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On w-Limit Sets of Triangular Maps

As established in [1] and [2], a nonvoid closed subset M of I = [0,1] is
an w-limit set for some continuous function f : I + I if and only if M is
nowhere dense or i s a union of finitely many nondegenerate closed intervals.

A continuous map F : I? — I? is called a triangular map if F(z,y) =
(f(z), 9(z,y)), i.e. if the first coordinate of the image of a point depends only
on the first coordinate of that point. The triangular map F' splits the square
I? into one-dimensional fibres (intervals z = constant) such that each fibre
is mapped by F into a fibre. Denote by Ca(I?,I?) the set of all continuous
triangular maps from I? into itself and by w;([z,y]) the w-limit set of the
point [z,y] under F.

Our main result is the characterization of those w-limit sets of triangular
maps which lie in one fibre. Trivially, as an w-limit set lying in a fibre
I, = {a} x I we can get any set of the form {a} x M where M is a set which
can serve as an w-limit set for a continuous map from I into I. But it turns
out that many other sets can also be obtained. The complete answer is given

by
Theorem 1 Fora € I, M C I the following two conditions are equivalent:

1. There is F € Ca(I%,1?) and a point [z,y] € I? with wr([z,y]) =
{a} x M;

2. M is a nonempty closed subset of I which is not of the form
M=J,UuJ,U...J,UC, (1)

where n is a positive integer, the J;, i = 1,2,...,n, are closed intervals,
C is a nonempty countable set,and all the sets J; and C are mutually
disjoint and dist(C,J;) > 0 for at least one i € {1,2,...,n}.
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Using Theorem 1 it is easy to show that if A is a nonempty finite set,
then A X M is an w-limit set for a continuous triangular map if and only if
M is a nonempty closed subset of I which is not of the form (1).

Now suppose that an w-limit set is not a subset of a fibre. Then the
question is whether any closed subset of a fibre can be obtained as an inter-
section of this fibre and an w-limit set of an F' € Ca(I?,1%). The answer is
affirmative.

Theorem 2 Lef a € I, and let M be any closed subset of I. Then there are
F € Ca(I%,I?) and [z,y] € I? with ws([z,y]) NI, = {a} x M.
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