Aleksandra Katafiasz, Instytut Matematyki WSP, Chodkiewicza 30, 85-064 Bydgoszcz, Poland

The Improvable Discontinuous Functions

We shall consider bounded real functions f of a real variable. The set U(f) will denote the set of all points of discontinuity of f at which there exists a limit of f which is not equal to the value of f at that point. Of course, the set U(f) is countable for any function f. If we replace the values of f at the points of U(f) with the values of the appropriate limits, then we obtain the new function, which we shall denote by $f_{(1)}$. If $f_{(1)}$ is continuous, then f is said to be an improvable discontinuous function.

Professor Świątkowski asked if there can exist a a function f such that f is continuous at no point \Re and yet $f_{(1)}$ is continuous everywhere. The negative answer is given by the following theorem:

Theorem 1 For any improvable discontinuous function f the set of points of continuity (C(f)) is dense. Moreover $C(f_{(1)}) - C(f)$ is of the first category for any improvable discontinuous function.

It will be much easier to understand the situation if I give some examples.

Example 1 Let $D = \left\{\frac{1}{n}; n \in \mathcal{N}\right\}$ and let f be the characteristic function of D. Note that D = U(f) and 0 does not belong to U(f). But after improving we become the continuous function $f_{(1)} = 0$ for every $x \in \Re$. Observe that we can also improve the continuity of f at some points which do not belong to U(f).

Example 2 Let D be as above and g be the characteristic function of $D \cup \{0\}$. Note that D = U(f) and 0 does not belong to the set U(f). But $g_{(1)} = \chi_{\{0\}}$. Hence the function g is not improvable discontinuous at 0.

Example 3 Let $C \subset [0,1]$. The components of the complement of C are called contiguous intervals. Let C_1 be a set of all central points of contiguous intervals. Let h be the characteristic function of the set C_1 . Observe that $C_1 = U(h)$ and each point of the set C belongs to U(f), but $h_{(1)} = 0$ for every $x \in \Re$.

Now we shall establish necessary and sufficient conditions under which A is a set of all points of continuity of some improvable discontinuous function f. Theorem 1 implies that any such set is dense.

Theorem 2 If A be is a proper dense \mathcal{G}_{δ} subset of \Re , then the following conditions are equivalent:

- 1. there is a function $f: \Re \longrightarrow \Re$ such that C(f) = A and $C(f_{(1)}) = \Re$;
- 2. there exists a \mathcal{G}_{δ} set $E \subset A$ such that the set K = E A is countable and dense in $cl(\Re E)$.

As corollary we can state:

Corollary 1 If $f : \Re \longrightarrow \Re$ is a function satisfying (1.), then U(f) = K.

All the problems we discussed before were concerned with functions defined on the whole real line. The results are also valid if we consider functions defined on any dense \mathcal{G}_{δ} subset of \Re .

Next, we examine properties of improvable discontinuous functions.

Theorem 3 Any improvable discontinuous function is of the first class of Baire.

But there are some Baire one functions which are not improvable discontinuous (see Example 2).

Theorem 4 There is no Darboux function which is improvable discontinuous.

As our final result we have:

Theorem 5 The class of all improvable discontinuous functions and continuous functions is (not) closed under uniform (pointwise) convergence.