Jan Mařík, Department of Mathematics, Michigan State University, East Lansing, MI 48824.

THE Equation $f^{2}+g^{2}=h^{2}$, where f, g, and h Are Derivatives

It is easy to show that the sum of squares of two derivatives is not always the square of a derivative. (Take, e.g., $f(x)=\sin \frac{1}{x}, g(x)=\cos \frac{1}{x}(x \neq 0), f(0)=$ $g(0)=0$.) To investigate our equation we introduce the following notation: $I=$ $[0,1] ; D$ is the class of all derivatives on $I ; C\left[C_{a p}\right]$ is the class of all continuous [approximately continuous] functions on $I ; b C_{a p}$ is the class of all bounded elements of $C_{a p} ; M=\left\{f \in D ; f g \in D\right.$ for each $\left.g \in b C_{a p}\right\}$. It can be proved that $M \cap C_{a p}$ is the class of all Lebesgue functions and that each bounded derivative is in M.

It is easy to see that $\sqrt{f^{2}+g^{2}} \in D$, if $f, g \in D$ and $g / f \in C$. This simple result leads to the question whether the relation

$$
\begin{equation*}
f^{2}+g^{2}=h^{2}, f, g, h \in D \tag{1}
\end{equation*}
$$

implies something about g / f, if $f \neq 0$. The following theorem points in this direction:

Theorem 1. Let (1) hold and let

$$
\begin{equation*}
\liminf \operatorname{ap} h(y)>0 \quad(y \rightarrow x, y \in I) \text { for each } x \in I \tag{2}
\end{equation*}
$$

Then $f / h, g / h \in C_{a p}$.
(This follows from [1], Proposition 4.6 with $m=2$ and $|(x, y)|=\sqrt{x^{2}+y^{2}}$.) If, moreover, $f \neq 0$, then, clearly, $g / f \in C_{a p}$. Now it is natural to ask whether the relations $f, g \in D$ and $g / f \in C_{a p}$ imply that $\sqrt{f^{2}+g^{2}} \in D$. The next theorem gives a negative answer to this question.

Theorem 2. Let $f \in D \backslash M, f>0$. Let $\varepsilon \in(0,1)$. Then there is a $\beta \in C_{a p}$ such that $|\beta-1|<\varepsilon, g=\beta f \in D$ and $\sqrt{f^{2}+g^{2}} \notin D$.

We get, however, an h fulfilling (1) if we impose some restrictions on f and g; at the same time the requirement $g / f \in C_{a p}$ can be weakened, as Theorems 3 and 4 show.

Theorem 3. Let $f, g \in M$; let $\alpha, \beta \in C_{a p}, \alpha^{2}+\beta^{2}>0$; let ψ be a function such that $f=\alpha \psi, g=\beta \psi$. Set $\gamma=\sqrt{a^{2}+\beta^{2}}, h=\frac{\alpha}{\gamma} f+\frac{\beta}{\gamma} g$. Then (1) holds.
(The proof is easy.)
Theorem 4. Let $f \in M, g \in D, f^{2}+g^{2}>0$; let $\alpha, \beta \in C_{a p}$ and let ψ be a function such that $f=\alpha \psi, g=\beta \psi$. Suppose that there is an $A \in(-\infty, 0)$ such that $g \geqq A|f|$. Then $\sqrt{f^{2}+g^{2}} \in D$.

Example 5.12 in [1] shows that in Theorem 1 we cannot replace the requirement (2) by $h>0$. However, we have Theorem 5 that points in the same direction as Theorem 1:

Theorem 5. Let $f \in M, f>0$ and let (1) hold. Then $g, h \in M$.
A characterization of M and the proofs of Theorems 2,4 , and 5 will be published later.

Reference

[1] Jan Mařík and Clifford E. Weil, Sums of powers of derivatives, Proc. Amer. Math. Soc. 112 (1991), 807-817

