Milan Kuchta, Mathematical Institute, Slovak Academy of Sciences, Stefánikova 49, 814 73 Bratislava, Czechoslovakia

SHADOWING PROPERTY OF MAPS WITH ZERO TOPOLOGICAL ENTROPY

Let $C^0(I,I)$ denote the class of continuous maps $I \to I$, where I is a compact real interval. The orbit of $x \in I$ with respect to f is the sequence $\operatorname{orb}(x) = \{f^n(x)\}_{n=0}^{\infty}$ where f^n denotes the *n*th iterate of f. Interval $J \subset I$ is called a periodic interval with period $\operatorname{per}(J) = k \in \mathbb{N}$ if $f^k(J) = J$ and $f^i(J) \cap f^j(J) = \emptyset$ for $0 \leq i \neq j < k$. If J is degenerate to a point then it may be called a periodic point. Denote the set of all periodic points of f by $\operatorname{Per}(f)$ and the topological entropy of f by E(f). We will denote a closed interval with $x \leq y$ by [x, y] and a closed interval where no information about order of x, y is provided by $[x, y]^*$.

Definition 1. If $f \in C^0(I, I)$ and $\delta > 0$ is given, a sequence $\mathbf{X}_{\delta} = \{\mathbf{x}_i\}_{i=0}^{\infty}$ of points in I is called a δ -chain of f (or δ -pseudo orbit of f) provided that

$$|f(\mathbf{x}_i) - \mathbf{x}_{i+1}| \le \delta$$
 for every $i \ge 0$

Given $\varepsilon > 0$, a δ -chain \mathbf{X}_{δ} is said to be ε -shadowed by $y \in I$, if

$$|f^{i}(y) - \mathbf{x}_{i}| \leq \varepsilon$$
 for every $i \geq 0$

f is said to have the shadowing property if for any $\varepsilon > 0$ there is $\delta > 0$ such that every δ -chain of f can be ε -shadowed by a point in I.

Definition 2. Let $f \in C^0(I, I)$. We will call f a shrink function if and only if for every sequence $\{J_k\}_{k=0}^{\infty}$ of periodic intervals such that $J_{k+1} \subset J_k$ and $per(J_{k+1}) > per(J_k)$ we have that $\lim_{k \to \infty} |J_k| = 0$.

Definition 3. We will call an one-side neighborhood $[p,q]^*$ of the periodic point p an $m \cdot f$ -non-trapping neighborhood of p if $f^m(p) = p$ and for every $x \in [p,q]^*$; $x \in f^m([p,x]^*)$.

Definition 4. We will call $f \in C^0(I, I)$ a non-degenerate function if the following condition holds

If $x \in I$, $p \in Per(f)$, $[p,q]^*$ is an m-f-non-trapping neighborhood of p and $\lim_{n \to \infty} f^{mn}(x) = p$, then for every neighborhood O_x of x and for all $z_1, z_2 \in (p,q)^*$ there is an $n_0 \in \mathbb{N}$ such that $[z_1, z_2]^* \subset f^{mn_0}(O_x)$.

Main Theorem. Let $f \in C^0(I, I)$ and E(f) = 0. Then f has the shadowing property if and only if f is a non-degenerate shrink function.

Remark 5. Our condition is necessary for any continuous function $(E(f) \ge 0)$ to have the shadowing property and it is quite easy to prove. Moreover, if we use the results from [2], we can easily obtain similar results for continuous maps of the circle.

The proof of the sufficiency is based on the following lemma.

Lemma 6. Let $f \in C^0(I,I)$, E(f) = 0 and f be a non-degenerate shrink function. Then for all $\varepsilon > 0$ there is $\varepsilon^* > 0$ and a non-decreasing function $h \in C^0(I,I)$ such that for all $x, y \in I$ we have

$$\begin{aligned} |h(x) - h(y)| &\leq |x - y|, \\ \text{if} \quad |h(x) - h(y)| < \varepsilon^* \quad \text{then} \quad |x - y| < \varepsilon, \\ h \circ f &= g \circ h \end{aligned}$$

where g is a non-degenerate continuous function of the type 2^n (it means that if $p \in Per(g)$ then $g^{2^n}(p) = p$).

Now using the following result we are easily done.

Theorem 7. (T. Gedeon, M. Kuchta [1]) Let $f \in C^0(I, I)$ be of the type 2^n . Then f has the shadowing property if and only if f is a non-degenerate function.

References

- [1] T. Gedeon, M. Kuchta, Shadowing property of continuous maps, Proc. Amer. Math. Soc. (to appear).
- [2] M. Kuchta, Characterization of chaos for continuous maps of the circle, Comment. Math. Univ. Carolin. **31** (1990), 383-390.