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 About net convergences
 of measurable functions

 The importance of Condition (B) (for sequences) was stressed by N.N. Luzin
 in his dissertation, cf. 6Luz53Y. The idea to consider nets instead sequences
 naturally arises in measure and integration theory dealing with -Ł(X, Y)-valued
 measures, where both X,Y are locally convex topological vector spaces, cf.
 6Hal90Y, 6Hal92Y. Condition (B) for nets (and the measure) in the classical
 setting was introduced and investigated by B. F. Goguadze, cf. 6Gog79Y.

 I.

 Let 1Z denote the real line and let M denote the set of all natural numbers.

 Let A be an algebra of subsets of 1Z. Recall that a set function m : A - ► [0, oo]
 is said to be a charge on A if m(0) = 0 and m(E U F) = m(E 'F) + m(F) for
 every E,F € A. A charge space is a triple (H, A, m).

 Definition (B). A charge m is said to satisfy Condition (B) if for every E G A,
 m(E ) < oo, and every net of sets Ei € A, i G I, Ei C E,
 limsupiej Ei^% whenever there exists a real number ó > 0 such that m(Ei ) >
 S for every i G I.

 A charge m is said to be a purely atomic measure if (i) it is a measure, (ii)
 every E G A, m(E) < oo, can be written as a countable union of atoms (A G A
 is an atom if m(A) > 0 and B C A implies either B £ A or B = 0). Every
 purely atomic measure satisfies Condition (B), cf. 6Gog79Y.

 Let (11, A, ra) be a charge space. A real valued function / on 72. is said to be
 measurable if for every e > 0, there exists a partition {Fo, Fi, Fļ, . • • , Fn} of 1Z
 in A such that m(Fo) < e and |/(ť) - /(ť')| < e for every t, t' € F{ for every i =
 1,2, ... ,n, cf.6Bha83Y, Definition 4.4.6. We then write / G A4. We say that
 a net /¿ G M, i G I, converges to a function f Ç M on E E A in charge if for
 every e > 0, S > 0, there exists i o G I such that for every i > ¿o, i G I, we have
 m({t G E' I fi(t) - /(ť)| > < e, where m(A) = inf^cB.sgA m(B),A C %.

 Theorem 1. The followig statements are equivalent:
 (i) The charge m satisfies Condition (B).
 (ii) If a net of measurable functions converges everywhere to a measurable

 function f on E G A, m(E ) < oo, then it converges on E to f in charge.

 Theorem 2. There exists a non-zero non-atomic charge which satisfies Con-
 dition (B).
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 II.

 Let xe denote the indicator function of a set E C 1Î. Let f C Aí be a
 vector lattice containing {xe',E G A ,m(E) < 00} and J: F x A - * 1Z a map
 such that

 (a) f-,9 € F, a,ß € E e A =*► J(a/ + ^0,.E) = aJ(f,E) + ßJ(g,E),
 (b) E, F e A, / e T =► J(/, £UF) = J(/, E ' F) + /(/, F),
 (c) m(Ei) ' 0, Ei € A, i €/,/€/=► J(/,£<) ' 0,
 (d) 0 < g <f,Ee A, <7,/ € :F=* 0 < J(g,E) < J(f,E).

 Theorem 3. Let a charge m: A - ► [0, 00] satisfy Condition (B). Let E G
 A, m(E) < 00. Let a net /¿ € i € /, converge everywhere to a function
 f G M. If there exists a function g € F, such that |/, | < g for every i 6 I, then
 lim¿e/ J(fi,E) = Ji(f,E) exists.

 Remark. Let ^i(C M) denote the closure of T given by Theorem 2. It can
 be proved that Ji(f,E) in Theorem 2 does not depend on the choice of a net
 fi, i € I, and Conditions (a) - (d) remain valid if T is replaced by T' and J is
 replaced by J' : T' x A - ► %.

 III.

 Let (1Z, A, A) denote the Lebesgue measure space. The measure A satisfies
 Condition (B) for sequences, but does not satisfy Condition (B) for arbitrary
 directed sets I. So, there is a question how to restrict the class of all directed
 sets {/} in Condition (B) to a smaller, more suitable class {/} C {/}, that the
 Lebesgue measure satisfies Condition (B) with respect to the class {/}.

 Problem. Find a directed set I essentially different from JV, such that for
 every E € A, A (E) < 00, and every net of sets Ei € A, i € /, Ei C E, we
 have lim sup,e/ Ei ^ 0 whenever there exists a real number 8 > 0 such that
 '{Ei) > 8 for every i G I.
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