Andrzej Szymanski, Department of Mathematics, Slippery Rock University, Slippery Rock, PA 16057

Almost Continuous Functions and Almost Baire Maps

We say that a function $f: X \times Y \to Z$ from the product $X \times Y$ into a space Z is a *Baire-open map* if each set of the form $f(A \times B)$ has non-empty interior provided A and B are non-empty sets of the second category with the Baire property in the spaces X and Y, respectively.

S. Piccard showed in 1939 that addition on the reals is a Baire-open map, which was a duel version of Steinhaus' measure-theoretic result. There have been many other related results and generalizations since then. The aim of this talk is to show an n-dimensional version of Piccard's theorem along with Baire-openess of operations in some topological semi-groups. Most results here are due to William Lindgren and myself.

A subset A of the product $X \times Y$ is said to be projectively second category if for each open set $W \subset X \times Y$ intersecting A, both the sets $P_X(A \cap W)$ and $P_Y(A \cap W)$ are of the second category.

A subset A of $X \times Y$ is said to be *projectively solid* if for arbitrary subsets of the first category, E in X and F in Y, both $A \setminus (E \times Y)$ and $A \setminus (X \times F)$ are projectively second category. Clearly, each projectively solid set is projectively second category but not conversely.

Theorem 1 Let A be a subset of $X \times Y$. Then A is projectively solid if and only if 1. holds for A:

1. if U and V are any open subsets of X and Y, respectively, such that $(U \times V) \cap A \neq \emptyset$, then for any sets of the first category $E \subset X$ and $F \subset Y$, $((U \setminus E) \times (V \setminus F)) \cap A \neq \emptyset$.

Theorem 2 Let $f : X \times Y \to Z$ be an almost continuous function. Then f is Baire-open if and only if it is quasiopen and satisfies the following condition:

2. for any dense subset S of a non-empty open subset of Z, $f^{-1}(S)$ is projectively solid.

Theorem 3 Let $f : \mathbb{R}^m \to \mathbb{R}^n$, $m \ge 2n$, be a C^1 function that satisfies the following condition:

3. for each point $p = (p_1, p_2, ..., p_m) \in \mathbb{R}^m$ for each n-tuple $1 \leq j_1 < j_2, ..., < j_n \leq m$ of indices and for each family $\{U_1, U_2, ..., U_n\}$ of open subsets of \mathbb{R} such that $p_{j_k} \in U_k$, k = 1, 2, ..., n, the rank of restriction of f to $G = \{(x_1, x_2, ..., x_m) : x_i = p_i \text{ if } i \neq j_k \text{ for each } k = 1, 2, ..., n \text{ or } x_i \in U_k \text{ if } i = j_k\}$ is equal to n.

If each of the sets B_i , i = 1, 2, ..., m is a nonempty subset of \mathbb{R} with the Baire property and is of second category, then $f(B_1 \times B_2 \times ... \times B_m)$ has nonempty interior.

Let (G; +) be an algebraic group endowed with a topology under which the operation + is separately continuous and the inverse operation in G is continuous, *i.e.*, the following three functions are continuous: ax(y) = x + y, $a^{y}(x) = x + y$, i(x) = -x. Such a structure (G; +) is called a *topological* semigroup.

Theorem 4 Let (G; +) be a topological semigroup which is a regular first countable Baire space. Then + is Baire-open.

Theorem 5 (K. Kuratowski and S. Banach) Let (G; +) be a regular first countable topological semigroup. If H is a non-empty subset of G which is, topologically, of second category and has the Baire property, and, algebraically, is a subgroup of G, then H is open and closed.