J. Kurzweil and J. Jarník, Math. Inst. of Czechoslovak Ac. Sci., Zitn 25, CS–115 67 Praha 1, Czechoslovakia

Differentiability and Integrability in n Dimensions with Respect to α -Regular Intervals

Regularity of an interval $I \subset \mathbb{R}^n$ (notation reg I) is the ratio of its shortest and longest edges, hence $0 < \operatorname{reg} I \leq 1$. We denote by m(J) the Lebesgue measure of $J \subset \mathbb{R}^n$. An additive function G of interval is said to be α -regularly differentiable at $s \in \mathbb{R}^n$ to $g \in \mathbb{R}$ if for every $\varepsilon > 0$ there is $\delta > 0$ such that $|G(J) - gm(J)| < \varepsilon m(J)$ for every interval $J \subset B(s, \delta) = \{x \in \mathbb{R}^n; \max_i | x_i - s_i | \leq \delta\}$ with $s \in J$, reg $J \geq \alpha$. A function $f: I \to \mathbb{R}, I \subset \mathbb{R}^n$ an interval, is α regularly integrable if there is $c \in \mathbb{R}$ such that for every $\varepsilon > 0$ there is a function $\delta: I \to (0, \infty)$ such that $|c - (\Delta) \sum f(t)m(J)| < \varepsilon$ for every finite family Δ of tagged intervals (t, J) such that $t \in J \subset B(t, \delta(t))$, reg $J \geq \alpha$, the intervals J are non-overlapping and their union is I (we then write $c = (\alpha) \int_I f$). Our aim is to show that while the value of regularity is irrelevant for the α -regular differentiability, it is essential for the α -regular integrability.

To prove that α -regular differentiability does not depend on α , we first establish a general property of additive functions of interval. Let an additive function G of interval be defined on an interval $I \subset \mathbb{R}^n$, let $t \in \text{Int}I, r > 0$ such that $B(t,r) \subset I$. We denote

$$\Omega = \Omega(t, r, G) = \sup\{|G(J)|; J \subset B(t, r), Jinterval\}$$

and, given $\alpha, 0 < \alpha < 1$,

$$\omega = \omega(t, r, G, \alpha) = \sup\{|G(K)|; t \in K = [u_1, v_1] \times \ldots [u_n, v_n], \alpha r \leq v_i - u_i \leq r\}.$$

(Note that $K \subset B(t,r)$; reg $K \geq \alpha$.)

Proposition. There is a constant $k = k(n, \alpha)$ such that

$$\omega \leq \Omega \leq k \omega$$

for every additive interval function G on I and any $B(t,r) \subset I$.

Putting G(J) = F(J) - fm(J) in Proposition, we obtain as a corollary.

Theorem 1. Let $0 < \beta < \alpha < 1$, let an additive function F be α -differentiable to f at t. Then F is β -differentiable to f at t, as well.

(An analogous result holds if we replace "differentiable" by "lipschitzian", defining α -lipschitzianity in the obvious way.)

The other result has the character of a counterexample.

Theorem 2. Given $\alpha, 0 < \alpha < 1$, there exists a function $f = f_{\alpha} : \mathbb{R}^n \to \mathbb{R}$ which is α_1 -regularly integrable on $I = [-1,2]^n$ for every $\alpha_1, \alpha < \alpha_1 < 1$, and is not α_2 -regularly integrable for every $\alpha_2, 0 < \alpha_2 < \alpha$.

Let us mention that the function f can be constructed in such a way that the set of points at which the primitive F is not α -lipschitzian is closed and has an arbitrarily small Hausdorff measure.

In the discussion at the Conference, a question was raised by W. F. Pfeffer whether f is α -integrable. Since then, it was proved that for each $\alpha, 0 < \alpha < 1$, there exist functions g, h such that g is β -integrable for $\beta > \alpha$ but not for $\beta \le \alpha$ while h is β -integrable for $\beta \ge \alpha$ but not for $\beta < \alpha$.

Theorems 1 and 2 have an interesting consequence relative to the property of " α -variational normality of F" (also called "good behavior on sets of zero measure"). Recall that given $0 < \alpha < 1, A \subset I$, then an additive function of interval F defined on I is said to be α -variationally normal on A if for every set $N \subset A$ with measure zero and every $\varepsilon > 0$ there is a function $\delta : I \to (0, \infty)$ such that $(\Delta) \sum |F(J)| \leq \varepsilon$ for every finite family of tagged intervals (t, J) such that $t \in J \subset B(t, \delta(t))$, reg $J \geq \alpha$, the intervals J are non-overlapping and $t \in N$ for every $(t, J) \in \Delta$.

The following theorem was proved (in a more general form) by the authors in [1] (Theorem 4.2):

Theorem 3. A function $f: I \to R$ is α -regularly integrable with a primitive F iff

(i) F is additive;

(ii) F is α -regularly differentiable to f(t) at almost every $t \in I$;

(iii) F is α -variationally normal on I.

Consequently, the property (iii) is not independent of the value of regularity α .

The detailed account of the results will appear in Resultate der Mathematik, special volume in honour of the 65th birthday of Prof. H.-W. Knobloch.

Reference

[1] Kurzweil J. and Jarník J.: Equiintegrability and controlled convergence of Perron-type integrable functions. Real Analysis Exchange (1991), in print.