Anna Kucia and Andrzej Nowak, Instytut Matematyki, Uniwersytet Śląski, ul. Bankowa 14, 40-007 Katowice, Poland

Measurable Fields of Metric Spaces

The concept of measurability can be generalized to the situation where the value space varies with the argument of a function.

Let (T, T) be a measureable space, $(A_t, d_t)_{t \in T}$ a family of metric spaces, and $X \subset \prod \{A_t : t \in T\}$. Elements of X will play the role of measurable functions. Then $((T, T), (A_t, d_t)_{t \in T}, X)$ is called a measurable field of metric spaces if it satisfies the following axioms:

- 1. X is closed under pointwise limits of sequences.
- 2. If $x, y \in X$ and $S \in \mathcal{T}$, then the function z defined by z(t) = x(t) for $t \in S$ and z(t) = y(t) for $t \in T \setminus S$ also belongs to X.
- 3. For each $x, y \in X$ the real-valued function $t \mapsto d_t(x(t), y(t))$ is measurable.
- 4. For each $t \in T$ the set $\{x(t) : x \in X\}$ is dense in A_t .

The notion of a measurable field of metric spaces was introduced by Delode, Arino, and Peno [1]. Independently, Evstigneev and Kuznetsov [2] defined a similar concept of "skew products" of measurable spaces.

A set-valued function ϕ defined on T and such that $\phi(t) \subset A_t$, $t \in T$, is said to be *measurable* if for each $x \in X$ the real-valued mapping $t \mapsto dist_t(x(t), \phi(t))$ is measurable (cf. [2]).

The family $f_t: A_t \to \mathbb{R}$, $t \in T$, is called a measurable field of functionals if for each $x \in X$ the function $t \mapsto f_t(x(t))$ is measurable (cf. [3]). We say that $(f_t)_{t \in T}$ is a normal field of functionals if each f_t is upper semicontinuous, and the set-valued map

$$E(t) = \{(a,r) \in A_t \times \mathbb{R} : r \le f_t(a)\}, t \in T$$

is measurable with respect to the product measurable field of metric spaces $((T, \mathcal{T}), (B_t, \rho_t)_{t \in T}, Y)$, where $B_t = A_t \times \mathbb{R}$, ρ_t is the product metric, and Y

is the set of all pairs (x, h), where $x \in X$ and h is a measurable real-valued function on T (cf. [2]).

We shall consistently assume that the measurable field of metric spaces $((T,T),(A_t,d_t)_{t\in T},X)$ is separable, i.e., there is a countable subset $X_0\subset X$ such that $\{x(t):x\in X_0\}$ is dense in $A_t,\,t\in T$.

The following theorems are generalizations of some results for normal integrands. They are motivated by applications to optimization and mathematical economy.

Theorem 1 If all (A_t, d_t) are complete and $(f_t)_{t \in T}$ is a normal field of functionals, then there exists a sequence of measurable fields of functionals $(f_t^n)_{t \in T}$, $n \in N$, such that each f_t^n is continuous, and $f_t^n \downarrow f_t$. If all A_t are compact, then the converse statement holds.

Theorem 2 If $(f_t)_{t\in T}$ is a normal field of functionals such that for each $t\in T$ and each $r\in \mathbb{R}$ the set $\{a\in A_t: r\leq f_t(a)\}$ is relatively compact in A_t , then the function

$$v(t) = \sup\{f_t(a) : a \in A_t\}, \ t \in T$$

is measurable, and there exists $x^* \in X$ such that $v(t) = f_t(x^*(t))$ for all $t \in T$.

References

- [1] D. Delode, O. Arino, and J. P. Penot, Champs mesurables et multisections, Ann. Inst. H. Poincaré, Sect. B 12 (1976), 11-42.
- [2] I. V. Evstigneev and S. E. Kuznetsov, Skew products of measurable spaces, Selected Problems of Probability and Mathematical Economics, CEMI Akad Nauk SSSR, Moscow 1977, pp. 28-37 (in Russian).
- [3] T. Jdanok, Opérateurs et fonctionelles aléatoires dans les champs mesurables, Travaux Sém. Anal. Convexe Montpellier (1983), 1-36