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 The Improvable Discontinuous Functions

 We shall consider bounded real functions / of a real variable. The set
 U(f) will denote the set of all points of discontinuity of / at which there
 exists a limit of / which is not equal to the value of / at that point. Of
 course, the set U (/) is countable for any function /. If we replace the values
 of / at the points of U (/) with the values of the appropriate limits, then we
 obtain the new function, which we shall denote by /(i). If /(i) is continuous,
 then / is said to be an improvable discontinuous function.

 /

 Professor Świątkowski asked if there can exist a a function / such that
 / is continuous at no point and yet /(i) is continuous everywhere. The
 negative answer is given by the following theorem:

 Theorem 1 For any improvable discontinuous function f the set of points of

 continuity ( C(f )) is dense. Moreover C (/(i)) - 0(f) 15 of the first category
 for any improvable discontinuous function.

 It will be much easier to understand the situation if I give some examples.

 Example 1 Let D = G Afļ and let f be the characteristic function of
 D. Note that D = U(f) and 0 does not belong to U(f). But after improving
 we become the continuous function /(i) = 0 for every x € Observe that
 we can also improve the continuity of f at some points which do not belong
 to U(f).

 Example 2 Let D be as above and g be the characteristic function of D U{0}.
 Note that D = U(f) and 0 does not belong to the set U(f). But g (jj = X{o}-
 Hence the function g is not improvable discontinuous at 0.

 Example 3 Let C C [0,1]. The components of the complement of C are
 called contiguous intervals. Let G' be a set of all central points of contiguous
 intervals. Let h be the characteristic function of the set C'. Observe that
 C' = U(h) and each point of the set C belongs to U(f), but h^ = 0 for
 every x € 3ft.
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 Now we shall establish necessary and sufficient conditions under which A
 is a set of all points of continuity of some improvable discontinuous function
 /. Theorem 1 implies that any such set is dense.

 Theorem 2 If A be is a proper dense Q$ subset of 3ft, then the following
 conditions are equivalent:

 1. there is a function f : 3ft - ► 3ft such that C(f) = A and C (/(i)) = 3ft;

 2. there exists a Qs set E C A such that the set K = E - A is countable
 and dense in cl (3ft - E) .

 As corollary we can state:

 Corollary 1 If f : 3ft - ► 3ft is a function satisfying (1.), then U(f) = K .

 All the problems we discussed before were concerned with functions de-
 fined on the whole real line. The results are also valid if we consider functions

 defined on any dense Ģ$ subset of 3ft.
 Next, we examine properties of improvable discontinuous functions.

 Theorem 3 Any improvable discontinuous function is of the first class of
 Baire.

 But there are some Baire one functions which are not improvable discon-
 tinuous (see Example 2).

 Theorem 4 There is no Darboux function which is improvable discontinu-
 ous.

 As our final result we have:

 Theorem 5 The class of all improvable discontinuous functions and contin-
 uous functions is (not) closed under uniform (pointwise) convergence.
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