s)y(s)ds. Jo Jo Jo

 Proof (cf. [28]). Observe that (5.2) is linear in x. Since x is decreasing
 it can be approximated by a sum of a finite number of step functions that
 have a single jump. It suffices therefore to establish (5.2) in the special case
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 where x(s) = lifO<s<c and 0 if c < s < a. For this x, (5.2) takes the
 form

 (5.3) / f K(s,t)y(t)dsdt < B f w(s)y(s)ds. J 0 J 0 J 0

 But to prove (5.3) it suffices again to consider y to be a single jump function,
 say y(s) = lifO<s<d and 0 if d < s < a. Then there are two cases to
 consider, namely c < d and d < c. In the first case (5.3) becomes

 f ( K(s,t)dsdt < B f w(s)ds
 Jo Jo Jo

 which by (5.1) is clearly valid. The second case follows from the first by
 interchanging x and y. This proves the theorem.

 The next result is a generalization but with a different constant - namely
 2. We show this constant to be sharp.

 Theorem 5.2 Suppose K satisfies (5.1). If f is a measurable function such
 that f : I x I - ► [0, oo) decreases in each variable separately, then

 (5.4) f f K(s,t)f(s,t)dsdt < 2B f w(s)f(s,s)ds. Jo Jo Jo

 Moreover, the constant 2 in (5.4) is sharp.

 Proof. For s, tel , we have

 /(M) = /(M)l[o,<](s) + f(s,t)lM(s)
 < f(s, a)l[Q,t](a) + /(*> ť)!M(s)
 < f(s,s) + f(t,t), so that

 f f K(s,t)f(sit)dsdt < f f K(s,t)f(s,s)dsdt Jo Jo Jo Jo

 + [ f K(s,t)f(t,t)dsdt Jo Jo

 < B f w(s)f(s, s)ds + B f w(t)f(t,t)dt Jo Jo

 = 2 B f w(s)f(s,s)ds.
 Jo

 235



 To show that the constant 2 is sharp, let a = 1 and K(s,t ) = w(s)w(t),
 w positive and integrable on [0,1]. For 0 < a < 1, define f(s,t) = n if
 0<s<aor0<ť<a, and equal to 1 otherwise. Then

 L(a,n) : = f f K(s,t)f(s,t)dsdt = n f w(s)ds f w(t)dt J 0 J 0 J 0 */0

 +n t w(s)ds f w(t)dt + t w(s)ds Í w(t)dt
 Ja Jo Ja Ja

 and since B = w(s)ds (in this case) it follows that

 P(a,n ) := B J f(s, s)w(s)ds = J u>(s)ds[n J w(s)ds + J w(s)ds].

 Therefore lim^o lim«- oo L(a.n)/P(a,n) = lim^oU + k | = 2 which
 L J0 u>(s)dsj

 implies the constant is sharp.
 Since the case f(s, t) = x(s)y(t) in (5.4) is known to give a better constant

 than 2 (cf. THEOREM 5.1), it is natural to search for those classes of
 functions f(s,t) for which the constant in (5.4) is 1. We shall see below
 that the positive set functions represent a large class of functions with this
 property.

 Definition 5.3 A function f : I x I - ► [0,oo) is said to be a positive set
 function (P.S.F.) if

 (5-5) *)' = f(s + h, t + k) - f(s + h, t)
 -/(s, t + k) + f(s, t) > 0

 holds for all h, k > 0 (or h, k < 0) with s + h, t + kel , and for arbitrary
 choices of s, tel .

 Of course, if / is smooth, i.e. / has continuous second partial derivatives,
 then (5.5) is equivalent to J-j^j(s, t) > 0.

 If /(a, t ) = x(s) + Cy(s), where x and y are positive on I and C a real
 constant then A' kf(s,t) = 0 so that / is a P.S.F. Similarly, if f(s,t) =
 x(s)y(t), where x and y are either both increasing or decreasing, then

 AU/(5' ť) = + h) - + k) - f(*)]
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 shows that / is a P.S. F. Another example is the following: Let ip be a con-
 vex increasing on [0, oo) and / a P.S.F. If either / decreases in each vari-
 able separately or increases in each variable separately, then F defined by
 F(s, t ) = v(/(s, t )) is a P.S.F. To see this, suppose / increases in each vari-
 able separately and h, k > 0. Let

 x' = f(s , t) < x2 = f(s + h, t), x2 = f(s, t + k) < x3 = f(s + h,t + k ),

 then by the convexity of <p

 tp(x2) -y(si) < <p(x3) - y(x i) < y ¡>(x3) - y>(ā2)
 Xļ - Xl ~ £3 - Xl ~ X3 - X<1

 Hence

 Al,kF(S,t) = <P(*3) - <P(X2) - <p(Xl) + <p(xi)

 - t X2 - - ^(*2) Xi - ¥>(®i)] - v»(®2) + <p(x 1) X2 - Xi

 X3 ^2 "I" r / ' / M
 =

 X 2 «Cļ

 and since / is a P.S.F. and <¿> is increasing, it follows that A lkF(s, st) > 0.

 We conclude with the following main result:

 Theorem 5.4 Let K be a positive continuous function on I xl and suppose
 f : I X I - > [0, 00) is a continuous P.S.F.

 a) If for all tel

 j:i: K(u, v)dvdu = j:j; K(u , v)dvdu
 then

 (5.6) r r K(S , t)f(s, t)dsdt < nr K(S, t)dS)f(t, t)dt
 Jo J 0 J 0 J 0

 b) If for all s , tel

 I K{u,ť)du = Bw(t) and Í K(s,v)dv = Bw(s), Jo Jo

 then

 (5.7) / f K(s,t)f(s,t)dsdt < B f w(s)f(s, s)ds.
 J 0 J 0 Jo
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 Proof. The method of proof is taken from Pečarič [22]. We prove the
 result first for smooth functions and then via Bernstein polynomials and the
 Weierstrass approximation theorem the general result. First some notations:
 Write

 1(f) = J / J / K(s,t)f(s,t)dsdt I0(f)=f w(s)f(s,s)ds, J o J o «/o

 J(f) = Jo / Jo / K{s,t)[f(t,t)~ f(s,t)]dtds, Jo Jo

 P(s,t) = J K(s,v)dv, Q(s,t) = K(s,v)dv ,

 Q(M) = J K(u,t)du,

 W(t) = j; w(s)ds, U(s,t) = i:j: K(u,v)dvdu,
 Ū(s,t) = ff K(u,v)dvdu,

 Jo Jt

 y m = ré¡; K(u,v)dvdu.

 Clearly, .P(s,0) = Q(s,a) - Q(a,t ) = U(a,t ) = 17(0, t) = 0.

 Step I. Assume fi = |£, /2 = §{ and /21 = §jļļ exist and are continuous.

 a) If we show that J(f) > 0 part a) follows under these assumptions.
 Since

 JQ K(s,t)[f(t,t) - f(s,t)]dt = (jf +j[ )#(M)[/(M) - f(s,t)]dt

 = - Jo / p(si *)[/i(ť> t) + /2 (t, t) - /2(s, t)]dt Jo

 + ļģ Q(s, t)[fi(t> t) + fiit, t) - /2(5, t)]dt

 we obtain

 J(f) = -f f P(s,t)[f!(t,t) + f2(t,t)~ f2(s,t)}dtds Jo Jo

 + 11 Q(s,t)[fi(t,t) + f2(s,t)]dtds
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 = -j*ft P(s , ť)[/l(í, t) + f2(t , ť) - f2(s, t)]dsdt

 + 1 f Q{s,t)[fi(t,t) + f2(t,t)~ f2(s,t)]dsdt J o J 0

 = - r u(t,i)h(t,t)dt~ r u(t,t)f2(t,t)dt
 Jo Jo

 + j* j" P(s, t)f2(s, t)dsdt + £ Ū(t, t)f i(ť, ť)<ft

 + / Ū(t,t)f2(t,t)dt- f í Q(s, t)f2(s, t)dsdt. J o «/o ./0

 However,

 /a P(s,t)f2(s,t)ds = - ía dU P(s,t)f2(s,t)ds = - ~^(s,t)f2(s,t)ds
 = U(t,t)f2(t,t) + U(s,t)f2i(s,t)ds

 and similarly

 f* f t dŪ
 ~ Jo f* ^(s^)Ms^)ds = ~ J0 f -ß^(s^)Ms^)ds

 = -Ū(t,t)f2(t,t) + i Ū(s,t)f2i(s,t)ds.
 Jo

 Substituting, we obtain

 J(f) - -J U(t,t)fļ(t,t)dt + U(s,t)f21(s,t)dsdt

 + f Ū(t,t)fļ(t,t)dt+ í i Ū(s,t)f2i(s,t)dsdt. Jo Jo Jo

 But since U(t,t ) = Ū(t,t), it follows that by the mean value theorem, for
 some £, ijel

 Af)= f I Û(s,t)f2i(s,t)dsdt = /2i(£,f?) f [ Í )(s,t)dsdt, Jo Jo Jo Jo

 where U(s,t ) = U(s, t) if t < s < a and t/(s, t) if 0 < s < t. But since the
 integrand is positive f2i(£,T}) > 0 we obtain J(f ) > 0.
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 b) We must show that BIo(f) - 1(f) > 0 in this case. Since

 Jq K(s,t)f(s,t)dt = -jf ^(s, t)f(s, t)dt
 = <5(«>0)/(s,0)+ Í Q(s,t)f2(s,t)dt

 Jo

 it follows that

 1(f) = Jo í Q(s,0)f(s,0)ds+ Jo f Jo [ Q(s,t)f2(s,t)dsdt Jo Jo Jo

 = - i° i' tr<3' v)f(3' - 1: r a~^(í' *)Ma' t)d3dt

 = Jo / [Q(0,v)/(0,0) + Jo f Q(siv)f1(s,0)ds]dv Jo Jo

 + /V(0,ť)/a(<M)+ r V(s,t)f21(s,t)ds]dt Jo Jo

 = /(0,0)V(0,0) + r V(s,0)fi(s,0)ds
 Jo

 + f V(0it)f2(0,t)dt + f f V(s,t)f12(s,t)dsdt. Jo J 0 J 0

 Also

 h(f) = w(3)f(3,s)ds = - jf »ffW
 = W(0)/(0,0)+/* Jo «-(.ffilvlt«.,#. Jo

 But since

 ¡'J. W(t)f2i(s,t)dtds = J J W(t)f2ļ(s,t)dsdt

 = f " W(t)f2(t,t)dt - f* W(t)f2(0,t)dt Jo Jo

 and similarly (since fi2 = f2i)

 r f'w(s)f21(s,t)dtds= i'1 W(s)fi(s,s)ds - r W(a)f1(sìG)daì Jo Jo Jo Jo

 it follows on substituting that

 /„(/) = W(0)f(0,0) + /V(s)/1(5,0)ás+ f" W(t)f2(0,t)dt Jo Jo

 + f f W(ma,x(s,t))f2i(s,t)dtds.
 Jo Jo
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 Therefore

 BIo(f) - 1(f) = f(0,0)[BW(0)-V(0,0)}+ fa[BW(s)-V(s,0))Ms,0)ds
 Jo

 + ia[BW(t)-V(0,t)]f2(0,t)dt
 Jo

 + ÍÍ [f?W(max(s, í)) - V(s, ť)]/2i(s, í)cřsdť > 0.
 Jo Jo

 This proves b) under the smoothness assumptions on /.

 Step II. If / is an arbitrary continuous P.S. F., then we now approximate
 / uniformly on 7 x 7 by polynomials which are (smooth) P.S.F.

 a) It is known that the Bernstein polynomials

 P(s,t): = Pm,n(M)

 = ž ¿ ■ ■« ( 7 ) ( " )

 with a, -j = /(-a, ¿a) converge uniformly to / on 7 x 7 as m, n - ► oo. Further

 • S (a W - (7 ) (a ~ sìm~ÌsÌ
 and

 S = - E g ( m - 1 ) ( " 7 1 ) - *r~'~ V(a - łr
 where Aij = ał+ij+i- 0,+ij- ati¿+i+a,¿. But since / is a P.S. F., A,j > 0, and
 so > 0 on 7 x 7. Therefore, P is a P.S.F. which satisfies the conditions
 on Step I. By what we have proved, J(P) > 0 and so by the Weierstrass
 approximation theorem

 0 < J(P) = J(P - f) + J(f)

 < 2sup 'P(s,t) - f(s,t)' f f K(s,t)dsdt + J(f) < 2eU(0,a) + J(f).
 a, tel JO JO
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 But e > 0 is arbitrary, so that «/(/) > 0.

 b) This part follows also from the Weierstrass approximation theorem:
 Since

 0 < B/„(P) - I(P) = BI„(P - /) - I(P - /) + BIo(f) - 1(f),

 and BIq(P - f ) and I(P - f) may be choosen as small as we please the result
 follows.

 Remark 5.5 If / is as in THEOREM 5.4 and K(s,t) = w(s)w(t), where w
 is positive and integrable on J, then (5.6) and (5.7) have the form

 J w(t} J f(s,t)w(s)dsdt< J w(t)dt J f(s,s)w(s)ds.

 6 P.L. Chebyshev - his life and mathemat-
 ical work in short

 Pafnutiï L'vovich Chebyshev, the son of an old Russian noble family, was
 born on May 16 (May 4, old style) 1821 in the village of Okatovo, district
 Borovsk, government Kaluga in Russia. After primary school at home and
 secondary school in Moscow, he studied at the University of Moscow - pri-
 marily under N.D. Brashman (1796-1866). He completed his Magister-thesis
 on an "Elementary analysis of probability theory" in 1846 and moved to the
 University of St. Petersburg (Leningrad) in 1847 where he studied number
 theory under V.Ya. Bunyakovskii (1804-1889). In 1849 he completed his
 D.Sc. Thèse on "Theory of congruences" and in 1853 became Extraordinary
 Professor and in 1857 Ordinary Professor at the University of St. Petersburg.
 He never married.

 Chebyshev's merits were recognized early in his career. He was elected
 a Corresponding Member of the Société Royale des Sciences de Liège and of
 the Société Philomathique in 1856, of the Paris Academy of Sciences in 1860
 and a Foreign Member in 1874 (the first Russian since Peter the Great), as
 well as a corresponding or foreign member of the Berlin Academy of Sciences
 (1871), the Bologna Academy (1973), the Royal Society of London (1877),
 the Italian Royal Academy (1880), and the Swedish Academy of Sciences
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 (1893). He was also a member of the St. Petersburg Academy of Sciences
 (1856, ordinary member 1859).

 His scholarly work consisted of over 80 research papers and covered a
 wide range of subjects including number theory, probability theory, quadratic
 forms, orthogonal functions and polynomials, theory of integrals, approxi-
 mation theory, bearings, the construction of geographic maps and he derived
 various formulas for the computation of volumes. He studied also theoretical
 mechanics and devoted much attention to the problem of obtaining rectilinear
 motion from rotary motion by mechanical linkage. The "Chebyshev parallel
 motion" is a three-bar linkage that gives a very good approximation to exact
 rectilinear motion. He created over 40 new mechanisms and improved over
 80. Many of these were demonstrated at the 1878 and 1883 exhibitions in
 Paris and Chicago. His name is associated with many mathematical concepts
 and areas, for example:

 - in the number theory he studied the so called Chebyshev function n(:r),
 i.e., the number of primes below a given number x and proved that n(x) =
 x/logx as x - ► oo, 0,92129 < n(a:)loga;/a: < 1,10555; also he proved the
 Bertrand postulate - for n > 3 there is at least one prime number in the
 interval (n, 2 ra - 2).

 - he developed a basic inequality of probability theory called Chebyshev
 inequality, a generalized form of the Bienaymé-Chebyshev inequality (Bien-
 aymé 1853, Chebyshev 1866), and used the latter inequality to give a very
 simple and precise proof of the Chebyshev theorem (generalized law of large
 numbers).

 - he introduced and investigated the Chebyshev polynomials (1854)

 Tn(x ) = cos(n arccos x) for n = 0, 1, 2, ...
 and

 Un(x) = sin(n arcsin x) for n = 1,2,3,...

 - Chebyshev theorem (1953) on the integration of binomial differentials
 f xm(a + bxn)pdx, where a, b are real numbers and m, ra and p are rational
 numbers, cannot be expressed in terms of elementary functions for any m, ra
 and p, except in the case where (at least) one of p, (m+l)/ra and p+(m+l)/ra
 is an integer.

 - Chebyshev approximation (1853) is a problem of best uniform approxi-
 mation of a continuous function by algebraic polynomials of degree not ex-
 ceeding ra.
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 - Chebyshe v inequality (1882), which we discussed in Section 2. Moreover,
 well known are the Chebyshev set, Chebyskev alternation theorem, Chebyshev
 iteration method (1881), Chebyshev root-finding method, Chebyshev quadra-
 ture formula (1874), Chebyshev system, Chebyshev constant, Chebyshev cen-
 tre, Chebyshev net (1878), Chebyshev node, Chebyshev differential equation,
 etc.

 He was the founder of the St. Petersburg Mathematical School (called
 also Chebyshev School) and had such illustrious students as: A.N. Korkin
 (1837-1908), E.I. Zolotarev (1847-1878), A.V. Vassiliev (1853-1929), A.A.
 Markov (1856-1922), A.M. Lyapunov (1857- 1918), C.A. Posse (1847-1928),
 D.A. Grave (1863-1939). V.A. Steklov J[1864-1926), G.F. Voronoi (1868-
 1908), and A.N. Krylov (1863-1945).

 His mathematical work contributed significantly to the powerful mathe-
 matical tradition which we find in the Soviet Union today.

 Chebyshev retired from the university in 1882, and at the age of 73 died
 from paralysis of the heart in St. Petersburg on December 8 (November 26)
 1894. A selection of Chebyshev's research was published in two volumes by
 Markoff and Sonin [19] and was translated into French in 1962. In 1946-51
 the Soviet Academy of Sciences edited in five volumes his Complete Collected
 Works ([11]). For more information about Chebyshev we refer to [11], [12],
 [19], [9] and to the references given in [9].
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