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 Density-to-deep-Z-density continuous
 functions

 1. Preliminaries

 The class of real functions continuous with respect to the deep-Z-density
 topology on the range and the density topology on the domain coincides with
 the class of all constant functions. This determines of the last class from the

 sixteen classes of continuous functions C{T',T2) = {/: (R, T') - ► (R, T2)},
 where T,- stands for ordinary, density, Z-density or deep-Z-density topology
 [2]-

 The notation used throughout this paper is standard. In particular, R
 stands for the set of real numbers and N = {1, 2, 3, . . .}. For A,B C R and
 d € R the complement of A is denoted by Ac, the Euclidean distance between
 A and B by dist(A, B); i.e., dist(A, B) = inf{ļx - y' : x 6 A, y 6 B} and we
 define B - d = {x - d 6R:ié B} and dB = {dx G R: x G B}. The families
 of Lebesgue measurable subsets of R and of subsets of R with Baire property
 are denoted by C and B, while Af and Z stand for the ideals of Lebesgue
 measure zero and of first category subsets of R. If A G C, we denote its
 Lebesgue measure by m(A).

 To define the density topology T and the deep-Z-density topology T x>
 we need the following notions of density and deep-Z-density points [8, 10].

 Let A E C. A number x, not necessarily in A, is a density point of A if

 Urn m(An(*-M + *)) = L (1) h-> o+ 2 h

 The set of all density points of A 6 C is denoted as The family of
 sets

 Tm={A<eC:AC*«(A)}

 forms a topology on R [8, 4] called the density topology.

 1 Received support from a West Virginia University Senate research grant.
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 We say that 0 is a deep-T-density point of a set B G B [10] if there exists
 a closed set A C B U {0} such that for every increasing sequence {nm}mçN
 of natural numbers there exists a subsequence {nmp}PeN such that

 Km XnmpAn(-i,i) = X(_u) 1- a.e. (2)

 It is worth noticing that condition (2) is equivalent to the fact that the set

 liminfnmpA = un nmpA (3)
 9ÊNp>9

 is residual in (-1, 1). We say that a point 6 is a deep-T-density point of
 B € B if 0 is a deep- X-density point of B - b. The set of all deep-X-density
 points of B € B is denoted as The family of sets

 TT> = {BeB:Bc$v(B)}

 forms a topology on R called the deep-T-density topology [6, 10].
 We will use also the following dual versions of the density points. We say

 that X is a dispersion ( deep-X-dispersion ) point of A if a: is a density (deep-
 X-density) point of A°. In particular, 0 is a deep-X-dispersion point of A if
 there exists an open B D (A ' {0}) such that for every increasing sequence
 {nm}meN °f natural numbers there exists a subsequence {«mp}PeN such that

 (-1, 1) H P| (J nmpB = (-1, 1) D limsup(nmpB) G X. (4)
 9€Np>Î p^°°

 The symbols Const , C and Cjyx> stand for the classes of real functions that
 are constant, ordinary continuous and continuous with the density topol-
 ogy on the domain and deep-X-density topology on the range, respectively.
 Baire*l denotes the class of all functions /: R - ► R with the property that
 for every perfect set P there is its nonempty portion Q = P fl (a, 6) such that
 / restricted to Q is continuous [7].
 We say that any of the sets UneN(an> bn) or UneN[°n5 bn' is a right interval

 set of a point a € R if an+i < &n+i < an < 6n for n G N and limn-,.,» an = a.
 In the case when a = 0 we simply say that it is a right interval set.
 We need also the following two propositions. The first one can be found

 in [1, Lemma 2.4]. (Compare also [9, Theorem 1] and [10, Theorem 2].) The
 second in [2, Lemma 2.4].
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 Proposition 1. If E - Un€N[an>&n] is a right interval set such that

 (i) linLn- »oo (6„ - an)/an = 0; and

 (ii) linin- <-oo ^n+l/^n = 0)

 then 0 is a deep-X-dispersion point of E. In particular, E° G T-p.

 Proposition 2. Let C C (0, 1] be a closed nowhere dense set and let
 {^n}nçN be a decreasing sequence of positive numbers such that the limit
 limn_oo bn+i/bn = 0. Then 0 is a deep-I -dispersion point of the set

 E = (J 6nC'
 n€N

 In particular , E° £ Tp.

 2. Continuous functions

 We will start this section with the following lemma.

 Lemma 3. Let /:R-»R 6e o measurable function such that /( 0) = 0 and
 let c € (0, 1). If E = Un€N[an5&n] is a right interval set such that , for every
 n € N, an > cbn and {<fn}neN is a sequence from (0, 1) such that

 »»(/-»([«„A]) n (o,dn)) > dn/2, (5)

 then f £ CjsjT).

 Proof. The sets /-1([anł &n]) H (0, 1) are pairwise disjoint and bounded.
 Therefore linv,-,,» m((J*>n /_1([aJfeł bk') H (0, 1)) = 0. From this and (5) it
 follows that lim^oo dn = 0.

 Taking a subsequence, if necessary, we can assume that

 lim bn+1/bn = 0.
 n-rOO

 We may also assume that an = c6n, because decreasing an does not change
 (5).

 There are two cases to consider:
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 (1) there is a point x € (c, 1) and an e > 0 such that such that for every
 nontrivial interval I C (c, 1) containing x and for every k 6 N there is
 njt > k with m(f~1(bnitI) D (0, dnk)) > ednk, and

 (2) for every x € (c, 1) and every e > 0 there exists an interval I C (c, 1)
 containing x and an k 6 N such that m(/-1(6n7) fl (0, dn)) < edn for
 every n > k.

 Case (1). Let x and e be as in the assumption. Put no = 0 and, by
 induction on k 6 N, define a closed interval 7jt C (x - l/k,x + l/k) D (c, 1)
 and an n* > n^-i such that

 m(/_1 (&„*/*) n (0 ,dnk)) > ednk. (6)

 Then, by Proposition 1, 0 is a deep-J-dispersion point of the interval set
 D = 'Jnen^nkh, while d(f~1(D), 0) ± 0, because

 liminfm(/"(g) n(Q.<))>e>0,
 k-*oo dnk

 Hence, Dc € T p and /-1(Z)C) ^ Tv; i.e., / ^ CVi>-
 Case (2). Let {qk'. k 6 N} be an enumeration of the rational numbers in

 (c, 1) and let ê £ (0, 1/2). Put n0 = 0 and, by induction on k G N, define an
 open interval 7* containing qk and a number n* > Uk-i such that

 m(/ 1(bnkInk) n (0, dnk)) < •

 Let C = [c, 1] ' UfceN Ink- Then, C is closed and nowhere dense. By Propo-
 sition 2, 0 is a deep-X-dispersion point of E = U*€N &nfcC- So, Ec G Tv On
 the other hand, 0 is not a dispersion point of /_1(E), as

 |iminfm(/-(g)n(0,<)) > ,.minfm(/-(VC)n (",<))
 fc-oo dnk *-o° dnk

 - 2 2n" - 2

 Thus, f~l(Ec) ČT# and / £ CVp.

 Now we are ready for the main result of this section.
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 Lemma 4. C fi Cmv = Const.

 Proof. Evidently, Const C C Í1 Cm v. To prove the opposite inclusion, let
 / G C ' Canst. We will show that / £ 6Vr> by using Lemma 3. Let a < b
 be such that f(a) f(b). We may assume that f(a) < f(b) and, by the
 continuity of /, that /((a, 6)) = (/(a), f(b)). We may also assume, modifying
 of / in a linear way, if necessary, that /(a) = a - - 1 and f(b) = b = 1.
 Then, we obtain /(-1) = -1, /(1) = 1 and /((-1, 1)) = (-1, 1).

 We construct, by induction on n G N, the sequences: {an}, {6n}, {cn}
 and {dn} of real numbers and sequences {/n} and { Jn} of intervals. We start
 by putting a0 - c0 = -1, b0 = d0 = 1 and I0 = [-1,1]- Then we procede
 inductively to obtain the following conditions:

 (®) In = [^raj ^n]j

 (b) f(cn) = an and f(dn) = 6n;

 (c) f((cn,dn)) = (an,bn);

 (d) In G {[an_i, (an_i + 6n_ i)/2'J, [(an-i + &n-i)/2, 6n-i]};

 (e) J^cian-A/n);

 (f) m(/-Vn) n [e«-]., ¿n-ļ]) > (dn.! - Cn_0/2.

 The inductive step is self-explanatory. First, select /„ as in (d) to satisfy
 (f). If /„ = [«n-i, («n-1 + bn- i)/2j then we put cn = cn_x and dn = rriin{x G
 [c„_i, d„_i]: f(x) - (an_i + 6„_x ) /2} . In the other case, proceed similarly.

 Let X G f1neN[cn> dn]. Then, f(x) G f|n€N In- We may assume, translating
 /, if necessary, that x = 0 = f(x).

 Evidently, m (/„) = 2m(/n+i). A simple argument shows that for every
 n G N either dist(<7n,J¿) > m(J„)/4 or dist( J„+1, /j) > rn( Jn+1)/4 for all
 j > n + 2. This allows us to choose a subsequence {njt} such that

 dist(«/nfc, 0) > m(J„J/4 (7)

 for all k G N. It is easy to assume that a subsequence {n^} is choosen
 in such a way that the intervals { Jnk } are monotone and on one side of 0.
 For simplicity we assume that E = UfceN Jnk is a right interval set. Then,
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 condition (7) implies that minJnfc > (1/5) max Jnk. Thus, the first part of
 the assumptions from Lemma 3 is satisfied for the set E with c = 1/5. To
 finish the proof we will show that the second part is satisfied as well.

 First notice that for infinitely many k we have either

 m(/"VnJn[0.<-ll) > m(/-1Unt)n [Cw»-1,0]) ^
 1 Cnfc_i

 or the converse inequality (where, 0/0 is considered to be 0.) Without loss of
 the generality we may assume that (8) holds for every k. But this, together
 with (f), implies that

 m(/_1(J„J n [0, dnjt_i]) > d„fc_ i/2.

 Thus, the assumptions of Lemma 3 are satisfied and Lemma 4 is proved.

 3. General case

 For the next step, the following definition and lemma are needed [5, Lemma
 29.1].

 A partition of a set E is a pairwise disjoint family II = {jE1,: i E A}
 such that U«€A Ei = E- Note that any partition II can be associated with a
 function F:E -* A such that F(x) = F(y ) if, and only if, x and y belong to
 the same E ¿ € II. Conversely, any function F:E -* A determines a partition
 of E.

 For a set A and n G N define

 [A]n = {B C A: card (B) = n} .

 If II = {Ei~. i 6 A} is a partition of [A]n, then a set H G A is homogeneous for
 the partition II if, for some i 6 A, [i/]n C E¡. That is, all n-element subsets
 of H are in the same piece of the partition II.

 Lemma 5. (Ramsey's Theorem) If n,k G N, then every finite partition
 II = {Eļ, Eļ, . . . , Ek} of [N]n has an infinite homogeneous set. In other
 words, for every F: [N]n - ► {1, 2, . . . , k} there exists an infinite H C N such
 that F is constant on [H]'
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 The next lemma combines the proofs of the theorems that density contin-
 uous functions and deep-X-density continuous functions are in Baire*l class
 [3, Theorem 3], [1, Theorem 4.2].

 Lemma 6. Cjsfv C Baire*l.

 Proof. Assume to the contrary that for some perfect set P the set

 Z = {x Ç. P' f'p is not continuous at x}

 is dense in P.

 We will construct sequences: {xn}n€N °f points of P, {(an, &n)}n€N of
 open intervals, { «7n}n€N compact intervals, and { /„} neN °f open intervals
 having the same midpoint as the corresponding Jn , and contained in that
 corresponding Jn. The construction is inductive, and aimed at having all the
 objects obtained satisfy the conditions (a) through (f) listed below.

 Start by choosing x0 € Z, (do, bo) = (x0 - l,£o + 1) and /0 = J0 = 0.
 Assume that for all n 6 N and alii G N, 1 < i < n, it holds that:

 (a) f(xi) 6 Ii C J¿;

 (b) J,_i fi Ji = 0 and, for i > 2,

 m(J,) < ^min{dist(J¿, Jk+i)'- k G N, k < i - 1};
 O

 (c) m (Ji) < u(f'p, Xi) and 0 < m (/,) < 2~'m( J¿);

 (d) Xi G (o iļbi) fi Z C [o», 6¿] Œ

 (e) (bi - a,) < 2-'; and,

 (f) míZ-^/j) n (a¿, bi)) > (1 - 2~*)(6¿ - a,-).

 To continue with the inductive step, note that by (c) and (d), we are able
 to choose

 ūtPnr'ranļ..,»,).
 If y € Z, then let xn+ļ = y. Otherwise, f'p is continuous at y. In this case,
 the fact that Z is dense in P guarantees the existence of

 ®n+i e p n / -^J') n (an, bn) n z.
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 Because Jn is closed and xn+i G Z, there is a closed interval Jn+i centered
 at /(xn+i) such that Jn+1 D J„ = 0, 0 < m(Jn+i) < u;(/|p,xn+i) and, for
 i > 2,

 m(J,) < -min{dist(Jfc, Jjt+i): k £ N,k < i - 1}.
 O

 Setting Jn+ 1 to be the closed interval centered at /(xn+i ) with length equal
 m(Jn+i)/2n+1, it follows that (a), (b) and (c) are true with i = n + 1. Next,
 use the approximate continuity of / at xn+i to find an interval (an+i, 6n+i) C
 (on, bn) containing xn+' such that (d), (e) and (f) are satisfied. The induction
 is complete.

 Let

 { x}= flk.in].
 r»eN

 We show that there is an increasing sequence {n,},eN of natural numbers
 such that

 (1) f(x) is a deep-Z-dispersion point of (J¿eN ^n, i and

 (2) X is not a dispersion point of /-1 (UtgN^n<)-

 This implies that / ^ Cj^v
 First notice that x is not a dispersion point of /-1 (U«€N for every

 sequence {nt},eN as, by condition (f),

 ļ. m(/ 1 (-^n> ) fl (qn.ł bni))
 m((ano6n,))

 To find an increasing sequence {n,},eN of natural numbers such that con-
 dition (2) is satisfied we will consider two cases.

 Case Io. There exists an increasing sequence {n¿},-6N of natural numbers
 such that the Jni are pairwise disjoint.

 By taking a subsequence of {n,},-6N, if necessary, it may be assumed that

 IU*
 «eN

 is either a right or left interval set. For simplicity, assume it is a right interval
 set.
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 Let Jni = [ci, di] and = (a,-,/?¿). Then

 f(x) = 0 < di+ 1 < Ci < a, < ßi< di

 for all i. Condition (c) states that

 ßi - <*i _ < _J_
 di -Ci m (J„t.) 2n«

 Let be the common center of /„ and Jn, for n > 0. Then

 Um êi^i < um < Hm ñz* = 2 lim Vpil = o.
 »-►oo »->oo 2Tn. t-foo - Cj di - Ci

 The above allows us to choose a subsequence of {n,}t€pj satisfying the as-
 sumptions of Proposition 1.

 Case 2°. There is no pairwise disjoint subsequence {Jn<}i€N °f the se-
 quence { Jn}neN-

 Let us first consider the subsequence {«/2n+i}neN, indexed by the odd
 numbers, of the sequence { Jn}neN- Define a partition function F: [N]2 - »
 {0,1} by

 F ({n, m}) = 1 if, and only if, J2n+ 1 H J2m+ 1 ^ 0-

 By Lemma 5 (Ramsey's Theorem) there exists an infinite homogeneous sub-
 set {n¿}t-6N of N; i.e., a sequence {n,},€^ of natural numbers such that for
 some k E {0, 1}, F({n¿,nj}) = k for all positive integers i ^ j. But k = 0
 would contradict the definition of the case 2°, which is currently considered.
 Thus k = 1; i.e.,

 ^2n,+l H Jļrij+l i1 0 (9)
 for all nonnegative integers i ^ j.

 Now let us repeat the Ramsey- type argument, which was used above, for
 the even-numbered counterparts of { «/2n¿+i}¿€N- Define G: [N]2 - > {0, 1} by

 G({*'j}) = l if, and only if, J2„, fi J2n> ± 0.

 By Lemma 5 (Ramsey's Theorem) there exists a subsequence {nt-a}iepj of
 {nť}ieN such that

 Ji m, n J2nit Î 0 (10)
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 for all nonnegative integers s t, while condition (9) is still preserved, or
 more precisely

 «^2n¿,+l n J2nit+1 ^ 0 (11)

 for s ^ t. Define e = dist (j2n;0,«/2n<0+i)- By (b), e > 0. Moreover, by (b),
 (10) and (11)

 B0 = (J Jim, C ix: dist (x, J2nio) <
 sGN Ó }

 and

 Bi = (J ^ni.+i C ļx:dist(x, J2„,0+i) < f ÖJ }• ígN ÖJ
 Hence

 dist(B0, Bļ) > ^ > 0. O

 Note that

 <So = U Bo
 «>0

 and

 •Si = U ■^2n»«+1
 «>o

 Thus dist(5o, Sļ) > 0, which implies that either

 dist(/(x), So) > 0

 or

 dist(/(x),Si) > 0.

 This clearly means that /(x) is an X-dispersion point of either So or S'.
 This finishes the proof of Lemma 6.

 Now, we are ready to prove our main theorem.

 Theorem 7. CVz> = Const.

 Proof. Evidently, Const C CVz>. To prove the other inclusion, let / G
 C¿fv- By Lemma 6 the set

 U = int({x E R: / is continuous at x})
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 is dense. Notice that Uc does not have any isolated points, because the
 approximately continuous function / has the Darboux property. Thus, the
 set P = Uc is perfect. We prove that P = 0. By way of contradictions let
 us assume that P 0 and let {(on, 6„):n € N} be an enumeration of all
 components of U. Notice that, by Lemma 4, / is constant on any interval
 (an, bn) and, by the Darboux property, also on [an, 6n].

 Now, let us use Lemma 6 for / and P. Then, there is a nonempty portion
 Q = P fi (c, d) on which / is continuous. The set P is nowhere dense, so
 there exists an n such that (c, d) fi (an, bn) 0. Then, (c, d) U ( an , bn) is an
 interval properly containing (an, bn). We will obtain a contradiction with the
 assumption that (an, 6n) is a component of U by showing that / is continuous
 on J - (c, <i)U(an, 6„). So, let x € J. If x € U, then evidently / is continuous
 at x. If x € P, then choose a sequence {x,},-6fsj converging to x and define

 {Xi On for if Xi Xi € G P On for Xi G (ön, &n)*

 Then, y,- G P, /(x,) = f{y%) for i € N and lim,-»,» Vi = x. Moreover,

 ļim f(xi) = ļim f(yi) = f(x)
 t - ►OO t - ►OO

 as f'p is continuous at x. Hence, / is continuous at x.
 This finishes the proof of Theorem 7.
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