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The Improvable Discontinuous Functions

We shall consider bounded real functions f of a real variable. The set
U(f) will denote the set of all points of discontinuity of f at which there
exists a limit of f which is not equal to the value of f at that point. Of
course, the set U(f) is countable for any function f. If we replace the values
of f at the points of U(f) with the values of the appropriate limits, then we
obtain the new function, which we shall denote by f,). If f(;) is continuous,
then f is said to be an improvable discontinuous function.

Professor Swigtkowski asked if there can exist a a function f such that
[ is continuous at no point  and yet f(;) is continuous everywhere. The
negative answer is given by the following theorem:

Theorem 1 For any improvable discontinuous function f the set of points of
continuity (C(f)) is dense. Moreover C (f(l)) — C(f) is of the first category
for any improvable discontinuous function.

It will be much easier to understand the situation if I give some examples.

Example 1 Let D = {%,n € N} and let f be the characteristic function of
D. Note that D = U(f) and 0 does not belong to U(f). But after improving
we become the continuous function f) = 0 for every x € R. Observe that
we can also tmprove the continuity of f at some points which do not belong

to U(f).

Example 2 Let D be as above and g be the characteristic function of DU{0}.
Note that D = U(f) and 0 does not belong to the set U(f). But gay = x{o}-
Hence the function g is not improvable discontinuous at 0.

Example 3 Let C C [0,1]. The components of the complement of C are
called contiguous intervals. Let Cy be a set of all central points of contiguous
intervals. Let h be the characteristic function of the set C,. Observe that
C1 = U(h) and each point of the set C belongs to U(f), but hpyy = 0 for
every r € R.
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Now we shall establish necessary and sufficient conditions under which A
is a set of all points of continuity of some improvable discontinuous function
f. Theorem 1 implies that any such set is dense.

Theorem 2 If A be is a proper dense Gs subset of R, then the following
conditions are equivalent:

1. there is a function f : R — R such that C(f) = A and C (f(l)) =R;

2. there exists a Gs set E C A such that the set K = E — A is countable
and dense in cl(R - E).

As corollary we can state:
Corollary 1 If f : R — R is a function satisfying (1.), then U(f) = K.

All the problems we discussed before were concerned with functions de-
fined on the whole real line. The results are also valid if we consider functions
defined on any dense G5 subset of R.

Next, we examine properties of improvable discontinuous.functions.

Theorem 3 Any improvable discontinuous function is of the first class of
Baire.

But there are some Baire one functions which are not improvable discon-
tinuous (see Example 2).

Theorem 4 There is no Darbouz function which is improvable discontinu-
ous.

As our final result we have:

Theorem 5 The class of all improvable discontinuous functions and contin-
uous functions is (not) closed under uniform (pointwise) convergence.
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