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 Abstract

 Suppose that F is a field of subsets of a set U, N is a positive integer,
 is a sequence of functions from F into exp(R) and fi is a real, nonnegative - valued
 finitely additive function on F. Suppose that "EN is the set of all N - dimensional
 subintervals of Rw, It is shown that there is a nonnegative - valued function A
 from EN X F into R such that for each V in F, A(-,V) is finitely additive on
 EN , such that if for k = 1, ..., N, a* is /z - summable (see "Fields of Sets, Set
 Functions, Set Function Integrals, and Finite Additivity", Internat. J. Math. &
 Math. Sci., Vol. 7 No. 2 (1984) pp 209 - 233) and g is a real - valued function on
 RN satisfying certain continuity and boundedness conditions, then

 /••• / [g [ -A(v)] -► 0M<*u-,<xn))(U), J J R J U

 R= [HiļKļ] X • • • X [Hn',Kn], mìn{-Hi,...ì-HN,Kiì...,KN} - ► oo,

 where <tm is the /i - summability operator and all integrals are refinement - wise
 limits of the appropriate sums.

 1. Introduction.

 We begin by stating a "classical" distribution function representation theo-
 rem:

 Theorem C. Suppose that {0, fi} is a measure space and gris a real- valued
 function defined on Í2, measurable and // - summable. For each x in R, let
 F(x) = ¿x({u>|0(tí;) < »}). Then J^gdfi = f+£xdF(x).

 Our purpose in this paper is to extend, from 1 to a given positive integer N,
 a previous generalization (see [6,8] and the Main Theorem below) of this theorem.
 We begin by once again (see [8,11]) considering a notion of distribution function
 for a set function, as before, in a finitely additive setting. We proceed as follows:

 AMS (MOS) Subject Classifications (1970): Primary 28A25; Secondary 28A10.
 Key words and phrases. Set function integral, summable set function, joint

 distribution function representation.
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 Suppose that U is a set, F is a field of subsets of U, p is a real nonnegative -
 valued finitely additive function on F. Suppose that a is a function from F into
 exp(R). As a slight modification of a previous definition (again, see [6,8]), we give
 the following:

 Definition 1.1. ß(a) denotes the function from RxF into exp({0, 1}) such
 that if t is in R and I is in F, then ß(a)(t, I) contains 1 iff x < t for some x in
 a(I), and contains 0 iff t < x for some x in a(I).

 Before proceeding, we refer the reader to section 2 of this paper for the notions
 of L and G, the sum supremum and sum infimum functional, respectively.

 Let us note that if a < 6, a is a function from F into exp(R) and t is in R,
 then, even if the range union of a is bounded and J^a/i exists, J uß{a )(t, -)/i does
 not necessarily exist. That observation is what caused us in [8] to consider L and
 G and define the following upper distribution and lower distribution functions,

 u(a)(ť) = t L(ß(a)(t, • )[i ) and v(a)(ť) = Í G(ß(a)(t, •)/*), t in R,
 J u J u

 respectively. In [8] we showed interrelations between the integrabili ty of apt and
 the behavior of u(a) and u(a), given in the first five theorems immediately below
 and stated here with the minor changes mentioned above.

 Theorem l.A.l. If V is in F and a has bounded range union and s < ť,
 then

 / L(ß(a)(s,-)^) - f G(/»(aXt, •)/•)< (l/(< -'))[ J / LM - J ( G(«r)'. J V J V J V J V

 Theorem l.A.2. If V is in F, range union a Ç (a; 6] and h is a function
 defined, continuous and nondecreasing on [a; 6], then

 f [h(x)d Í L(ß(a)(x, •)//)] < L G(h(a)fi) < f L(h(a)fi) <
 Ja J V J V J V

 hh(x)df G(ß(a)(z, >)]. Ja J V

 Theorem l.A.3. If V is in F and range union a Ç (a; 6], then the following
 three statements are equivalent:

 1) JyCifjL exists,
 2) uv(a)(x+) = t;v(^)(^+) on R, where for each t in R,

 uv(a)(t)=[ L(ß(oc)(t,-)n), vv(a)(t) = f G(ß(a)(t, •)//)
 J v J v
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 and

 3)

 f [xd f L(ß(a)(x, -Jfi)) = [ [xd [ G(ß(a)(x, )¡i )].
 J a J V J a J V

 We then obtained the following set function version, for the bounded case, of
 Theorem C :

 Theorem l.A.4. If V is in F, range union a Ç (a; 6] and h is a real - valued
 function defined and continuous on [a; 6] and fyOtp exists, then

 f [h(x)d f L(ß(oc)(x,-)n)' = f h(a)p = Í [h(x)d f G(ß(a)(x,-)fx)]. Ja J V J V Ja J V

 Finally, we obtained the following "summable" (see section 2) extension of
 Theorem l.A.4:

 Theorem I.A. 5. Suppose that a is fi - summable (see section 2 and [2,11]).
 Suppose that g is a function from R into R, continuous and such that
 {g(x)/'x' : 1 < |x|} is bounded. Then g(a) is ļi - summable and if Q is L or G,
 then

 aM<*))(U) = J [ [g(x)d J Í Q(ß(a)(x, •»], J - oo J U

 where is the ß - summability operator (see section 2 and [2,11]).

 We pause here to point out a matter that is already apparent and which
 will become more so as our work progresses, namely the use of "zero - one set
 functions", i. e., functions from F into exp({0, 1}). These have found application
 in theorems (see [1,3,4,6,7,8,9,10,12,13,14,15,16]) about absolute continuity, set
 function integrabili ty, closest approximations and their representations, function
 decompositions and, as in this paper, distribution function representations.

 Now suppose that N is a positive integer. Let "EN denote the set of all
 subintervals of R^. Our main task in this paper is to extend Theorem I.A. 5,
 first to a sequence of functions from F into exp(R) with bounded range
 unions (see Theorem 3.1), then to a sequence {ajfe}^Ļļ of functions from F into
 exp(R) that are /z - summable. With reference to the nonintegrability statements
 and the consequent use of L and G as discussed earlier in this introduction, we let,
 for each k = 1, ..., N, Qk be L or G and define the following function on EnxF :

 B(N'R,V) = (f[[ J f Qk(ß(ak)(yk,-)fi)~ J f Q* (/?(<>*)(**, » D/MV)""1], *=i J v J v

 where R = [xi;yi] x • • • x [xn;vn]-
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 We observe that for each V in F, ß(N'-, V") is a real - valued function, finitely
 additive on "E,N .

 The principal and final result of this paper is the following representation
 theorem, which we shall prove in section 5:

 Main Theorem. Suppose that is a sequence of functions from F
 into exp(R), n - summable (see section 2). Suppose that g is a function from RN
 into R, continuous and such that

 {<7(^1, ..., XN)/max{'xi I, ..., ļx^|} : 1 < max{|xi |, ..., |xat|}}

 is bounded. Then g(oci, ...,ajv) is ¡1 - summable (see [5]) and

 /■■■/ [if ^""(v)] - <v(i(°i J J R J U

 R= [Hi;Ki' X ••• X [Hn;Kn], min{-íři ,...ì-Hn,Ki,...,Kn} 00.

 2. Preliminary theorems and definitions.

 In this paper the integrals discussed will either be integrals of functions defined
 on sets of elements of for some N, or integrals of functions defined on F.
 Briefly, and we shall expand on this further below, both types shall be limits, for
 subdivision refinement, of the appropriate sums. The notions of subdivision and
 refinement, and the integrals that arise therefrom, as they pertain to "EN and F,
 respectively, are sufficiently similar that we shall make our more detailed remarks
 for F and assume that the reader can effect the necessary modifications for E^,
 e. g., "mutually exclusive" for elements of F vs. "nonoverlapping" for elements of
 ZN

 We shall let r(F) denote the set of all functions from F into exp(R).
 We adopt the convention that if 6 is a function from F into R, then 6 shall

 be regarded as "equivalent" to the following element of r(F);

 «V, {«(V)}) : V in F).

 If V is in F, then the statement that D is a subdivision of V means that D
 is a finite collection of mutually exclusive sets of F with union V . The statement
 that H is a refinement of E, denoted by H «E, means that for some W in F,
 each of H and E is a subdivison of W and each element of if is a subset of some
 element of E.

 If S is a set, 7 is a function with domain S and range a collection of sets and
 T Ç 5", then the statement that b is a 7 - function on T means that b is a function
 with domain T such that if x is in T, then b(x) is in 7(2).
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 Suppose that 7 is in r(F ) and V is in F. The statement that K is an integral
 of 7 on V means that K is in R and if 0 < c, then there is D « {V} such that
 if E « D and b is a 7 - function on E, then

 |jr-£i(/)|<c.
 E

 There is no more than one K' such that K' is an integral of 7 on V"; if, then, K
 is an integral of 7 on V, then K is unique and shall be denoted, variously, by

 / TOO, / 7 (J), Í 7, etc., J v J v J V

 depending upon circumstances. We shall use the phrase "fvj(I) exists" to mean
 that there is K such that K is an integral of 7 on V. Now, if /^7 exists, then for
 each W in F, fw7 exists and

 {(W, f y):Win F}, J w

 which we shall denote by f 7, is a real-valued finitely additive function on F.
 Again, suppose that 7 is in r(F). If V is in F, then the statement that 7 is
 -bounded on V with respect to D means that D « {U} and

 b(J) : E « {V}, b a 7 - function on E, E C H for some H « D}
 E

 is bounded. We have the following results:

 Theorem 2.A.1 (see [11]). If 7 is in r(F) and is ^2 - bounded on U with
 respect to D , then the following statements are true:

 1) If V is in F, then 7 is ^ - bounded on V with respect to D.
 2) Suppose that Ld( 7) and Gd( 7) denote the functions with domain F given,

 for each I in F as, respectively, the sup and inf of

 {V ĶJ):E « {/}, b a 7 - function on E, E Ç H for some H « D}.
 E

 Then, if V is in F, Hi « {V}, H2 « {V} and for i = 1,2, M « Hi, then

 £GD(7)(J) < < EMTXJ).
 Ht M M Hi
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 3) If V is in F , then the following existence and inequality holds:

 f Gd( 7) < f Ld{"I)- J V J V

 4) If V is in F, then exists iff

 f Gd{i) = [ Ld{ 7), 7 v ./ v

 in which case

 / GD(7) = i 7= I Ld( 7)-

 5) If V is in F, Q is or Gd, E « {V} and 0 < c, then there is H « E
 and a 7 - function a on H such that

 E io(t)(j) - °(J)i < c-
 H

 We shall, when circumstances permit, in particular when the elements of r(F )
 under discussion are ^ - bounded with respect to {ř7}, write L and G without
 subscript.

 Theorem 2.A.2 (see [11]). Suppose that each of 7 and 6 are in r(F ) and ^2
 - bounded on U with respect to D. Then 7 + 6 is - bounded on U with respect
 to D and the following statements are true:

 1) For each I in F,

 G(7)(/) + G(6)(I) < G(1 + <)(/) < 1(7 + S)(I) < L(7)(I) + L(6)(I).

 2) If c is in R, then 07 is ¿2 ~ bounded on U with respect to D and for each
 I in F,

 G(cy)(I) = cG(j)(I) and L(cj)(I ) = cL(y)(I) if 0 < c, and

 G(cj)(I) = cL(y)(I) and L(cj)(I) = cG(y)(I) if c < 0.

 3) If /^7 exists, and Q is L or G , then f Q( 7 + 8) = /7 + fQ(S).

 We now state Kolmogoroff's differential equivalence theorem.

 Theorem 2.K.1 (see [11]). If 7 is in r(F) and J v 7 exists, then for each I in
 F, Jj7 exists and the following existence and equality holds:

 / J7OO - /^7l = °,
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 i. e., if O < c, then there is D « {U} such that if E « D and a is a 7 - function
 on E , then

 ^2 K J) - J / tI < c, E J 1
 so that if H Ç E and b is a 7 - function on H , then

 X) w-o - [ ?! < c-

 We refer the reader, again to [4], for certain of the more immediate conse-
 quences of Theorem 2.K.1; these consequences treat conditions under which, given
 an element 7 of r(F ) such that fyj exists, Jjj and 7 (I) can be interchanged.
 Throughout this paper there will be portions of arguments in which assertions
 of integral existence or integral equivalence follow from Theorem 2.K.1 and these
 consequences. In such cases we shall feel free to simply make these assertions and
 leave the details to the reader. Now, before we continue with some more special-
 ized matters, we remark that we shall often assert and use, without preamble,
 certain simple inequality and linearity existence and equivalence properties of set
 function integrals.

 We shall use the convention that if each of p and q is in R, then p/q shall be
 0 if q = 0 and have the usual meaning otherwise. It shall be further understood
 that 0° shall be 0 (refer, among other things, back to the Main Theorem in the
 introduction and Theorem 2.2 below). We now state a theorem concerning set
 function integral existence.

 Theorem 2.A.3 [5]. Suppose that S = [ai; 61] x ••• x [ajv;6jv] is in EN , g
 is a real - valued function defined and continuous on S', {«fcJfcLj is a sequence of
 elements of r(F ) such that for each k = 1, ..., TV, range union a* Ç [a*; bk] and
 fyOikli exists. Then Jug(ai,...iaN)fi exists.

 We now state Corollary 2.2 and Corollary 2.3, which are, respectively, imme-
 diate consequences of Theorem 2. A. 4 and Corollary 2.2. We leave the easy proofs
 to the reader.

 Corollary 2.2. Assume the hypothesis of Theorem 2.A.3, but without spe-
 cific reference to g. Then for each V in F the following existence and equality
 holds:

 NN N

 / (Ë J = J / ([fi( J ctm»"-1))- J v Jb=l J v k=l J v *= 1 J

 Corollary 2.3. Suppose that for k = 1, ...N, £* is in Lip(fi). Then for each
 V in F the following existence and equality holds:

 / (ng.,«»//»))/» = J / «níU»)//""-1); J V J V
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 furthermore, /((n^Lj^*)//^ *) is in LipÇfi).

 Corollary 2.3 immediately implies that for as defined for the Main The-
 orem, R = [xi; yi] X • • • x [xjv; j/at], and for k = 1, ..., N ,

 6 = / Qk(ß(atk)(yk, •)/*) - J Qk(ß(ak)(xk, -)n),

 that for each V in F , JVB^N'R, •) exists.

 Before we proceed we remark that for expressions involving integrals dealing
 with functions defined on subsets of 'BN x F, we shall feel free, as in Corollary 2.3
 above, when there is little risk of ambiguity, to either omit "variables" or put dots
 in the "variable" positions.

 Suppose that a is an element of r(F). We observe, much as before (see [8]),
 that if s < t and V is in F, then

 [ G(ß(a)(s, » < / G(ß(a)(t, •>) < J V J V

 [ L(ß(a)(t,-)^)> J Í L(ß(a){s,.)fi). J v J v

 In what follows, among the results discussed, we shall state three well - known
 theorems: 2.1.1, 2.1.2 and 2.1.3. They are from a large variety of well - known
 multiple integral facts. We give them in a form that most immediately applies to
 the matters of this paper.

 Theorem 2.1.1. Suppose that 0 < M, W = [ai; &i] x • • • x [ajv; &n], {hk)k=1
 is a sequence of real - valued functions such that if k = 1, ..., N, then hk is defined
 and nondecreasing on [a*; &*]. Suppose that B is a function whose domain includes
 the subintervals of W such that if [ari ; yi] x • • • x [x/v; UN ] = -R Ç W, then

 N

 B(R) = M ļ[(hk(yk) - hk(xk)).
 k= i

 Then the contraction of B to the subintervals of W is nonnegative - valued and
 finitely additive.

 Definition 2.1. If W is in then A{W)+ denotes the set of all real -
 nonnegative - valued functions defined and finitely additive on the subintervals of
 W.

 We also note that if m is a positive integer, W is a subinterval of HN , {cj}^1
 is a sequence of nonnegative numbers and {i?¿} £Ļļ is a sequence of elements of
 A(W)+, then J2Zi is in
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 The next theorem is a Helly - type convergence result, whose corollary we shall
 use in the sections 3 and 5. The argument is carried out by well - known uniform
 continuity, consequent uniform convergence of integral approximation sums and
 "point - wise" convergence observations, and we therefore leave it to the reader.

 Theorem 2.3. Suppose that R is in EN , g is a real - valued function defined
 and continuous on R , (S, <*) is a partially ordered and directed system and Z is
 a function with domain S such that for each y is S, Z(y) is in A(i2)+. Suppose
 that H is a real - valued function defined on the subintervals of R such that if Y

 is a subinterval of R, then

 Z(y)(Y ) - H(Y), <* .

 Then H is in A(i2)+and

 Corollary 2.4. Suppose that W is in and T is a real - nonnegative -
 valued function defined on {(R, I)'R a subinterval of W, I in F}. Suppose that if
 R is a subinterval of W, then fuT(Ri •) exists, and if V is in F, then T(-, V) is
 in A(W)+. Suppose that g is a real - valued function defined and continuous on
 R. Then, for each Vin F , fvT( •, •) is in A(W)+ and the following existence and
 equality assertion holds:

 J / v [/•••/ J J w *T(v)]= J J f w [gf J V T(v)]. J v J J w J J w J V

 Proof: Let S = the set of all subdivisions of V and <*=<< . Let H, and for
 each D in S, Z(D ) be functions defined on the subintervals of W respectively by

 Z(D)(R) = Vt(B,J), and H(R) = / T(R, •). (2.4.1)
 d J v

 Clearly, for each D in S, Z(D) is in A(W)+ and by hypothesis, for each subinterval
 R of W, Z(D)(R) - ► H(R ), <*. Therefore, by Theorem 2.3 and the definitions
 of<*, Z and H in this argument, it follows that for <* convergence,

 /••■/ J gZ(D) -* J f ■ ■ ■ J f gH = J f ■■ ■ J f gif J T(v)], (2.4.2) J J w J J w J J w J V
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 so that jy[J ' ■ • JwgT( -, •)] exists and is f • • • fw[gfvT( -, •)]•

 Theorem 2.1.2. Suppose that R! = [ai; &i] x • • • x [ajv; &n] and R = [cti ; 61] x
 •••X [a^v+i; ]. Suppose that B^N^ is in A(R')'^ and h is a real - valued
 nondecreasing function defined on [ajv+i; &jv+i]* For each subinterval [pi ; q' ] x
 • • • x [pw; çn] x [pN+i; QN+i] of R, let

 B^N+1'[pi;qi] x • • • x [pat;çn] x 'px+i;qN+i ]) =

 qi] x ••• x [pN'qN]) • (h(<lN+i) - h(PN+i))-

 Then B^N+1^ is in A(i2)+ and, if g is a function defined and continuous on R, then

 / / 9B<n+1>= / [/••• / •,iw+1)B<w>]dfc(iw+i)
 J J R ûn+1 ^ J ß'

 = /••• f [f g(xi,...,xN,-)dh}B(-N'
 J J R' J ajv-j-i

 Theorem 2.1.3. Suppose that R = [ai;6i] x ••• x [ayv;&/v], for each k =
 1 hk is a real - valued function defined and nondecreasing on [0*56*].
 Suppose that v is in {l,...,iV} and / is a real - valued function defined and
 continuous on [a„; bv]. Suppose that B is a function defined on the subinter-
 vals of R such that for each subinterval W = [p' ; qi ] x ••• x [pat; <7 at] of R,
 B(W) = n ÍL,(M») - MP*))- Then

 J ■■■ ļ JB = (j idhv]'^k^(hk[bt) -M«»))-

 3. A representation theorem for an integral set function with bounded range
 union.

 In this section we prove a bounded version of the Main Theorem. Certain of
 our calculations in a later part of the proof, in addition to using Theorem 2.1.1
 and Corollary 2.3, use, in conjunction with differential equivalence, the following
 lemma, whose proof we leave to the reader. It is more specialized than is generally
 necessary, but its form points to its specific application.

 Lemma 3.1. Suppose that a < b, v is a real - valued function defined
 on [a; 6], |u(x)| < M for all x in [a; 6], 0 < K, I is in F, W(-,I ) is a func-
 tion defined and nondecreasing on [a; 6] and 'W(x, /)| < Kfi(I) for all x in
 [a; 6]. Suppose that fbvdW(-,I) exists. Then 'JbavdW(-, I)' < so
 that ' fbavdW(-, I)'/n(I) < M2K.
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 Theorem 3.1. Suppose that ļi is in j4(R)(F)+. Suppose that R = [ai; 6j] x
 •••X [a at; &n] and {ajt}^Ļļ is a sequence of elements of r(F ) such that if k =

 then range union of a* Ç (0*56*], exists and Qk is L or G.
 Suppose that is a function defined on "EN x F as in the Main Theorem by

 B<N'W,I) = (f'{[ J Qk(ß(ak)(yk, >)- 3 Í bii J • 3 '

 where W = [xi; yi] X • • • X [ xn ; y^v].

 Then, if g is a function defined and continuous on R and V is in F, then

 Í g(au...,aN)p= ¡ ••• ¡ [g f Bw(-,-)]. J V J J R J V

 Proof: We use induction. Consider JV = 1. By Theorem I.A. 4, if V is in F ,
 then

 Í g(<* i)ß= í [g(xi)d [ Qi(j9(ai)(xi,-)A*)], (3.1.1)
 J V J at J V

 which is the desired equation for

 B<»( W, I) = ( J QiW.a, )(tft , >) - / «1 W«, )(*i , -m/WVY ], (3.1.2)

 where W = [xi;yi]. Now suppose that N is a positive integer such that for all
 positive integers < N and all V in F the statement of the theorem holds. Suppose
 that the hypothesis for N + 1 holds. Suppose that g is a real - valued function
 defined and continuous on R = [ai;&i] x ••• x [ajv+i; &at+i]- Let R' = [ai ; 6i ] x
 • • • x [a w; bpi] and be a function defined on 3N x F by

 B<"'W,I) = (Jļ[< ļ Qk{ß(«k Xm.-M - f
 (3.1.3)

 where W = [xi;yi] x ••• x [xw;yjv]. Note that if ( T,I ) is in E^+1 x F and
 T = [xi;yi] X ••• x [xN+i;yN+i] and T' = [x^yx] x ••• x [ xN;yN ], then

 B(n+1'T,I) =

 B' >(T,I)
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 Let Q = Qn+i • Suppose that D is subdivision of [aw+i; 6jv+i]. Let h denote a
 function defined on R such that for each xi, x^+i in R,

 h{x i, ...,xjv+i) = g(xi, ...,XN,a,N+i)+

 ,xN,q ) - g(xi, •••iXN,p))/(q - p)] max{min{x^+i -p,q -p},0}.
 D

 (3.1.5)

 We note that for each w in [a#+i; &N+i], the function defined on R' = [ai ;6a] X
 •••X [awî&Tv] by k(xi, ..., xn) = g(xi , is continuous in R', so that for
 each [p; q] in D the function m defined on R by

 ^ _ g(x1,...,xN,q)-g(x1,...,xN,p)
 m{xi, ...,xn+i) ^ _ =

 (9 -P) '

 is continuous on R. Therefore h is continuous on R. In what follows, the successive
 changes in the form or our expressions arise from Theorem 2.1.1, Corollary 2.4,
 and, of course differential equivalence. Now

 /h(a V fi, ...,ajv+i)/x = J / v g(ai, ..., ayv, o,n+i)/j,+ V J v

 [ ^(ai,...,a¿v,g) - g(ai, ...,aN,p) .
 2^ J v

 J v(i( J ' 9Íai > aN, fljv+i V)(M i))]/Ki))+

 Ç/J1/, [(^(ai,...,a;v,ç) - g(ai,...,aN,p))/(q - p)]/z)-

 ( // max{min{°!^+1 - P' 9 - P}' °}^)MJ)] =

 j y([J "■ J R[9(xl,-,xN,aN+l) /*">(,.)]]■

 /6AT+I Id /• Id Q(ß(aN+1)(xN+1,-)iJ,)]/1i(I))+

 ÇA

 /&N+1 flN [max{min{xN+i - P, q ~ p}, 0}]<i «/ / /• [max{min{xN+i - P, q ~ p}, 0}]<i / Q(/?(o;/v+i)(xn+i, -)^)]/M-D) =
 flN + 1 «/ /
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 / ( / i/'" / •*' a;iV,OiV+i)jB(7V)(-, )]]• J V J I J J R'

 /frjv+i ÛJV 1 Id •/ / r
 Id / Q(/?(aiv+i )(xN+1 , »]///(!))

 ÛJV + 1 •/ I

 + Ç/v ( J [ ļ ••• ļ ^[[(g(xu...jXNtq)-g(x i, :.,xN,p))/ (q-p)]B(N) (-,•)]]•

 /bif+i ajv+i [max{min{xjv+i - P,q - p},0}]d J / r [max{min{xjv+i - P,q - p},0}]d / <2(/?(aüv+i)(x;v+i, -)//)]/¿í(J)) =
 ajv+i J I

 I va / • • • A. Wxi

 + Ç/v '^/ /Ä, ^ ~ 9(xi>->XN,p))/(q - p)]B(JV)(-,/)]]-

 /bN+i [max{min{x^+i ~ P,q~ p},0}]d ^ / r [max{min{x^+i ~ P,q~ p},0}]d / Q(ß(aN+1)(xN+1, •»]///(/)) =
 ajv+i ^ /

 /„»/■•■/„w.

 [[(^(xi,...,a;^,ç) - -p)]-

 /a^U111^111111^^1 -P»9-P}»°}]d//W(aN+i)(®N+i,-)/í) B _řA0,

 f ní í JÍNN++'9(Xli-",XNiaN+1}dflQ(P(<*N+1}(XN+1>')tl) „(N), rv,
 J f v ní J ' J í R'

 Y1 Í ([/'"/ Kl/ [(ff(«l,-»®AT,9)-^(®l,...,®JV,p))/(í-p)]-
 ^ ,/ V J J R' J aN + 1

 [max{min{xN+i - p, ç - p}, 0}]cř J Q(ß(aN+1)(xN+li-)fx)'/fi(I)) • 5(iV)(-, J)]] =

 / ([/••'/ [([j(a;i,-,ïAr,aN+i)5(iV+I)(v)]+ J V j j R

 ÇA
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 g(xi,...,XN,p))/(q - p)] * [max{min{xiv+i - P,q - í>},0}]£(iV+1)(-, •)]] =

 i/ I ^ii',"'iAr'aiv+^ y^(iv+i)(T)]+

 Y, J- J R9<~Zl ' XN'J(q~Jp)¡ ""'XN'P) ■ [max{min{xN+i - P,i ~ p},0}]-

 / B<K+1)(v)] =
 J V

 ['"[ [g(xi,:.,XN,aN+i) f B(n+1'-,-)]+ J J R J V

 j-fjY . [max{mill{lN+1 - p, , - p}, 0}]].

 J / B(n+1)(v)] = J V

 I'" I r9^Xu ' XN' aN+1^ + - » Xxi q)~

 g(xi,...,xN,p))/(q-p)'-

 [max{ min{ xN+' -p,q- p}, 0}]] í 5(N+1)(-, •)] =
 J v

 [•••[ [h(xi,...,XN+i) f (3.1.6) J J R J V

 Now suppose that 0 < c. Let T = 1 + f¿(V) + fyB(N+1'R, •). From the
 uniform continuity of g on R it follows that there is a subdivision D of [a/v+i, &at+i]
 such that if (®i, Xjv+i) is in R, then, for h given for g and D as above,

 'g{xļ, ...,Xiv+i) - h(xi, ...,zjv+i)|| < c/3 T, (3.1.7)

 so that

 I Í jr(ai,...,ajv+i)/i [g(Xl, ...,xN+ļ) í £(iV+1)(-, •)] |<
 J V J J R J V

 I/ g(ali...,aN+1)fj,~ h(oci, ..., aN+1)fi' + | / h(cxi, ..., aN+1)p-
 J v J v J v

 /•■•/ 'h(xu...,zK+1)f B("+')(.,.)l|+ J J R J V
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 [(■■■[ [ k(zl,...<XN+l)f B(N+1)(v) )-
 J J R J V

 [• • [ [g(xi,-,XN+i) f .B(N+1)(-,-)]| < J J R J V

 cfi(V)/3T + 0 + (c f B(n+1'R, -))/3 T < 2c/3 < c. (3.1.8) J v

 Therefore

 f g(a1,...,an+1)fi= f "■ f [g(xļ,...,xN+1) f 5(JV+1)(-, •)].
 y V J J R J V

 4. Distribution functions and summability.

 In this section we discuss the notion of summability (see [11]), which is an
 extension of the integrability in sections 2 and 3 to the unbounded case. Thus,
 if o: is in r(F), fx is in j4(R)(.F)+, the range union of a is bounded and JuOifj,
 exists, then the integral J^a/j is a set function extension of the Lebesgue integral
 for the bounded case, and if the range union of a is not necessarily bounded and
 a is "/X - summable", then, as we see in [2,5,11] and below, the "// - summability
 operator" value <r#t(a)(?7) is a set function extension of the Lebesgue integral for
 the "unbounded" case; if the range union of a is bounded, then

 an(a)(U) = / W-
 J u

 We now state some definitions and basic consequences.

 Definition 4.1. Suppose that ¡i is in A(R)(F)+ . Sß denotes the set to which
 a belongs iff a is an element of r(F) such that for some M' and Mļ and all K'
 and Ä2 such that K' < 0 < K2, the following inequality and integral existence
 holds:

 Mi < I max{min{a, < Mi.
 J u

 The following is a condensation of some basic remarks about summability.
 The statements are arranged progressively.

 Theorem 4.1. Suppose that // is in ^4(R)(i?1)+ and ais in S^. Then the
 following statements are true:

 1) If K' < 0 < Kļ and V is in F, then

 /max{min{a, v K2},Ki}fi = v
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 /max{min{a,.K2},0}¿x+ v J / v max{min{o!,0},Ä'i}^ v J v

 (the integral existence requirement alone is sufficient for this).

 2) There is Mi and Mļ such that if V is in F and K' < 0 < K2 , then

 Mi < j max{min{a, 0}, Ä"i}/x < / max{min{a, 0},i$Ti}/x <
 J u J v

 0 < I max{min{o!, Ä"2}»0}/i < / max{min{o;, Ä2},0}/z < M2.
 J v J u

 3) There is exactly one pair (»71, *72)» each term in fl A(R)(.F)+, such that
 if Ki < 0 < K2, then

 J max{min{a!,.K2})0}¿í| + L 'm + / max{min{o:, 0},Ä"i}^i| - ► 0,

 min{- Ki,Kļ} -* 00.

 4) There is exactly one element £ of such that if Ki < 0 < K2, then

 //" J ma,x{min{a,K2},Ki}fi' - ► 0, min{- K', K^} -* 00.

 Referring to statement 4) of Theorem 4.1, we have the following definition.

 Definition 4.2 (see [2,5,11]). If ß is in A(R)(ir)+, then a ß denotes the
 function from into Aß such that if a is in S p. then crM(a) is the element £ of
 Aß such that if Ki < 0 < K<¡, , then

 /li- J max{min{a:, Kļ}, Kļ}ļi' - ► 0, min{- K', K2} -* 00.

 We refer the reader to [11] for further properties of crM, such as linearity.
 The results below discuss, for a in r(F) and Ki < x < Kļ, some relations

 between ß(a)(x,-) and /3(max{min{o:, K2}, -K"i})(x, •) and some consequences of
 a's being in S M which concern the behavior of integrals involving f Q(ß( j)(-, •)>
 where Q is L or G and 7 is a or max{min{û, K2},Ki}.

 The argument for the theorem below is quite routine and we leave it to the
 reader.
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 Theorem 4.2. If a is in r(F) and K' < x < K2, then

 ß(a)(x,-) = ß(ma,x{mm{a,K2},Ki})(x,-).

 Furthermore,
 /3(max{min{a, K2}, K' })(-K"2 , 1) = {1}

 for all I in F.

 Theorem 4.3. Suppose that a is in Sß, Q is L or G and V is in F. Then
 the following three statements are true: 1) If 0 < y, then

 ( xd t Q(ß(a)(x, •)//) < f max{min{a,y},0}/x,
 J 0 J v J v

 so that

 f xd f Q(ß(a)(x, -)n)
 Jo J v

 exists.

 2) If z < 0, then

 /max{min{a,0},z}// v < J I z xd J I v Q(ß(a)(x, •)/*), v J z J v

 so that

 f xd Í Q(ß(a)(x, .)/i) J- 00 J v

 exists.

 3)

 f 'x'd Í Q(ß(a)(x< )f) J- 00 J V

 exists.

 Proof: We show statement 1). Suppose that 0 < c'.

 Range union ofmax{min{a, y},0} C (- c'/(l +/i(V));y].

 Let c = c'/( 1 + f¿(V)). By Theorem I.A. 4,

 /max{min{a,y},0}^= v J-c Í xd J f v Q(^(max{min{a,y},0})(x, •)//) = v J-c J v
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 J xdj Q(/3(max{min{a,y},0})(x,-)^)+

 [ f xd f <2(/3(max{min{a,y},0})(x,-)^)]i > -c/z(V) + [ ]15 (4.3.1)
 J o J v

 which by Theorem 4.2 is

 > -cn{V) + / xd [ Q(ß(a)(x,-)n) > -c' + Í xd f Q(ß(a)(x, •)/*). (4.3.2)
 J 0 J V J 0 J V

 Therefore y
 i y xd f Q(ß(a)(x,-)n) < J max{min{a,y},0}^, (4.3.3) J o J v J v

 and, clearly, since a is in S

 Í xd f Q(ß(a)(x,-)ß)
 Jo J v

 exists.

 We now show statement 2). Range union of max{min{o;, 0}, z) Ç (z - 1; 0].
 By Theorem I.A. 4,

 /max{min{a, V 0}, z}fi = Jz-l I xd J I V Q(/3(max{min{a, 0}, z})(x, •)//) = V Jz-l J V

 [f xd f (2(/?(max{min{a,0}, *})(£, -)//)]2 +
 Jz-l J V

 J xd I Q(ß(m&x{min{a, 0}, z})(x, •», (4.3.4)
 which, by Theorem 4.2, is

 [ ]2+ f xd[ W(a)(®»*»< f xd Í Q(ß(a)(x,')/i). J z J V J z J V

 Therefore ^
 /max{min{a,0},z}¿i v < J / z ^ xdl J v Q(ß(a)(x,-)fi), v J z J v

 and, clearly, since at is in 5^,

 f xd f Q(ß(a)(x,-)n)
 J-oo J V
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 exists.

 Statement 3) is an immediate consequence of statements 1) and 2).

 Theorem 4.4. Assume the hypothesis of Theorem 4.3. Then the following
 statements are true:

 1) For 0 < if, fvQ(ß(a)(K, -)#») -» COO, * -> °°.

 2) For K < 0, f vQ(ß(a)(K, » 0, K -oo.
 Proof: We show statement 1). There is M% such that

 I max{min{a, AT}, 0}fi < M 2 foralLK" > 0.
 ./ v

 Suppose that 0 < c. There is K* > 0 such that (M2 + 1 )/K* < c/2. Suppose that
 K > K*. From routine considerations concerning common refinements, there is
 D << {V^} such that if -E7 << -D and a is an a - function on E , then

 max{min{q(7), K}, 0}¿¿(7) < M2 + 1
 E

 and

 I ^ / Q(ß(a)(K, -)/i) - Q(ß(<x){K, I < c/4. (4.4.1) ^ v e

 By Theorem 2.A.1, statement 5), there is E* « D and a ß(a)(K, •) - function b
 on E* such that

 E 'Q(ß(a)(K, »(J) - 6{J)M(J)| < c/4. (4.4.2)
 E'

 There is an a - function a on E* such that for each I in E*, if 6(7) = 0, then
 a(I ) > K. Now

 K(KV) - J f Q(ß(")(K, M) = J V

 K(Á V) - E + E K'M-O - E W(«)( tf. ■)»)(!)+
 E* E* E *

 ^W(«)(iī,W(0- Í Q(ß(a)( K, »)<
 E. ^ v

 *«10 - E HOMO) + tfc/4 + Kel 4 = E tfí1 - HO)MO + Keß =
 E * E *

 max{min{q(/), .K'}, 0}(1 - b(I))fi(I) + Kc/2 <
 E*
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 max{min{a(/), K}, 0}/x(J) + Kc/ 2 < M2 + 1 + Kc/2. (4.4.3)
 E *

 Therefore

 - [ Q(ß(<*)(K, » < (M2 + 1 )/K + c/2 < c/2 + c/2 = c. (4.4.4)
 7 v

 Therefore

 / g(/3(a)(Jř, .)#!)- Mn ^-00. 7 v

 The proof of statement 2) follows in a similar fashion and we leave it to the
 reader.

 5. Finite sequences of summable set functions and joint distribution functions.

 In this section we prove the Main Theorem, as stated in the introduction.

 Definition 5.1. Suppose that each of 7 and u> is in r(F). Let
 denote the function with domain F such that if I is in F, then ¿*(7, u>)(I) = 0 if
 7 (I) Ç u>(I) and ¿*(7, u>)(7) = 1 otherwise.

 Theorem 5.1. If g is a function from Rw into R and is a sequence
 of elements of Sß, then as min{- Hi, ..., - Hn, Ki, ..., Kff} - ► 00, the following
 tends to zero

 /L(8*(g(a u 1, ..., a^), ^(maxjminla!, Kx }, Hi }, ..., max{min{aAr, Kn}, Hn}))v) u

 Proof: If I is in F, then

 ¿*(0(0:1 , -, a at), y(max{min{ai, A'i }, Hi }, ..., max{mm{aN,I<N}, HN}))(I)

 is in

 {0} U max{max{/?(o!¿)(.H,-,I), 1 - ß(cti)(Ki, I)}|¿ = l,...,iV}. (5.1.1)

 Therefore

 / £(<$*(0(0:1 , ..., aN ), jř(max{min{o:i, Ki }, Hi }, ..., max{min{o!Ar, KN}, HN}))n)
 J u

 N r N r
 <[£/ J r HßiaiXHi,-)?)) i+E/ r = i= 1 J u i=íJ u
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 [ h+^MtO- J f G(ß(at)(Ki, ■)»)), feí J »
 which by Theorem 4.4,

 -* 0,IDÍII{-HI,...,-HN,KI,...,KN} - ► oo. (5.1.2)

 Theorem 5.2. Suppose that 0 < M, g is a function from into [- M; M],
 {afc}fcLi is a sequence of elements of Sß, and for each Hi , ... ,Hn , Ki , Kn as in
 Theorem 5.1, /yý(max{min{ai, .Ki }, Hi}, ..., max{min{(*w, üOv}, /Zn})// exists.
 Then:

 1) Jug(ai,...,aN)fi exists, and

 2) As min{- Hi,...,- Hn,Ki, ...,Kn} - ► oo the following tends to 0

 / 'g(ati,...,aN) - 0(max{min{ai,ifi},.ffi},...,max{min{ajv,.K'Ar},.H'jv})|/z
 J u

 Proof: Let

 A = ai ,...,<xn,

 A * = max{min{ai,2fi},#i},...,max{min{aiv)iGv}> Jřjv}

 and

 6*=8*(g(A),g(A*)). (5.2.1)

 For each I in F,

 (g(A)(l - «*))(/) Ç (s(A-)(l - <•))(/). (5.2.2)

 We first show 1).

 f L{g(Ā)ļi) - [ G(g(A)fi) < J U J u

 [ l(9(A)( 1 - + g(A)6*n) - [ G(g(A)( 1 - 6*)n + g(A)6*fx) < J u J u

 f L(g(A)('-6')rì- f G(S(A)(1 -¿» + f L(,(A)l^)-f G(¡K¿)Í» < J u J u J u J u

 f L(g(A*)(l - 6*)n) - J / G(s(¿*)(l-¿«>)+ J u J u

 [i L(g(A")ťf)- f G(ä(A*)iV)],, (5.2.3) J u J u
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 which, by Theorem 2. A. 2, is

 / L(-g(A')6" li) + f 9(¿>-[/ G(-g(A")6'p) + f + [ ], =
 J u J u J u J u

 f L(-g(A*)6* fj,)+ f L(g(A*)6*n)+[ ]1<2m[ L(6»+2M [ L{6*ļi) 0,
 ./ 1/ j u J u J u

 min {-Hu...,-Hn,Ku...,Kn} -» oo. (5.2.4)

 Therefore

 i L(g(A)ri - I G(.g(A)v) = 0, (5.2.5)
 J u J u

 so that Jug(A)fj, exists. Therefore 1) is true.
 We now show 2). Suppose that I is in F.
 If 6*(I ) = 1, then for each x in g(A)(I) and y in g(A*)(I),

 |x - v|(l - S'(I)MI) = 0 < L(g(A-)p)(I) - G(g(A')»)(I). (5.2.6)

 Suppose that 8* (I) - 0. Then

 g(A)(I) Ç g(A')(I), (5.2.7)

 so that if x is in g(A)(I) and y is in g(A*)(I ), then x is in g(A*)(I ), so that

 'x - y |(1 - 8*(I))fi(I) = ma x{x,y}n(I) - min{x, y}fi(I) <

 L(g(A*)n)(I) - G(g(A*)„)(I). (5.2.8)
 Therefore

 [ 'g(A)-g(A*)'M< i L(lg(A)-g(A*)'(l-6*)M)+ Í L{'g(A)~ g{A*)'6* fi) < J u J u J u

 f 'L(,(A")rt-G(g(A"),¿)} + 2M f L(6"p) = J U J u

 0 + 2 M[ L(6* p) -* 0,mm{- Hi,...,- HN,KI,...,KN} -* oo. (5.2.9)
 J u

 Therefore 2) is true.

 Theorem 5.3. Suppose that is a sequence of elements of and
 is a function defined on E,N x F as in the Main Theorem, stated in the

 introduction. Then for all R in "E,N ,

 Í •• Í [max{|xi|,...,|xN|} / B{n'-,-)]<
 J J R J U
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 ^2 f NM Í Qk(ß(ak)(xk,-)n)-
 ^~y J-OO J U

 Proof: Suppose that R = [ai; 61] x • • • x [a#; bpj], v = 1, N, I is in F and
 for each subinterval W = [pi; gi] x • • • x [pw, ç;v] of R,

 B'(W) = JT( f <M/»(e,t)(«. •)/•)" [ Q*W°r»)(».M)- (5-3.1)
 ,=i J I J I

 Then, by Theorem 2.1.2,

 / I rXv^B> = ^ I 'X*'d

 Y[(f J Qk(ß(<xk)(bk,-)fi)- J f Qk(ß(ak)(aki »), (5.3.2) k*v J 1 J 1
 so that

 ļ ■■■ Jm b<n>(-,/) = J ••• J ''xAB'K»(i)N-')' =

 ([ 'xv'd [ Qv(ß(av)(xv,-)fi))-
 J av J I

 mi QkWctkKh, .)!*)- J f QkmockXakrMMKI)"-1)}^ k*vJl J 1

 (/ 'xv'd Í Qv(ß(ocv)(xv,-)ß)) • Is'1. (5.3.3)
 Jav J I

 Therefore

 N

 Í - J Í [max{|«i|,...,|®jv|} J f B(JV)(-,-)] < J /••• / [¿ M J / B(JV)(V)] = J J R J U J J R J U

 E/ " /„M/ *"><■,)], (5.3.4)
 which, by Corollary 2.4 is
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 th [J 'xk'djQk(ß(<*k)(xk,-)tJ')] =

 ^2 í [Mdí Qk(ß(otk)(xk,-)ii)]<
 k=l ūk J u

 E «»(/»(<*»)(**.•)/»)]• <5-3-5)
 fc=r 1 J u

 We next prove a theorem which uses and is an extension of Theorem 4.4. We
 begin with a lemma and a preliminary theorem.

 Lemma 5.4. Suppose that ļi is in A(R)(F)+, for i = 1,2, (S¿,<*) is a
 partially ordered system and //,- is a function with domain Si such that if x is in S"¿,

 then rji(x) is in AB(R)(F), ¡i - /|r/¿(®)| is in A(R)(F)+ and Jv'ß - Vi(.x)' 0,
 <*. Then for all ( X',X2 ) in S' x £2, )//■*) is in Ài?(R)(.F), // -
 I'I(Vi(xi)rļ2(x2)/fi)' is in A(R)(F)+ and

 J 'p - J (mMm(x2)/p)' - ► 0, <? , » = 1,2.

 Indication of proof: We refer to Corollary 2.3 . For i = 1,2, let r¡^ = t]í(xí).
 If V is in F, then

 / I J / (t7(1)77(2)//x)| = J f I J f [(n(1) / v)(v{2) / p)'v' = J Í '[(v(1) / / ß)]ß' = J v J J v J J V

 f ('n(1)/v''ri(2)/v'rì < J V

 / I ( J / (rç(1V2)/^)) - 1*' = J f I (rç(1 V2)/a0 -p' = J f l(»?(1 V2)//0 - w/v I = J u J J u J u

 f l[(*7(1) - a0»7(2)/a*] + 0/(2) -v)p/p' < J f l*7(1)-Hl+ J Í |»7(2)-/i|l. J u J u J u

 Theorem 5.4. Suppose that N is a positive integer > 2, (J, is in .A(R)(.F)+,
 for each k = 1, ..., N, (Sk,<%) is a partially ordered system and {pjtJjtLļ is a
 sequence such that if k = 1, ..., N, then pk is a function with domain Sk such
 that if x is in Sk, then pk{x) is in AB(R.)(F), fi - /|/9*(:z)| is in A(1H)(F)+ and
 Juif* - />*0*01 -► 0, <1. Then n - /KlļjfcLi is in A(R)(F)+ for all
 (ari, ...,xn) in Si x • • • x Sn and

 / uJ I /[(II Pk{xk))/ļiN~l]~ n' ->0 ,<ļ,k = 1 ,...,JV. J uJ k= 1
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 Indication of proof: We give the essential parts of an induction argument.
 Suppose that m is a positive integer > 2 for which the statement of the theorem
 holds. Now suppose that the hypothesis of the theorem is satisfied for N = m + 1.
 We shall take some notational liberties, omit some variables and leave the details
 to the reader. Let

 i) S[ = Si X • • • X Sm,
 Ü) S 2 = <Sm+ 1,
 iii) <* 'ļ = {((x1,...,a:m),(y1,...,ym))|(xjfe,yjfe) in < **, k =
 iv) <• '2 =<J,+1.
 v)
 and

 vi) r¡2 = pm+l-
 We see that the hypothesis of Lemma 5.4 is satisfied, so that

 /m U i J /kii m- fi "»)/""] - "i = J / r U 1 J /(ten r m i J /kii "»)/""] - "i = J / r 1 J /(ten r M)/"m",]K+i/fi) - m = U J k=l J U J k=ļ

 y l( J (m[ml v)))- n' = J ^ I J (vi Wm)-H -»• o ,<**,* = i,...,m+i. (5.4.1)

 Theorem 5.5. For defined as in the Main Theorem, for each R in
 H - JBN(R, •) is in A(R)(F)+ and

 f I j B(-n'R, •) - n' - 0, Ä = [iři ; üfi] X • • • X [JSTat; Kn],

 Tain{-Hi,...,-HN,Ki,...,KN} -* oo.

 Indication of proof: Suppose that i = 1, ..., N. Let

 Si = {(H,K)'H < 0 < K}

 and

 <?= {((H',K'),(H",K"))'H" < H' < 0 < K' < K"}.

 Clearly, (Si, <*) is a partially ordered system. Suppose that i = 1, ..., N. For each
 (H,K) in Si let

 Pi(H,K) = J Q,(ß(a,)(K, )ri - J Qj(/3(a¡)(ír, »•

 Clearly

 = J'pi(H,K)',
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 which is in A(R)( F)+ , and, by Theorem 4.4,

 J U

 If R = [Hi; Ki] X • • • X [Hn; Kn], then

 B<n>(R ,.) = (U/.ifFj, Jf,-))//"""1-
 i=l

 Therefore by Theorem 5.4,

 li - J b<n'r, ■) = f, - ļ |/b<n)(h, -)|,

 which is in A(TV)(F)+ and

 / I,-/ B<n'R,-)' -+ 0,min {-HU...,-HN,KU...,KN} oo.

 We state another well - known multiple integral theorem that we shall use in
 proving Theorems 5.6 and the Main Theorem.

 Theorem 5.1.1. Suppose that each of R' and R" is in E.N , R' Ç R" and
 A is a real - nonnegative - valued function, defined and finitely additive on the
 subintervals of R". Suppose that each of g and h is a, function defined on R" such
 that h - I <7 1 is nonnegative - valued on R" and each of the integrals f • • • f R„ g A
 and f • • • fR„hA exists. Then the following existence and inequality holds:

 I [...[ gA-f- f gA' < f •• f h A - f ••• f hA.
 J J R» J J R> J J R" J J R'

 Theorem 5.6. Suppose that {ajfcJjķLļ is a sequence of elements of Sß and g
 is a continuous function from R" into R with bounded range. Then the following
 existence and limiting assertion holds:

 [•••[ [gì B{n'-,-)] -> f g(a i,...,ajv)/i, J J R J U J U

 R = [Hi;Ki] X ••• X [Hn',K Nomini- Hi,...,- - * oo.
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 Proof: There is M > 0 such that range of g Ç [- M; M]. Suppose that 0 < c.
 By Theorem 5.5 and 5.2, there is [H[] K[' x • • • x [H'N] K'N], with H[ < 0 < K¡,
 i = 1, ..., N, such that if R is in EN and

 [H'^Kļ] x ... x [H'n;K'n] QR=[H1-,Ki] x ••• x [HN;KN],

 then

 I / g(a ļ,...,aN)n- sr(max{min{ai,üri},ffi}, ...,ma,x{mm{aN,KN}, -Hn})¿z|
 J u J u

 < c/2 (5.6.1)

 and

 0 <n{U)~ f Bw(R,-)<c/2M. (5.6.2)
 J u

 Now suppose that [H[ ; K[] x • • • x [H'N' K'N] Ç R = [Hi] K'' x • • • x [Hw, ÜTat].
 For each W = [pi; çi] x • • • x [p^v; <In] in and V in F , let

 B*(n'W,V) =

 Q«(^(max{min{o!j, Ki + 1},JÍí})(çí,.)/í)-

 f Qi(^(max{min{ai,Jři + l},fli})(ftv)p))]/[/i(V)JV~1]. (5.6.3) J v

 Now,

 '[ g(oti,...,otN)p- ¡ ••• ¡ [g(xļ,...,xN) Í B(N)(-, -)]| = J U J J R J U

 [I f g(ai,...,aN)n -[•[ [g(xu ...,xN) Í 5*(A°(-, -)]|]i (5.6.4) J U J J R J U

 by Theorem 4.2. Let R" = [Hi - 1; Kļ + 1] x • • • x [Hn - 1; Kn + 1]. We see that

 [ li < I / g(ai,...,aN)n- [■■■ Í [g(xi,...,xN) [ B*(N'-, -)]|+ J u J J R" J u

 J J R" J U

 /•••/ J Ü(XU...,XN)[ J B-"V)(-,-)]I]3 = J J R J U
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 [| / g(a1,...,aN)fi- / $r(max{min{û:i, Ki + 1}, #i}, -,
 Jí/ J u

 ma,x{min{acN,KN + 1},HN})P']2 + [ ]3 (5.6.5)

 by Theorem 3.1. Continuing, we see that

 [ ]2 + [ )3<c/ 2 + [ ],<c/2 + M(/ y •)-/ y B-<N>(Ä,-)) = y i/ y

 c/2 + - f B*(N'Rì-))=c/2 + M(fx(U)~ f B^n'R,-)) <
 J u J u

 c/2 + Mc/2M = c. (5.6.6)

 Therefore the limiting assertion holds. We are now almost ready to prove
 the Main Theorem, as stated in the introducton. First, though, we state a char-
 acterization theorem which clearly implies that the continuity and boundedness
 conditions on the function g of the hypothesis of the Main Theorem are not ex-
 cessive.

 Theorem 5.A.1 [5]. Suppose that g is a function from Rw into R. Then
 the following two statements are equivalent:

 1) If F is a field of subsets of U, ļi is in A(liV)(F)+ and{ak}^=1 is a sequence
 of elements of Sß, then g(a i, ...,«#) is in Sß.

 2) g is continuous and ^ - max{|xi I) •••» l^ivl}} is bounded.
 We now prove the Main Theorem.

 Proof of the Main Theorem: There is M > 0 such that if (®i, ..., xn) is in
 RN and 1 < max{|ici |, ..., |a:Af|}, then |</(a:i, ..., c*;v)| < M max{|a:i |, ..., |ícjv|}-

 Suppose that 0 < c. From the immediately preceding condition on g and from
 Theorem 5.3 it follows that there is R' = [H[ ; K[] x • • • x [H'N] K'N] such that:

 j) <0 < K- , i = 1, ..., JV„
 ii) if (xly ...,xjv) is in RN and for some v = 1 |:rw| > min{- H'v, K'v},

 then |gr(ai, ...,OiAr)| < Mmax{|xi |, ..., ļarjvļ}, and
 iii) if R' Ç Rļ Ç R2, each in EN, then

 0 <[•• [ [m&x{'x1',...,'xN'} f £(iV)(-, •)]-/••• [ [max{|®i|,...,|«iv|}-
 J J R2 J U J J Ri

 f B(n'-,-)'<c/4M , (5.7.1) J U

 so that

 0 < /■■■ / [l?(*i
 J J r2 J u
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 í'" f [|y(®ił-»®jv)| í < Mc/AM = c/4. (5.7.2)
 J J Ri J U

 Now, since from Theorem 5.A.1 g(oc', ..., o¡n) is in S^, there is P and P' such
 that P <0 < P' and if H < P < 0 < P' < K, then

 'crM(g(oci,...,aN))(U) - / max{min{sr(ai,...,ajv), #},#}/*! < c/4-
 J u

 Furthermore, if R' Ç Rx Ç i?2, each in "EN , and H <0 < K, then

 '[ - [ [ma.x{mm{g(xi,...,xN),K},H} [ J J Ä2 J u

 f-f [max{mm{g(x1,...,xN),K},H} f 5(JV)(-, -)]| <
 J J Ri J u

 [•••[ [| max{min{</(a:i, ..., xjv), -K'}, -řř}| f B{N'-,-)]- J J r2 J u

 f- f ['ma.x{mm{g(xi,...,xN),K},H}' f B(N'-,-)]<
 J J Ri J u

 [■■■( J Mxu...,Xn)'[ J J J r2 J u

 f- f [| g(xi,...,xN)' f B(n'-,-)]<c/4. (5.7.3)
 J J Ri J U

 This and Theorem 5.6 clearly imply that if R' Ç R* in "EN , then

 c/2 > ' f --• [ [max{min{flf(xi,...,xiv),/ir},íř} f 5(iV)(-, •)]-
 J J R* J U

 / max{min{<7(ai, ...,aN),K},H}p'. (5.7.4)
 J u

 Now, suppose that R' C R in E.N . There is H* and K* such that H* < P <
 P' < K* and if (xi, ...,xn) is in R , then

 g(x u...,xN) = max{min{0(xi,...,s;v), if* },#*}.

 Therefore

 Wii(g(<xi,-,<*N))(U) - /••• f [g(x!,...,xN) Í B^n'-,-)} | =
 J J R J U
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 k/i(0(<*i , -, aN))(U) - J • • • / WndaWil , xN), K*}, H* } j ^ß(Ar)(-, -)]|

 < aN))(U) - / max{min{^(o:i, ajv), .K'*}, #*}//!+
 ./ U

 I / max{min{<7(ai, ..., a#),
 J u

 [•••[ [ma,x{mm{g(xļ,...,xN),K*},H*} [ I?(iV)(-, -)]l <
 J J R J u

 c/4 + c/2 = 3c/4 < c, (5.7.5)

 and the theorem is established.
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