Benedetto Bongiorno, Department of Mathematics, University of Palermo, Via Archirafi 34, 90123 Palermo (Italy)

Remarks on Nonabsolutely Convergent Integrals in the Real Line

Let [a,b] be a compact interval of the real line **R**. Unless stated otherwise, a function is a real valued function defined on [a,b].

Definition A class of continuous functions V is c alled an ordinary (descriptive) integral on [a,b] if i) V is a vector space, ii) each element of V is a.e. derivable, iii) $F \in V$ and F' = 0 a.e. imply that F is a constant. A function f is V-integrable on [a,b] if there is $F \in V$ so that F' = f a.e. in [a,b]. In this case the value F(b) - F(a) is the (definite) V-integral of f on [a,b], denoted by $(V) \int_a^b f$.

Given an integral V the class of all V-integrable functions is denoted by \mathcal{I}_V .

Theorem 1 Let \mathcal{M} be the class of all functions that are (Lebesgue) measurable and almost everywhere finite on [a,b]. The "axiom of choice" implies that there exist infinitely many ordinary integrals \mathbf{V} such that

- 1) $ACG_* \subset \mathbf{V}$
- 2) $\mathcal{I}_V = \mathcal{M}$

3) if $F \in V$, $F' \ge 0$ a.e. and $F' \notin L^1[a,b]$ then F does not satisfy Lusin's condition (N) (abbreviated as $F \notin (N)$)

4) if $F \in \mathbf{V}$, F' is Denjoy-Perron integrable on each $[\alpha + \varepsilon', \beta - \varepsilon''] \subset [a,b]$ and if $\lim_{\epsilon',\epsilon''\to 0} (\mathcal{D}) \int_{\alpha+\epsilon'}^{\beta-\epsilon''} f$ does not exists then $F \notin (N)$.

Theorem 2 To each ordinary integral \mathbf{V} with $ACG_* \stackrel{\subseteq}{\neq} \mathbf{V} \subset (N)$ there is an ordinary integral $\tilde{\mathbf{V}}$ so that $\mathbf{V} \cap \tilde{\mathbf{V}} = ACG_*$ and $\mathcal{I}_V = \mathcal{I}_{\tilde{V}}$.

Theorem 3 Denote by Δ the class of all differentiable functions and set $\mathbf{V} = \langle AC, \Delta \rangle$. To each $f \in \mathcal{I}_V$ and to each positive ε and M there is a positive gage δ such that

$$|\sum_{i=1}^p f(x_i)(\beta_i - \alpha_i) - (V) \int_a^b f| < \varepsilon,$$

for every δ -fine partition $\{([\alpha_i, \beta_i], x_i) : i = 1, 2, ..., p\}$ that satisfies the condition

$$\sum_{i=1}^p d([\alpha_i,\beta_i];x_i) < M;$$

here $d([\alpha_i, \beta_i]; x_i)$ denotes the distance between $[\alpha_i, \beta_i]$ and x_i .

Remark The regularity condition of Theorem 3 is related to that employed in [4].

Theorem 4 Denote by \mathcal{R}_b^* the class of all functions f that satisfy the condition of Theorem 3. Then \mathcal{R}_b^* is a generalized Riemann integral that is properly contained in the integral \mathcal{R}_s^* considered in [1].

Problem Is the inclusion $\mathcal{I}_{(AC,\Delta)} \subset \mathcal{R}_b^*$ proper ? If so, characterize the convergence of generalized Riemann sums of (AC, Δ) -integrable functions.

References

- [1] B. Bongiorno, M. Giertz and W.F. Pfeffer, Some nonabsolutely convergent integrals in the real line, Boll. U.M.I., to appear.
- [2] B. Bongiorno and D. Preiss, An unusual descriptive definition of integral, Comptemporary Math., 42, 13-22, (1985).
- [3] J. Foran, Differentiation and Lusin's condition (N), Real Analysis Exchange, 3, 34-37, (1977).
- [4] J. Jarník, J. Kurzweil and S. Schwabik, On approach to multiple nonabsolutely convergent integral, Časopis Pěst. Mat., 108, 356–380, (1983).
- [5] S. Saks, Theory of the integral, Dover Publications, New York, 1964.