On Limits of Quasicontinuous, Simply Continuous and Cliquish Functions

Let X be a topological space and Y be a metric space (with metric d). A sequence (f_n) , $f_n: X \to Y$ quasiuniformly converges to $f: X \to Y$, if it pointwise converges to f and for every $\epsilon > 0$ and for every natural number m, there exists a natural number p such that for all $x \in X$:

$$\min\left\{d\left(f_{m+1}(x),f(x)\right),\ldots,d\left(f_{m+p}(x),f(x)\right)\right\}<\epsilon.$$

If $\mathcal{F} \subset Y^X$, we denote by $U(\mathcal{F})$, $D(\mathcal{F})$, and $P(\mathcal{F})$ the collection of all uniform, quasiuniform, and pointwise limits of sequences taken from \mathcal{F} , respectively.

A function $f: X \to Y$ is quasicontinuous if $f^{-1}(V) \subset \text{Cl Int } f^{-1}(V)$ for each open set V in Y; f is simply continuous if $f^{-1}(V)$ is a union of an open set and a nowhere dense set for each open set V in Y; f is cliquish if for each $x \in X$, for each $\epsilon > 0$ and each neighborhood U of x there is an open nonempty set $G \subset U$ such that $d(f(y), f(z)) < \epsilon$ for each $y, z \in G$.

Denote by Q, S, K, and B the set of all functions which are quasicontinuous, simply continuous, cliquish, and having the Baire property (with X as the domain and Y as the range), respectively. Evidently, $Q \subset K \subset B$ and $Q \subset S \subset B$. In [5] it is shown that if X is a Baire space and Y is a separable metric space, then $S \subset K$.

It is well-known that U(Q) = Q, U(K) = K and P(B) = B. In [1] it is shown that D(K) = K for a Baire space X. In [2] (also [4]) it is shown that for $X = \mathbb{R}^m$ and $Y = \mathbb{R}$ we have P(Q) = K and P(K) = B.

Theorem 1 Let X be a Baire space and (Y, d) be a separable locally compact metric space. Then P(S) = B and U(S) = K.

Theorem 2 If $X = Y = \mathbb{R}$, then D(Q) = K.

Therefore, for real functions of a real variable we obtain the following complete description (where the inclusions are proper):

Theorem 3 Let $X = Y = \mathbb{R}$. Then $Q = U(Q) \subset S \subset K = U(K) = D(K) = U(S) = D(S) = D(Q) = P(Q) \subset B = U(B) = D(B) = P(B) = P(K) = P(S)$.

By [3] every cliquish $f: \mathbb{R} \to \mathbb{R}$ is a sum of 4 quasicontinuous functions and by [6] (also [4]) every cliquish function $f: \mathbb{R}^m \to \mathbb{R}$ is a sum of 6 quasicontinuous functions.

Theorem 4 Every cliquish function $f: \mathbb{R}^m \to \mathbb{R}$ is a sum of 4 quasicontinuous functions and it is a sum of 2 simply continuous functions.

References

- [1] J. Doboš and T. Šalát, Cliquish functions, Riemann integrable functions and quasiuniform convergence, *Acta Math. Univ. Comen.* 40-41 (1982), 219-223.
- [2] Z. Grande, Sur la quasi-continuité et la quasi-continuité approximative, Fund. Math. 129 (1988), 167-172.
- [3] Z. Grande, Sur les fonctions cliquish, Časopis pĕst. mat. 110 (1985), 225–236.
- [4] Z. Grande, T. Natkaniec, and E. Stronska, Lattices, algebras and Baire's systems generated by some families of functions, *Real Analysis Exch.* 13 (1987–88), 61–66.
- [5] A. Neubrunnová, On certain generalizations of the notion of continuity, Mat. časopis 23 (1973), 374-380.
- [6] E. Stronska, L'espace linéaire des fonctions cliquées sur \mathbb{R}^n est généré par les fonctions quasi-continuous, *Math. Slovaca* 39 (1989), 155-164.