Washek F. Pfeffer, Department of Mathematics, University of California, Davis, CA 95616

A Voltera Type Derivative of the Legesgue Integral

Let $m \geq 1$ be an integer and let $\Omega \subset \mathbf{R}^m$ be an open set. The norms in $L^1(\Omega)$ and $L^{\infty}(\Omega)$ are denoted by $|\cdot|_1$ and $|\cdot|_{\infty}$, respectively. We consider only real-valued functions. Given a nonnegative function θ defined on Ω , we set

$$S_{\theta} = \{x \in \Omega : \theta(x) > 0\}$$

and denote by d_{θ} the diameter of S_{θ} . We say that $\theta \in L^{1}(\Omega)$ is normalized whenever $|\theta|_{1}$ equals the measure of S_{θ} .

A function $\theta \in L^1(\Omega)$ is of bounded variation if its distributional gradient $D\theta$ is a vector-valued Borel measure in Ω whose variation $|D\theta|$ is finite. By BV_+ we denote the family of all nonnegative functions $\theta \in L^{\infty}(\Omega)$ such that θ is of bounded variation, vanishes outside a compact subset of Ω , and $|\theta|_1 > 0$. The regularity of $\theta \in BV_+$ is the number

$$r(heta) = rac{| heta|_1}{d(heta)|D heta|}.$$

Fix a function $f \in L^1_{loc}(\Omega)$. A point $x \in \Omega$ is called *regular* if given $\varepsilon > 0$, we can find a $\delta > 0$ so that

$$\left| f(x)| heta|_1 - \int_\Omega f heta
ight| < arepsilon | heta|_1$$

for each $\theta \in BV_+$ for which x is contained in the closure of S_{θ} , $d_{\theta} < \delta$, and $r(\theta) > \varepsilon$. If the inequality holds only when θ is, in addition, normalized and $|\theta|_{\infty} < 1/\varepsilon$, then x is called *weakly regular*.

Each regular point is weakly regular, however, the converse is false when m > 1; if m = 1 the two concepts coincide.

Proposition. If $x \in \Omega$ is a weakly regular point and f is essentially bounded in a neighborhood of x, then x is a regular point.

Theorem. Almost all points of Ω are weakly regular. In particular, almost all points of Ω are regular whenever $f \in L^{\infty}_{loc}(\Omega)$.

The theorem is used to show that a conditionally convergent integral in \mathbb{R}^m defined by BV_+ partitions of unity is invariant with respect to lipeomorphisms.