
 Real Analysis Exchange Vol. 17 (1991-92)

 S. A grónsky,  Mathematics Department, California Polytechnic State University,
 San Luis Obispo, CA 93407.

 J. Ceder,  Mathematics Department, U.C. Santa Barbara, Santa Barbara, CA
 93106.

 WHAT SETS CAN BE u;-LIMIT
 SETS IN En ?

 In [ABCP] it was shown that a compact subset of E 1 is an w-limit set if and
 only if it is either nowhere dense or a union of finitely many non-degenerate closed
 intervals. In this paper we address the question of characterizing w-limit sets in En.
 We are unable to find any characterization as the situation even in E 2 is already
 very complicated. In contrast to E1, a nowhere dense, non-empty compact set
 in E2 can fail to be an w-limit set. However, we do obtain a number of results
 showing a rich variety of compact sets, including the totally disconnected sets and
 low dimensional continua are u>-limit sets. On the other hand there are many open
 questions on whether some particular, simple sets, like the union of a line segment
 and a disk in E2 can be w-limit sets.

 Notation and Terminology.
 Suppose A Ç Ek and f : A-* A. We define f°(x) - x and /n+1(x) = f(fn(x ))

 for each x 6 A and natural number n. By the orbit of x under / we mean the set
 7 (xif) = { fn{x ) : n € wo} where ujq is the set of natural numbers. By w(x,/),
 called an a;-limit set, we mean the set of subsequential limit points of the sequence
 {/n(x)}^0. In this paper we will be dealing with compact w-limit sets in Ek given
 by continuous functions.

 When Xk = fk(x o) we use the notation {x^fLo to denote the sequence as a
 function whereas j(xo, /) is the range of that function.

 We say that u>(x, f ) is orbit-enclosing if 7(2:, /) Ç u>(x, /) or equivalently x £
 u>(x, /). We say that a set B is orbit-enclosing if there exists a continuous function
 / and x such that w(x, f) = B and w(x, /) is orbit-enclosing. The notion of orbit-
 enclosing is essentially equivalent to the notion of topological transitivity (see the
 discussion preceding Theorem 13). Note that there always exists k such that either
 l{x' fc, /) Ç u(xk,f) or 7 (xk,f) H u>(xk,f ) = <t> where xk = fk(x0). The symbols
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 A0, Ā and A' denote the interior, closure and set of limit points of a set A. To avoid
 stipulating a set is non-empty we will call a non-empty compact set a compactum,
 and we use a continuum as a connected compactum.

 We will frequently use the following version of the Tietze extension theorem:
 if A and B are compacta in En and Em, and / maps A continuously into B, then
 / can be extended continuously to all of En.

 We begin with a basic tool used in constructing functions realizing given sets as
 u;-limit sets. This is an extended and simplified version of Theorem 1 of [ABCP].

 Theorem 1. Let M be a compactum in En and {z,-}^0 be a sequence of
 distinct points whose set of subsequent ial limit points is M . Define s(zt) = z,+i
 on r = {zi : i G u>o}- Then

 1) if g is a function from M into M and s(znk ) - ► <¡r(A) whenever z„k - > A £ M,
 then s is uniformly continuous on I'

 2) if s is uniformly continuous on T, then there exists a continuous f : En - ► En
 such that M = w(2o, /)•

 Proof: (1) If s is not uniformly continuous, there exist subsequences {-2nfc}¿Lo
 and {zmt}fcLo f°r which znk - zmk - * 0 and s(zn)k) - s(2rmj[) -1+ 0. By compactness
 there exist A € A and e > 0 and subsequences {^fc}fcLo and {zmfc}&o such that
 z'nk - ► A, z'mk - ¥ A and - ■s(z^Jlļ)| > e. This contradicts the hypothesis.

 (2) It is a well-known result that ē (we identify a function with its graph) is a
 continuous function from f into T when s is uniformly continuous on T and T is
 a bounded subset of En. We apply the Tietze extension theorem to extend š to a
 continuous / with domain En. Obviously M = u(zQ, /).

 Next we present several results giving sufficient conditions on homeomorphisms
 to preserve the property of being an a;-limit set. As an immediate application of
 Theorem 1 we have

 Theorem 2. Let A and B be compacta in En and Em respectively. Suppose
 A = w(xo, f ) and A and B are homeomorphic. If u>(xo, /) is orbit-enclosing, then
 B is an cj-limit set which is orbit-enclosing.

 Proof: Let g be a homeomorphism from A onto B. Let zn = g(xn) where
 xn = fn(x o). Then the function s defined by s(zn) = zn+ 1 is gfg -1 and is uniformly
 continuous. By Theorem 1 B is an w-limit set, which is obviously orbit-enclosing.
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 As one application of Theorem 2, in the sequel we will show that the circle
 cross [0,1] is an orbit-enclosing u>-limit set. Since this set is homeomorphic to
 an annulus, it too is an u;-limit set. In general, however, when an w-limit set is
 nowhere dense, it is rarely orbit-enclosing. The next two results partially remedy
 this deficiency.

 Theorem 3. Suppose A and B are homeomorphic compacta of En. Then, if
 A is an u>-limit set, so is B.

 Proof: Let h be a homeomorphism from A onto B. Assume A = u ;(x0, /).
 Without loss of generality we may assume that diam {A U 7(®o, /)) < 2-1. We
 may also assume that A is infinite, because B is obviously a finite w-limit set when
 A is finite. Choose N to be a dense subset of A and enumerate it as {an}£Ļļ.
 Clearly either 7(/*(®o)j f)QA for some k or 7(0:0, /) fi A = <f>. In the former case
 we are through by Theorem 2. So we may assume that 7(2:0, /) H A = <f>. Then
 clearly A0 = <f> and since B Ç En we also have B° = <f>.

 First we find a double sequence {cnfc}^fc=1 such that 7(2:0, h) = {c„jt : n >
 1, k > 1}; cnk ^ cmj whenever (n, k) 7^ (m, j>); for each n, cn¿ - ► an as fc - ► 00;
 and for each n, 'cnk - an| < 2_n for all k. To show this we proceed as follows:

 Let be a 1 - 1 enumeration of N x u>o. If c*i = (<z¿, m) pick y' G 7(xoj /)
 such that |a^- yi| < 2-m-^. Having picked yi, . . . , yk, let ajt+i = (a¿, m) and choose
 Vk+i e 7(®o,/) - {î/i,- • • ,Vk} such that |a¿ - yfc+1| < 2"m"i. Let {dnk}^=1 be an
 enumeration of {yj : ls< coord, ctj = an}. Then dn k - ► an and 'dnk - an| < 2~n for
 all k. Moreover dn¡ t ^ dmj whenever (n, k) (ra, j).

 Let M = 7(®o if) - {dnk '• n > lj k > 1}. For each n > 0 the set Mn = {x G
 M : 2~(n+1) < dist(a:,v4) < 2_n} is finite and M = U£Ļ0Mn. If Mn ^ <f> and
 Mn = {«ļ, . . . , um}, define cnk = wjt, if 1 < k < ra, and cnk = dnļk-m, if k > m.
 If Mn = (j>, then put cnk = dnk for each k. Then clearly {cnjt}^=1 is the desired
 sequence.

 Since h(N) is dense in B and B° = <¡>, we may use an easy induction argument to
 define a double sequence {e„jt}~fc=1 such that en* emj' whenever (n, k) ^ (ra, j);
 for each n, enk - ► h(an) as k - * 00; for each n, |e„* - /i(an)| < 2~n for all k' and
 when E = {enk : n > 1, k > 1}, E fi B = <ļ> and E' - B.

 Now extend h as follows: If x G 7(2:0, /) and x = c,-, put h(x) = et¿. Then h is
 1-1 from 7(2:0, /) U A onto E U B. To show h is a homeomorphism it suffices to
 show that dnktk - > A G A implies enktk - > h( A) G B.

 Suppose cnktk -+ A. If {njtjglļ is eventually equal to some ra, then dnktk - ► am
 and enktk -* h(am). So we can assume n* - > 00. Then we have

 ~~ ^1 - I - "I" lCifcťfc - ^ 2 n* + I Cnktk - M-
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 Therefore, ank -* A and h(ank) - » h( A). Then

 len*<* - M^)l - len*<* - Man*)| + IMan*) - ^(A)|
 < 2~n* + |^(anfc) - h(X)'.

 Therefore, enktk - ► h( A).
 Now define Xk = fk{x o) and zj, = h(xk) so that zjt+i = hfh~1(zk). Since hfh~x

 is uniformly continuous on {zk : k € u>o}, B is an w-limit set by Theorem 1.

 Theorem 3 does not work if the compact, homeomorphic sets lie in different
 dimensional Euclidean spaces. For example, let B = [0,1] U {- 2-n : n G u>o}
 which is not an u>-limit set in E1 by [ABCP]. Yet B x {0} is an u;-limit set in E2
 by Theorem 13 below and B and B x {0} are homeomorphic. The construction
 in the proof of Theorem 3 breaks down because we can't pick the double sequence
 {enfc)njfc=i outside the above set B. This example illustrates the anomaly that a
 set can be an cj-limit set yet when embedded in a lower dimensional space it is not
 an cj-limit set.

 Theorem 4. Let A and B be homeomorphic compacta in En and Em respec-
 tively. Then if A is an u;-limit set and B has empty interior, then B is an cj-limit
 set.

 Proof: The proof is the same as that of Theorem 3 but with a different reason
 for B° = <j>, namely the assumption.

 The following result is well-known and follows from [K] p. 441.

 Theorem 5. Each totally disconnected compactum in En is homeomorphic to
 a compact, nowhere-dense subset of [0,1].

 Theorem 6. Each totally disconnected compactum in En is an w-limit set.

 Proof: Apply Theorems 4 and 5.

 Since each 0-dimensional compactum in En is an u;-limit set, a natural starting
 point for analyzing higher dimensional compacta would be in terms of their com-
 ponents. First of all, suppose a compactum A in En has only one component, i.e.,
 it is a continuum. The next result shows that if dim A < n, then the continuum
 A is an u;-limit set.

 Theorem 7. If M is a continuum with empty interior in En, then M is an
 u>-limit set u)(xo ,/) where /(A) = A for all A € M.
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 Proof: First we show the following.

 1) If G is any finite cover of M by open balls and G G G, then G can be
 enumerated by Gi, Gļ, . . • , Gm where G' = Gm = G and G,- D G,+i ^ <p for
 all i < m.

 To show this we proceed as follows: For T G G let T* consist of all S G G such
 that there exist Si, . . . , Sk G G such that Si = T, S = Sk and Si D Si+i ^
 for each i < k. Clearly for T, W G G U T* = U W* or U T* fi U W* = <p.
 However, in the latter case M would be disconnected by U T* and U S :
 S T*}. Therefore for each T G G, T* = G.

 Next enumerate G by {Hi,..., Hm} and apply the above property to get a
 chain joining each consecutive pair in the list Hi, . . . ,Hmi
 Hm-i,Hm^2, . . . ,Hi,Hi and concatenating these chains we obtain the de-
 sired result (1).

 Let Bi be a finite covering of M by open balls of radius 2-1, each of which hits
 M. Then by the above property

 B1 = {B;,BJ,...,BJI}
 where and B} fi B}+ļ ^ <ļ> for all i.

 Next let B2 be a refinement of Bx which is a finite covering of M by open balls
 of radius < 2-2, each of which hits M . Then

 B 2 = {B¡,...,Bl2}
 where

 B¡ Ç Bi and B¡ = Ç B' and Bf n B?+ , jí (f> for all i.

 We continue in this manner obtaining the following array:

 B' B¡ ■ ■ Ą,
 Bļ BI ■ ■ BI

 Bf BI ■ ■ BJ,

 Using the lexicographic order re-label the entries above as {Cn}£Ļ0.
 By induction pick a sequence {2n}£Lo such that z0 G Co - M and zn+i G

 Cn+i - M - {zo, Zļ, . . . , zn}. It is clear that the cluster set of {zn}îïLo is M and
 that I zn - zn+ 1| - >• 0. Since zn £ M for all n, the hypothesis of Theorem 1 is
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 obviously satisfied so that M = oj(xq, /) for some xq and continuous / : En - ► En.
 Moreover since 'zn - zn+i I - »• 0 it follows that f(x) = x for all x 6 M.

 A special case of Theorem 7 was previously known, namely: If M is a continuum
 in En, then M x {0} is an uj-limit set in En+1 (see [B]).

 We will discover in the sequel that the closed disk and an annulus in E 2 are
 w-limit sets. Moreover, it is unknown whether a closed disk with two holes can
 be an u>-limit set. However, there are 2-dimensional continua in E2 which are not
 u;-limit sets as shown by the next example.

 Example 1. There exists a 2-dimensional continuum in E2 which is not an
 u;-limit set.

 Proof: Let D be a closed disk and A be a hereditarily indecomposable contin-
 uum such that A - D & <j> and D D A = {p}.

 By definition A contains no subcontinuum which is the union of two proper
 subcontinua (see [HY], p. 142-3). Suppose D U A = u;(xo , /) with Xk = fk(x o).
 Since D° ^ <f> it follows that is eventually in D U A. Suppose A is not a
 subset of f(D). Then pick z € A - f(D ) and an open disc W containing z with
 W D D = <f>. Then W fi 7(#o5 /) is infinite and we can find xm G D° and an i such
 that xm+i G W fi A. Then there exists a closed disc S in D° containing xm for
 which f*(S) Ç W. Since f*(S) contains infinitely many points of f(xo, /), f%(S)
 is a nondegenerate continuum which is locally connected. Hence, it is the union of
 two proper subcontinua [HY, p. 139], a contradiction. Hénce A Ç f(D).

 Now define h on D as follows: h(x) = p if f(x) £ A; h(x) = f(x) if
 f(x) € A. Then / maps D continuously onto A. This is a contradiction by the
 above argument since D is a locally connected continuum.

 Now suppose a compactum in En has a finite number of components. It is
 easily seen that if such a set is an u;-limit set then each component is mapped by
 the function onto another component in a cyclical manner. Therefore, for example
 an arc union either a point or an indecomposable continuum can't be an u;-limit
 set. Hence, in contrast to the situation in E1 a nowhere dense compactum in E2
 can fail to be an u>-limit set.

 The next result shows that the union of finitely many mutually disjoint copies
 of the same a»-limit set is an w-limit set.

 Theorem 8. If Ai, . . . , Am are mutually disjoint and mutually homeomorphic
 subsets of En, and A' is an u;-limit set, then so is (J£Lļ

 Proof: Let Ai = u(x0,gi) and h; be a homeomorphism from Aļ onto A i with
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 hļ the identity map. By the proof of Theorem 3 there exist y i and such that
 A i = io(yi, gi ) for each i > 1 and each h, can be extended to a homeomorphism Hi
 mapping 7(2:0, gi) U Ai onto 7 (y,-, gi) U A¡ with Hi the identity map. Moreover, we
 may assume that the sets dom Hi, i = 1, . . . ,m are mutually disjoint. (It also
 turns out from the proof of Theorem 3 that each <7,- = HigiHf1 and = Hí(xq).)

 For any natural number j there exist unique non-negative integers i and k for
 which j = im + k where k < m. Put Zj - Hk(xi) where x,- = <¡r,(xo). Define
 s(Zj)=Zj+ 1.

 By Theorem 1 it suffices to show s is uniformly continuous on {zn : n G u>o} =
 Z. But for each i, the function s ] (7(2/», <7>) H Z) is Hi+iHf1 if i < m and giH'1
 iii = m. Since these are uniformly continuous it follows that s is too.

 Finding a necessary and sufficient condition for a union of two continua to be
 an u;-limit set remains an open question. In fact, it is unknown whether a disk D
 union a line segment A can be an w-limit set. If D U A = u>(xo, f)i then it follows
 that A = u>(yo, f 2) where f2 has the property that all its level sets except possibly
 two are uncountable. Such continuous functions from A to A exist, yet whether
 one can realize A as an w-limit set is another problem.

 Now let us consider the case when a compactum has infinitely many compo-
 nents. First we have the following. The proof in E1 is found in [S].

 Theorem 9. If u;(xo, /) has infinitely many components, then each component
 contains at most one orbit point and uj(x0, f ) has empty interior.

 Proof: Let Xfc = fk(x 0) for each k. Suppose C is a component of w(xo, /)
 which contains some x,- and x,+m. Then the orbit is eventually in u>(xo , /). Also

 fm(C) n C ^ so that fm(C) Ç C. For 0 < j < m let Bj be that component
 containing /,+J(C). Then for all k > m, x* G UjLo /*+J(C) U/Lo Bj • Hence,
 there are at most k orbit points outside (JJLo Let { C„ } be k + 1 distinct
 components outside {Bo, B', . . . , Bm}. We may separate these by k + 1 mutually
 disjoint open sets each missing UjLo Bj- But each of these open sets must contain
 an orbit point so that there are k + 1 orbit points outside U/Lo Bj, a contradiction.

 Theorem 9 cannot be improved to conclude that u>(xo, /) is not orbit-enclosing.
 The product of [0, 1] with the Cantor set is an orbit-enclosing w-limit set by
 Theorem 11.

 In view of Theorem 8 and the example following Theorem 3 there is, in contrast,
 no restriction on the number of lower-dimensional components of an w-limit set
 (except when infinite it must have cardinality No or 2N°).

 Now we turn our attention to constructing w-limit sets via limits, products and
 unions to produce new w-limit sets. First we look at limits.
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 Theorem 10. Let p G En and be a sequence of mutually disjoint
 nowhere dense compacta in En such that diam (P* U {p}) - ► 0, and such that each
 Pk is a continuous image of Pk+i- Let M = {p} U (UjtLi Pk)- Then there exists
 xo G En and a continuous h : En - ► En such that u>(x o> h) = M, h{P') = {p} and
 h(Pk+i) = Pk for all k. Moreover M is not orbit-enclosing.

 Proof: Choose a sequence {c*}^ in En - M converging to p. Choose {/jtjjtli
 to be a sequence of mutually disjoint open sets such that Pk Ç Ik for each k and
 Cm & h for all m and k. Let W be a countable base of open sets for the topological
 space M - {p} with U W Ç UjfeLi h fe- Suppose W is well-ordered by u>o. By the
 hypothesis we may find a continuous g : M - ► M such that g(P') = {p}, g(p) = p
 and g(Pk+ 1) = Pk-

 By induction we will define a particular enumeration of W and a
 sequence in En. Put n' t = £i=i i = fc(fc + l)2-1 and note that n¡ t+ļ - n* =
 k + 1. For each k we will define Wk and za for each s such that Uk < s < Uk+ 1 as
 follows:

 To begin with, let W' be the first member of W hitting Pi and pick z' = c'
 and zi G W' - M. Now suppose k > 1 and we have picked for all i < k and
 zm for all m < Uk-

 Then choose Wk to be the first member of W - {Wj, . . . , Wk-i } to hit Lfcí Pi-
 Suppose Wk 6 Ij- Then j < k and we may pick x', Xļ, . . - , xjt G M with x,- G Pi
 and Xj € Wk for which <7(2, +i) = x ¿ for all i < k.

 Put znk = ck- For m € {1, , k} choose znk+m G h-m+i - M - {z^ : Ç < nk}
 such that 'znk+m - arjt_m+i| < 2~k. In addition we may insist that £n*+j € Wk.

 Clearly {zfc}£lļ is a sequence outside M whose cluster set is M. We need only
 to verify by Theorem 1 that zmk -> A implies that zmk+ 1 - > </(A). Then we have 2
 cases.

 Case 1. A ^ p.
 Then {zmn}^=1 is eventually (a) in some Ij+i or (b) in I'. In subcase (b) zm„+i

 by construction is in {ck : k G wo}- Hence zmn+i - ► p = g( A). In subcase (a) zmn
 is within 2~tn of some point xm„ in Pj and zmn+1 is within 2~tn of g(xmn) where
 tn -► 00. Hence | zm„ - xmnļ -► 0 and 'zmn+1 - ^(xmn)| -► 0. Hence xmn -► A and

 -+ tf(A) and xmn+1 -» g( A).

 Case 2. A = p.

 Then zmn is some ctn or belongs to some I.n where sn - ► 00. If G I3n ,
 then for sufficiently large n, zm„+ 1 G I3n- 1- If zmn = ca„, then zmn+1 G Itn where
 tn - ► 00. Hence, zm„+i G ISn~ 1 U Itn where sn -* 00 and tn - > 00. Hence,
 *m„+ 1 -» p = g(p)-
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 The hypothesis of Theorem 1 (1) is satisfied so there exists a continuous h :
 En -* En such that u>(zi,h) = M. By construction it follows that h(p) = p and
 h(P¡+i) = Pi for each i. By Theorem 9 it follows that M is not orbit-enclosing.

 Theorem 10 is known in E1 where the proof is simpler (see [BS]).
 Theorem 10 doesn't work if the Pk sets have interior because of Theorem 9.

 Note that the Pk sets do not have to be w-limit sets themselves. For example, if
 each Pk is a copy of [0, 1] U {2}, then the resulting u>-limit set consists of a sequence
 of points and a sequence of arcs converging to the same point, but the individual
 copies of [0, 1] U {2} are not u;-limit sets as we remarked following example 1.

 If / : A - * A and for any non-empty subsets U and V of A, both relatively
 open in A, there exists m such that fm(U) fi V ^ (f>, then we say that / is
 topologically transitive on A (see [D] p. 49). Then the following result is well-
 known and due to Šarkovskii [S], whose one dimensional proof extends immediately
 to En.

 Theorem 11. Let ibea compactum in En. Then there exists a continuous
 / : A - ► A such that / is topologically transitive on A if and only if A is orbit-
 enclosing.

 The outline of the non-trivial direction is: Let be a base of open sets
 in A. Put Tk = {x € A : 7(x, /) fi Ok = $}• It is easily verified that each T* is
 closed and nowhere dense in A. Therefore by the Baire Category Theorem relative
 to the compact metric space A, A - UStLi 2* ^ <j>- Picking xo € A - UtLi 2* we
 have A = u>(xo , /). Note that if A is perfect then the set of x G A for which
 üj(x, f) = A is a residual G s in A.

 We say that u>(xo, f) is topologically mixing if for non- void relative open subsets

 U and V of a;(xo, /) there exists m such that fn(l 7) D V ^ <ļ> for all n > m. It is
 well known that there exists xq € (0, 1) such that u>(xo> h) is topologically mixing
 where h is the hat function (e.g. see [BCR] Th. 12). Hence the unit interval I and
 also the unit circle C are "topologically mixing."

 The next result gives a sufficient condition in terms of this notion for a product
 of two u;-limit sets to be an cj-limit set.

 Theorem 12. Suppose A and B are compact and A = u>(xo, /) Q E% and
 B = u(y0,g) Ç EK If A or B is topologically mixing, then there exists zo G Ei+i
 such that A x B = uj(zq,F) where F(x,y ) = (f(x),g(y)) and z0 = (a;0,yo)-

 Moreover, if both A and B are orbit-enclosing, then u?(z o, F) is orbit-enclosing
 too.
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 Proof: The function F is continuous and maps Ax B into Ax B. It is easily
 checked that F is topologically transitive so A x B is an w-limit set by Theorem
 11. Moreover it is clear that Ax B = u>(zo,F) is orbit-enclosing whenever A and
 B are orbit-enclosing.

 As a consequence of Theorem 12 the following sets are w-limit sets: the solid
 square, the annulus, the surface of a torus and the solid torus. These sets are
 homeomorphic to I x I, I x C, C x C and I x C x I respectively.

 It is an open question whether the product of any two w-limit sets is again an
 a;-limit set. However, if A x B Ç E2 the answer is yes because in case A and B
 are nowhere dense, A x B is an u>-limit set by Theorem 6 and in case one set is
 not nowhere dense it is a union of finitely many closed intervals and Theorems 8
 and 12 make j4x5an uj-limit set.

 The next results give conditions under which a union of two u;-limit sets is an
 u;-limit set.

 Theorem 13. Suppose A and B are nowhere dense compacta in Ek with A =
 w(xo, f) and B = u>(y0, g) and f(x) = g(x) whenever x G A fl B. If there exists
 A G A D B for which /(A) = <?(A) = A, then A U B is an w-limit set u(x o, h ) where
 h coincides with f on A and with g on B.

 Proof: If A or B is orbit-enclosing we will adjust it so that they are not as
 follows: Let xn = fn(x o) and yn = gn(yo)- Since A U B is nowhere dense we may
 choose sequences {xJJîîLo and {yiJSLo both missing A U B such that x'n ^ x^
 and y'n y'm whenever n m and x'n ^ y'm for all n and m and such that
 'xn - x'n' < 2~n and |yn - y'n' < 2-n for each n. Put s(xj,) = x'n+1 and let x'nk - ► //.
 Since x'nk £ A for all k we must have n* - ► oo and xnk - ► 'i and xnfc+i - ►
 It follows that x'nk+1 = s(x'nk) - »• /(//) too. According to Theorem 1 there exists
 an /' such that A = u>(x'0, /'). It is clear that f = f on A. Likewise we can find
 g' such that oj(y'0, g') = B. Therefore dropping the primes we may assume that
 7(x0, /)(1(AUß) = <t>, 7 (y0, g) n {A U B) = (f> and 7(x0, /) H 7 (y0, g) = <t>.

 Let {^n}^Lo be given by concatenating the following inductively defined strings
 of points, (u - * v means v = zn+1 if u = zn.)

 The first stage is

 Xq ► X' > • • • > Xa > J/o ^ Í/l * * * * * Vb *

 where xa is the first Xj such that |A - Xj' < 2"1 and yj, is the first yj such that
 |A - yj' < 2-1. Now suppose that nth stage has been described where xa and yp
 are the last orbit points to appear in the nth stage. Then the n + la< stage is
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 -► x'a -> xa+ļ -►

 where c is the first j > a such that 'xj - A| < 2-n_1 and d is the first j > ß such that

 I y i - A| < 2-n_1 and where x'a and y'ß are chosen to miss A U B U A(x, /) U X(y, g),
 and to miss all previously chosen x £ and y'^ points and to satisfy 'x'a - xa| < 2-n
 and I y'ß - yß' < 2~n.
 Clearly the set of subsequential limit points of {^n}^Lo A U B. We need only

 to verify the hypothesis of Theorem 1. It suffices to show that if znk - ► //, then
 Znk+ 1 -> h(p).
 The pair (z„kiz„k+ 1) can take one of the following forms:

 iXaki xorfc+l)> (xmk , ®mfc+l )j {.xck,yßk)i (î/m* ł ī/mfc+l)> i}! ßkt Vßk+l) or iVdkt Xak)'

 Without loss of generality we may assume that each of these forms occurs in-
 finitely often giving rise to six subsequences of {njfc}jfcl0- Without loss of generality
 we may assume that each subsequence is the whole sequence. Then

 Case 1. ( znk,znk+1 ) = (xak',xQk+1) for all k.

 Since |x^ - zaJ - » 0 and x'ak - ► A we have xak - ► A. So n = A and xak+' =
 f{xa„) -» /(A) = A =

 Case 2. (znk,znk+1) = (yßk't yßk+1) for all k.

 This is similar to case 1 and yields yßk+i -*

 Case 3» (znfc5 Zn^+i) = i,xmki'^mk+ 1) for âll k.

 Then xmk -► n and xmk+1 = f(xmk) -► /(//) =

 Case 4. (znk,znk+1) = (KiK+0 for a11 k-

 This is similar to case 3 and yields ymk+ 1 - ►

 Case 5. (znk,znk+i) = (xCk,yßk') for all k.

 Then xCk - ► A = fi, yßk -> A and 'yßk - yßk'' -> 0. Hence yßk - ► A = h(fi).

 Case 6. (znk,znk+1) = ( yCk,xak ') for all k.

 This is similar to case 5 and yields x'Qk -*■ h(/i).

 Hence, from the proof of Theorem 1, part 2, there exists t : Ek - ► Ek such that

 A U B = u>(zo, t ) and í = š on A U 5 U {z„ : n €E u;0}. From the above xnk - * x
 implies s(znk) -> h(x). Therefore t = h on A U B.
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 Theorem 13 need not be valid when one of the sets has non- void interior. For

 example, Theorem 9 shows that the union of a disk D with a sequence of points
 S outside it but converging to a boundary point of D is not an w-limit set in E2.
 However, D and S do satisfy the remaining hypotheses of Theorem 13. The set
 S is an u>-limit set with the limit point a fixed point (by Theorem 10). And D is
 an cj-limit set with some boundary point fixed. (See discussion following Theorem
 14.)

 One application of Theorem 13, as mentioned previously, is that the set B x {0}
 where B = [0, 1] x {2 n : n € u>} is an w-limit set in E2. By Theorem 7, [0, 1] is an
 w-limit set with all points fixed and the sequence together with 0 is an w-limit set
 with 0 fixed. Hence Theorem 13 applies. The next result is a variant of Theorem
 13 applicable to a set in E 2 having non- void interior.

 Theorem 14. Suppose A = u(zo, f ) is a compactum in E2 lying in the upper-
 half plane. If f(z ) = z for all z G A with Im z = 0, then (1) A* = {z : J G A} is
 an a>-limit set and (2) A U A* is an u;-limit set.

 Proof: If h(z) = ž, then h is a homeomorphism from A onto A* so by Theorem
 3, A* is an a;-limit set. If A* D A = </>, then Theorem 8 gives A U A* is an u;-limit
 set. In case A* fl A ^ <j> we have f(z) = z for all z 6 A* fl A. If A is nowhere dense,
 then Theorem 13 can be applied to give A U A* an u>-limit set. If A has non-empty
 interior we can assume 7(zo> /) Q A. Then E(x) = x if x € A and F(x) = f(x) if
 iE A*. Then it is easily checked that F is topologically transitive on A U A* so
 that A U A* is an cj-limit set by Theorem 11.

 Since the hat function h has 0 and 2/3 as fixed points, it follows by Theorem
 12 that 1 2 = [0, l]2 = u>(xo,F) where F(x,y) = h(x),h(y)) and (0,0), (0,2/3), and
 (2/3,0) are fixed points of F lying on the boundary of 1 2. Hence, using this and
 Theorem 14 we can get the union of two tangent disks as an u;-limit set and a
 "necklace" of an even number of disks each tangent to two others.

 If P = lü(x0, f) and each point on the bottom side were a fixed point, then
 we would be able to obtain a disk with two holes as an u;-limit set as follows:

 map I2 homeomorphically onto an "En whose 3 ends lie along the x-axis. The 3
 segments lying on the x-axis consist of fixed points so applying Theorem 14 we
 obtain a rectangle with two holes as an o»-limit set. However, the existence of such
 a function / remains an open question.

 The results of this paper generate a rich variety of u;-limit sets in the plane.
 However, some simple compacta are unknown to be u>-limit sets. For example, 1)
 a disk union a line segment; 2) a disk with finitely many segments protruding from
 it; and 3) a disk with two or more holes in it.
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 In a subsequent paper we will address these problems.
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