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 Kurzweil-Henstock Integration and the
 Strong Lusin Condition

 Lee Peng Yee [LPY] in connection with the study of ACG* functions
 employed a condition which lies somewhere between absolute continuity and
 the Lusin condition N, and called it the strong Lusin condition. This con-
 dition was also studied by Kurzweil, Jarnik and Schwabik. The aim of this
 talk is to indicate how this condition can be used in an alternative approach
 to KH-integration. All functions in the sequel are real valued and measure
 always means Lebesgue measure.
 Definition of SL. A function F is said to satisfy the Strong Lusin Con-
 dition, or briefly SL, on a set S if for every set E of measure zero, and every
 positive e there exists a 7 : S - » (0, 00) such that for any 7 -fine partial di-
 vision D = ([u,u],£) with £ € E C' S we have (D)J2 |F(u,v)| < e, where
 F(u,v ) denotes F(v) - F(u).

 An application of Vitali 's covering theorem makes it possible to show that
 SL implies N. We denote by N$ the set of zeros of a function 6. A function
 8 : [a, b] - ► [0, 00) will be called a gauge if N$ is of measure zero.
 Definition of the SL-integral. A function f is said to be SL-integrable
 on [a, b] if there exists an SL-function F and for every positive e there is a
 gauge 6 such that |(Z)) Yl[f(0(v ~ u) ~ F(ui ü)]l < e for every S-fine partial
 division D of fa, 61. The number F(a,b) is then the SL integral of f and it is
 denoted by SLfhaf.

 Roughly speaking Henstock's lemma is already incorporated in the defi-
 nition of the SL-integral, an idea already used by Pfeffer in his work on the
 Gauss-Green Theorem. It can be shown that F from the definition is uniquely
 determined (up to an additive constant) and that the SL-integral is well de-
 fined. It is easy to prove that a KH-integrable function is SL-integrable and
 it is possible to prove the converse. The KH and SL integrals are equivalent.
 The concept of the SL-integral allows some simplifications in some proofs of
 the KH theory. This perhaps could be seen from the theorems that follow.
 The proofs will appear elsewhere.
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 The Fundamental Theorem. If F' = f almost everywhere on [a, 6] and
 F is SL on [a, b] then / = F(b) - F(a).

 It is not too difficult to convince oneself that this theorem includes both

 Fundamental Theorems for KH-integral and the Lebesgue integral.
 A family T = {F' : A € fi} is said to satisfy the strong Lusin condition

 uniformly on a set S, or briefly USL, if for every positive e and every set of
 measure zero, N C S, there exists a 7 : S - ► (0, 00) such that (1) holds for
 every F6 / whenever D = ([u,v],£) is a 7-fine partial division with £ 6 N.

 A family T = {fx : A 6 Í)} is said to be SL-equintegrable on [a,b] if there
 exist functions F' satisfying the SL condition and for every positive e there
 is a gauge 6 such that for all A € ÍÍ | J2(fx(C)(v ~u)~ F'(uì w)| < € whenever
 D is a. ¿-fine partial division of [a,b]. The basic convergence theorem for the
 SL integral is as follows :
 Convergence Theorem. //{/„: n € N} is SL-equintegrable on [a,b],
 the family {Fn : n € N} of SL-primitives is USL , and fn converges almost
 everywhere to f, then Fn(x ) - Fn(a) converges to F(x ) - F(a) where F is a
 SL-primitive of f.

 The next result gives a connection with the equintegrability of Kurzweil
 [JK; p.40 Satz 5.2].
 Equintegrability Theorem. If {/„ : n G N} is equintegrable on [a, b],
 and the family {Fn : n G N} of primitives is uniformly bounded on [a, 6],
 then {fn : n G N} is SL-equintegrable on [a, 6] and {Fn : n G N} is USL.
 Conversely, if {fn : n G N} is SL-equintegrable on [a, 6], the family {Fn : n G
 N} of primitives is USL , and {/„(a:) : n G N} is bounded for each x, then
 {fn '• n € N} is equintegrable on [a, 6].
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