T. Natkaniec, Instytut Matematyki WSP, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland.

On Some Problems Concerning Almost Continuity

We consider three classes of real functions defined on $I = [0, 1]$. A denotes the class of almost continuous functions (in the sense of Stallings [7]), \mathcal{D} is the class of all Darboux functions, and \mathcal{D}^* is the class of all functions such that $f^{-1}(y) = I$ for each $y \in \Re$. The following inclusions are proper: $A \subset \mathcal{D}$ and $\mathcal{D}^* \subset \mathcal{D}$.

Obviously D is closed under composition but A is not [4]. Since $A \subset \mathcal{D}$, the class of all compositions of almost continuous functions is included in \mathcal{D} . This suggests the following:

Problem 1 Is every Darboux function the composition of (two) almost con tinuous functions ? $([4],[6])$

With CH any $f \in \mathcal{D}^*$ is a composition of 2 almost continuous functions [6].

For $\varepsilon > 0$ we define $S_{\varepsilon}(f) = \{(x, y) : x \in I \& |y - f(x)| < \varepsilon\}$. By a blocking set we mean a closed subset K of $I \times \mathbb{R}$ which hits every continuous function on I and such that $K \cap f = \emptyset$ for some function f on I. Note that a function f is almost continuous iff it hits every blocking set [2]. For $f: I \longrightarrow \Re$ we define two conditions:

(α) for sufficiently small $\varepsilon > 0$ and for every blocking set K either $card(dom(K \cap S_{\epsilon}(f))) = 2^{\omega}$ or $(f(x) - \epsilon, f(x) + \epsilon) \subset K_x$ for some $x \in I$,

 (β) for each $\varepsilon > 0$ and for every blocking set K either $card(dom(K \cap S_{\epsilon}(f))) = 2^{\omega}$ or $int(K \cap S_{\epsilon}(f))_{x} \neq \emptyset$ for some $x \in I$.

Theorem 1 (CH) For a function f we have: $(\alpha) \rightarrow f \in \mathcal{A} \rightarrow (\beta)$.

Note that the inclusion $\mathcal{D}^* \subset \overline{\mathcal{A}}$ follows from the first part of Theorem 1.

Problem 2 Characterize the class \overline{A} of all uniform limits of almost con tinuous functions [3]. (Every function is a pointwise limit of a sequence of almost continuous functions [3].)

 Theorem 2 (1) Each function can be expressed as a sum of two almost continuous functions [3]. (2) (CH) f is a product of two almost continuous functions iff it has a zero in each subinterval in which it changes sign [6]. (3) Every function f can be expressed as $min(max(f_1, f_2),max(f_3, f_4))$, where f_1, f_2, f_3, f_4 are almost continuous [5].

Let $K^+(f, x)$ denote the right-hand cluster set of f at x and let $K_c^+(f, x)$ be the right-hand c-cluster set of f at x, i.e. $K_c^+(f,x) = \bigcap \{K^+(f|I \setminus B,x) :$ $card(B) < 2^{\omega}$. Similarly we define $K_c^{-}(f, x)$. It is known that a function f is the maximum of two Darboux functions iff (*) $f(x) \leq min \{ max(K_c^+(f,x)), max(K_c^-(f,x)) \}$ for each x [1].

 Problem 3 Is every function satisfying (*) the maximum of two almost con tinuous functions ?

One can prove that every $f \in \mathcal{D}^*$ is the maximum of two almost continuous functions.

References

- [1] A.M. Bruckner, J.G. Ceder and T.L. Pearson, On Darboux functions, Rev. Roum. Math. Pures et Appl. 19, 1974, 977-988.
- [2] K.R. Kellum and B.D. Garrett, Almost continuous real functions, Proc. Amer. Math. Soc. 33, 1972, 181-184.
- [3] K.R. Kellum, Sums and limits of almost continuous functions, Colloq. Math. 31, 1974, 125-128.
- [4] K.R. Kellum, Iterates of almost continuous functions and Sarkovskii's Theorem, Real Analysis Exchange 14, 1988-89, 420-423.
- [5] T. Natkaniec, On lattices generated by Darboux functions, Bull. Ac. Pol. Math. 35, 1987, 549-552.
- [6] T. Natkaniec, On compositions and products of almost continuous func tions, Fund. Math., to appear.
- [7] J.R. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47, 1959, 249-263.