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 Non-Baire Sets in Category Bases

 Around 1975 John C. Morgan II introduced a theory of category bases.
 Its main feature is to present, in a common framework, measure and category
 and some other properties of the point set classification. I would like to give
 some conditions to place on category bases such that each set which is not
 meager will contain a non-Baire set.

 A category base on a set X is a pair (X,S) such that X is a non-empty
 set and S is a family of non-empty subsets of X , called regions, satisfying
 the following axioms:

 1. I )S = X.

 2. Let A be a region and V a non-empty family of disjoint regions of
 cardinality less than the cardinality of S. Then

 (a) if An (UX>) contains a region, then there is a region B 6 V such
 that A D B contains a region,

 (b) if AD (UP) contains no region, then there is a region B C A which
 is disjoint from [SD.

 Standard examples of category bases include topologies without the empty
 set or sets of positive measure with respect to a <r-finite measure.

 We say a set C C X is singular if, for every region A, there exists a
 region B C A such that B fi C = 0. A set M C X is meager if M is a
 countable union of singular sets. The class of meager sets in a base (X, S)
 will be denoted by M(S). A set G C A' is Baire if, for every region A, there
 exists a region B C A such that B D G is meager or B D (A ' G) is meager.
 By a base of any family of sets V we shall understand a subfamily V such
 that each member of V is contained in some member of V.
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 Theorem 1 Let (X,S) be a category base such that the following conditions
 are satisfied:

 1. Mo C Ai(5) where Mo = {A C X : card A < card X}.

 2. there exists a base of a cr -ideal of M(S) of cardinality not greater than
 card X.

 Then a set C is meager if and only if each subset of C is a Baire set.

 In the case of the category base generated by the family of sets of positive
 Lebesgue measure over the real line, we can conclude by Theorem 1 the
 existence of a nonmeasurable set. Similarly, in the case of the category base
 generated by the natural topology we can conlude the existence of a set
 without the Baire property.

 As a simple corollary of Theorem 1 we can establish the following

 Theorem 2 Let (X,S) be a point meager base (i.e. each singleton is mea-
 ger) such that there exists a base of the family of meager sets of cardinality
 not greater than card X. Then each set A of cardinality Ni is meager if and
 only if each subset of A is Baire.

 This theorem can be compared with a theorem of Morgan [1].

 Theorem 3 Let (X,S) be category point meager base fulfilling c.c.c. (i.e.
 each family of pairwise disjoint regions has cardinality not greater than $o).
 Then each set A of cardinality Hi is meager if and only if each subset of A
 is Baire.

 There are examples of category bases (X,S) with c.c.c., but for which
 M(S) does not possess any base of cardinality not greater than card X.
 Conversely, under the assumption that 2N° = 2Hl = N2 there exists a category
 base (X, S) possessing a base of M(S) having cardinality not greater than
 card X, but the c.c.c. is not satisfied.
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