G. Kwiecińska and W. Śleżak, Inst. Mat. Uniw., ul. W.Stwosza 57, 80-952 Gdańsk, Poland

Measurability of Multifunctions of Two Variables

1. Definition (see [1]). A measurable space with negligibles is a triple $(X, \mathfrak{M}(X), \mathfrak{J}(X))$ where X is a set, $\mathfrak{M}(X)$ is a σ -algebra of subsets of X and $\mathfrak{J}(X) \subset \mathfrak{P}(X)$ is a σ -ideal of the Boolean algebra $\mathfrak{P}(X)$ generated by $\mathfrak{J}(X) \cap \mathfrak{M}(X)$.

Denote by \mathfrak{M} the completion of $\mathfrak{M}(X)$ with respect to $\mathfrak{J}(X)$.

2. Definition. Let $(X, \mathfrak{M}(X))$ be a measurable space, $(Y, \mathcal{T}(Y))$ a topological space and $F: X \to Y$ a multifunction. We say that F is lower (resp. upper) $\mathfrak{M}(X)$ -measurable if $F^-(G) = \{x \in X : F(x) \cap G \neq \emptyset\} \in \mathfrak{M}(X)$ (resp. $F^+(G) = \{x \in X : F(x) \subset G\} \in \mathfrak{M}(X)$) for each $G \in \mathcal{T}(Y)$.

Let $(X, \mathfrak{M}(X), \mathfrak{J}(X))$ and $(Y, \mathfrak{M}(Y), \mathfrak{J}(Y))$ be two measurable spaces with negligibles. Let $\mathfrak{M}(X) \otimes \mathfrak{M}(Y)$ be the σ -algebra generated by $\mathfrak{M}(X) \times \mathfrak{M}(Y)$ and let $\mathfrak{J}(X) \otimes \mathfrak{J}(Y)$ denote the σ -ideal generated by all sets of the form $X \times J$ and $I \times Y$ where $I \in \mathfrak{J}(X)$ and $J \in \mathfrak{J}(Y)$. In many important cases the product $X \times Y$ is, in a natural way, endowed with the σ -ideal $\mathfrak{J}(X) \otimes \mathfrak{J}(Y) \supset \mathfrak{J}(X) \otimes \mathfrak{J}(Y)$ with the following "Fubini property": for any set $A \in \mathfrak{M}(X \otimes Y)$ the following implications hold

$$\{x \in X : A_x \in \mathfrak{J}(Y)\} \in \mathfrak{J}(X) \implies A \in \mathfrak{J}(X \otimes Y) \text{ and } (1)$$

$$\{y \in Y : A^y \in \mathfrak{J}(X)\} \in \mathfrak{J}(Y) \quad \Rightarrow \quad A \in \mathfrak{J}(X \otimes Y), \tag{2}$$

where $A_x = \{y \in Y : (x, y) \in A\}$ and $A^y = \{x \in X : (x, y) \in A\}$ denote the sections of A and $\hat{\mathfrak{M}}(X \otimes Y)$ denotes $\mathfrak{J}(X \otimes Y)$ -completion of $\mathfrak{M}(X) \otimes \mathfrak{M}(Y)$.

3. Definition. Let $(X, \mathcal{T}(X))$ and $(Y, \mathcal{T}(Y))$ be two topological spaces and let $F : X \to Y$ be a multifunction. F is called lower (resp. upper) semicontinuous at a point $x_0 \in X$ if the implication $F(x_0) \cap U \neq \emptyset \Rightarrow$ $\bigvee_{G \in \mathcal{T}(X)} x_0 \in G \land \bigwedge_{x \in G} F(x) \cap U \neq \emptyset$ (resp. $F(x_0) \subset U \Rightarrow \bigvee_{G \in \mathcal{T}(X)} x_0 \in$ $G \land \bigwedge_{x \in G} F(x) \subset F(x) \subset U$) hold for each $U \in \mathcal{T}(Y)$. F is continuous at x_0 if it is lower and upper semicontinuous at x_0 .

Let $\mathcal{U}(x_0)$ be a filterbase of open neighbourhoods of $x_0 \in X$ and let $\nabla(x_0) = \{A(x_0) \subset X : \bigwedge_{U \in \mathcal{U}(x_0)} A(x_0) \cap U \neq \emptyset\}$. Following Jacobs [2] define

 $p-\limsup_{x\to x_0} F(x) = \bigcap_{\substack{U\in\mathcal{U}(x_0)\\x\in U}} \operatorname{Cl}\left(\bigcup_{x\in U} F(x)\right) \subset Y \text{ and } p-\liminf_{x\to x_0} F(x) = \bigcap_{A\in\mathcal{U}(x_0)} \operatorname{Cl}\left(\bigcup_{x\in A} F(x)\right) \subset Y. \text{ If } \mathcal{B} \text{ is a basis for } X \text{ and we replace } \nabla \mathcal{U}(x_0) \text{ in } X \in \mathcal{U}(x_0) = \mathbb{E}\left(\bigcup_{x\in A} F(x)\right) \subset Y. \text{ If } \mathcal{B} \text{ is a basis for } X \text{ and we replace } \nabla \mathcal{U}(x_0) \text{ in } X \in \mathcal{U}(x_0) = \mathbb{E}\left(\bigcup_{x\in A} F(x)\right) \subset Y. \text{ If } \mathcal{B} \text{ is a basis for } X \text{ and we replace } \nabla \mathcal{U}(x_0) \text{ in } X \in \mathcal{U}(x_0) = \mathbb{E}\left(\bigcup_{x\in A} F(x)\right) \subset Y. \text{ If } \mathcal{B} \text{ is a basis for } X \text{ and } \mathbb{E}\left(\bigcup_{x\in A} F(x)\right) \subset Y. \text{ If } \mathcal{B} \text{ is a basis for } X \text{ and } \mathbb{E}\left(\bigcup_{x\in A} F(x)\right) \subset Y \in \mathcal{U}(x_0) = \mathbb{E}\left(\bigcup_{x\in A} F(x)\right) \subset Y = \mathbb{E}\left(\bigcup_{x\in A} F(x)$

 $A \in \mathcal{U}(x_0)$

the latter definition by $\nabla \mathcal{U}(x_0) \cap \mathcal{B} = \{U \in \mathcal{B} : x_0 \in \mathrm{Cl}(U)\}$ we denote the resulting operation by q-lim inf.

4. Theorem.Let $(X, \mathfrak{M}(X), \mathfrak{J}(X))$ be a complete mesurable space with negligibles, $(Y, \mathcal{T}(Y))$ a second countable topological space and $\mathfrak{J}(Y) \subset \mathcal{B}(Y)$ a Borel σ -ideal in Y such that there exists a σ -ideal $\mathfrak{J}(X \otimes Y) \supset \mathfrak{J}(X) \otimes \mathfrak{J}(Y)$ such that (1) and (3) hold, where

$$A \in \mathfrak{M}(X) \otimes \mathcal{B}(Y) \longrightarrow \pi_x(A) = \{ x \in X : \bigvee_{y \in Y} (x, y) \in A \} \in \mathfrak{\hat{M}}(X).$$
(3)

Let $(Z, \mathcal{T}(Z))$ be a second countable perfectly normal topological space. Assume that $F : X \times Y \rightarrow Z$ is a closed-valued multifunction with the following three properties:

(i) All the section F^{y} , $y \in Y$, are lower $\hat{\mathfrak{M}}(X)$ -measurable.

(ii) For all $x \in X$ the set $D(F_x)$ of discontinuity points of the section F_x is $\mathfrak{J}(Y)$ -negligible.

(iii) For all $(x, y) \in X \times Y$ the inequality

$$G_*(x,y) \subset F(x,y) \subset G^*(x,y) \tag{4}$$

holds, where for some fixed countable dense subset S of Y (the existence of which we assume)

$$G_*(x,y) = q - \liminf_{t \to Y} (F_x|_S)(t) \subset Z, \quad and \tag{5}$$

$$G^*(x,y) = p - \limsup_{t \to Y} (F_x|_S)(t) \subset Z.$$
(6)

Then F is lower $\mathfrak{M}(X \otimes Y)$ -measurable.

We provide examples and applications in the setting of category bases.

REFERENCES

- [1] D. H. Fremlin, Measure-additive coverings and measurable selectors, *Dis*sertationes Mathematicae CCLX (1987), 1-120.
- [2] M. Q. Jacobs, Measurable multivalued mappings and Lusin theorem, Trans. Amer. Math. Soc. 146(1968), 471-481.