Janina Ewert, Department of Mathematics, Pedagogical University, Arciszewsiego 22, 76–200 Słupsk, Poland

The Topology of Semilocal Connectedness and s-Continuity of Maps on Product Spaces

A function $f: X \mapsto Y$ is called s-continuous if for each open set $V \subset Y$ whose complement is connected, the set $f^{-1}(V)$ is open [1]. We begin by recalling two known results.

Theorem 1 [1, Th. 2.7] If f is a function from a connected space X into a topological space Y such that the graph function $\phi_f : X \mapsto X \times Y$, $\phi_f(x) = (x, f(x))$ is s-continuous, then f is s-continuous.

Theorem 2 [2, Th. 2.2] Let (Y_j, T_j) , $j \in J$, be connected spaces and let f_j be a function from a topological space X_j into Y_j . If the product function $f : \prod_{j \in J} X_j \mapsto \prod_{j \in J} Y_j$, where $f(\{x_j\}_{j \in J}) = \{f(x_j)\}_{j \in J}$, is s-continuous, then each f_j is s-continuous.

In [1] Kohli formulated the question of whether the converse of T heorem 1 is true; further, in [2] no comments are made concerning the converse of Theorem 2. These stand as motivation for our present considerations.

For a topological space (Y, T) we let T^* denote the topology of semilocal connectedness which is given by the subbase $\{V \in T : Y \setminus V \text{ is connected}\}$. Then a function $f: x \mapsto (Y, T)$ is s-continuous iff $f: X \mapsto (Y, T^*)$ is continuous [3, Prop.9]. This means that s-continuity of product functions is closely related to relations between suitable topologies of semilocal connectedness on product spaces. For topological spaces $(Y_1, T_1), (Y_2, T_2)$ we have topologies $T_1^* \times T_2^*$ and $(T_1 \times T_2)^*$ on $Y_1 \times Y_2$; furthermore, as shown in the next example, these topologies are independent.

Example 1 Let (\mathbb{R}, T) be the set of real numbers with the natural topology, P the ideal of Lebesgue measure zero sets and let $Y = \bigcup_{n=0}^{\infty} [2n, 2n+1]$. By T_2 we denote the natural topology on Y induced from the real line and $T_1 = \{U \setminus H : U \in T, H \in P\}$; then $T^* = T$. Let $\{w_n : n \ge 1\}$ be the set of all rational numbers from the interval [0, 1] and let $B = (\bigcup_{n=1}^{\infty} \{w_n\} \times [0, 1]) \cup ([0, 1] \times \{1\})$. We put $U = (\mathbb{R} \times Y) \setminus B$ and $V = (\mathbb{R} \times Y) \setminus \bigcup_{n=0}^{\infty} [2n, 2n+1] \times [2n, 2n+1]$. Then we have $U \in (T_1 \times T_2)^*$, $U \notin T_1^* \times T_2^*$, $V \in T_1^* \times T_2^*$, and $V \notin (T_1 \times T_2)^*$.

Theorem 3 We have the following:

1. If (Y_i, T_i) , $i \leq n$, are topological spaces such that each of the sets Y_1, \ldots, Y_n has a finite number of components, then

$$T_1^* \times T_2^* \times \ldots \times T_n^* \subset (T_1 \times T_2 \times \ldots \times T_n)^*.$$

2. If (Y_j, T_j) , $j \in J$, is a family of connected spaces, then

$$\prod_{j\in J}T_j^*\subset \left(\prod_{j\in J}T_j\right)^*$$

Part 2. of the above theorem implies Theorem 2; furthermore, we have:

Corollary 1 Let (Y_i, T_i) , $i \leq n$, be topological spaces such that each of Y_1, \ldots, Y_n has a finite number of components. If $f_i : X_i \mapsto Y_i$ are functions such that $f_1 \times \ldots \times f_n$ is s-continuous, the the f_i are s-continuous.

Finally, we remark that the converses to Theorem 2, Corollary 1 and Theorem 1 are not true. For instance, let \mathbb{R} , T, T_1 be as in Example 1 and let $f:(\mathbb{R},T) \mapsto (\mathbb{R},T_1)$ be the identity map. Then f is s-continuous, but neither $f \times f$ nor ϕ_f is s-continuous.

References

- [1] J. K. Kohli, A class of mappings containing all continuous and all semiconnected mappings, *Proc. Amer. Math. Soc.* 72 (1978), 175–181.
- [2] J. K. Kohli, S-continuous functions and weak forms of regularity and complete regularity, Math. Nachr. 97 (1980), 189-196.
- [3] I. L. Reilly and M. K. Vamanamurthy, On the topology of semilocal connectedness, Math. Nachr. 129 (1986), 109–113.