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 Measurable Fields of Metric Spaces

 The concept of measurability can be generalized to the situation where
 the value space varies with the argument of a function.

 Let ( T , T) be a measureable space, (Ati dt)tçT a family of metric spaces,
 and X C Iļ{^< : t G T}. Elements of X will play the role of measurable
 functions. Then ((T, T), (At, dt)tzTi X) is called a measurable field of metric
 spaces if it satifies the following axioms:

 1. A' is closed under pointwise limits of sequences.

 2. If x, y G X and S G T, then the function z defined by z(t) = a:(ż) for
 t G S and z(ť) = y(t) for t £T'S also belongs to X.

 3. For each i,j Ç I the real-valued function t i- >■ dt(x(t),y(t)) is mea-
 surable.

 4. For each t 6 T the set {a:(ť) : x G X} is dense in At.

 The notion of a measurable field of metric spaces was introduced by De-
 lode, Arino, and Peno [1]. Independently, Evstigneev and Kuznetsov [2]
 defined a similar concept of "skew products" of measurable spaces.

 A set-valued function <j) defined on T and such that <1>{t) C At, t G T,
 is said to be measurable if for each x G X the real-valued mapping t i- ►
 distt(x(t),(f>(t )) is measurable (cf. [2]).

 The family ft : At - * 1R, t G T, is called a measurable field of functionals
 if for each x G X the function t i-+ ft(x(t )) is measurable (cf. [3]). We say
 that (ft)teT is a normal field of functionals if each ft is upper semicontinuous,
 and the set-valued map

 E(t ) = {(a, r) G At x IR : r < /<(a)}, <gT

 is measurable with respect to the product measurable field of metric spaces
 ((T, T), (Bt, Pt)teTi Y), where Bt = Atx 1R, pt is the product metric, and Y
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 is the set of all pairs (x, h), where x € X and h is a measurable real-valued
 function on T (cf. [2]).

 We shall consistently assume that the measurable field of metric spaces
 tąT,X) is separable, i.e., there is a countable subset Xç, C X

 such taht {x(ť) : x € Xo} is dense in Ati t € T.
 The following theorems are generalizations of some results for normal

 integrands. They are motivated by applications to optimization and mathe-
 matical economy.

 Theorem 1 If all ( At,dt ) are complete and (ft)tçT is a normal field of
 junctionals, then there exists a sequence of measurable fields of functionals
 (fi)tąTi n € N, such that each /" is continuous, and /" ļ ft. If all At are
 compact, then the converse statement holds.

 Theorem 2 If ( ft)ter is a normal field of functionals such that for each
 t G T and each r € lit the set {a € At : r < /t(a)} is relatively compact in
 At, then the function

 v(t ) = sup{/ť(a) : a 6 At }, t € T

 is measurable, and there exists x* € X such that v(t) = ft(x*(t)) for all
 t € T.
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