
 J. Kurzweil and J. Jarník, Math. Inst, of Czechoslovak Ac. Sci., Žitn 25, CS-115
 67 Praha 1, Czechoslovakia

 Differentiability and Integrability in n Dimensions
 with Respect to «-Regular Intervals

 Regularity of an interval I C Rn (notation reg I) is the ratio of its shortest
 and longest edges, hence 0 < reg I < 1. We denote by m( J) the Lebesgue
 measure of J C Rn. An additive function G of interval is said to be a-regularly
 differentiable at s € Rn to g € R if for every e > 0 there is 6 > 0 such that
 'G(J) - gm(J) I < em( J) for every interval J C B(s,6) = {x € -Rn;maxj |z,- s,| <
 ¿} with s G J, reg J > a. A function / : / - ► R,I C Rn an interval, is a-
 regularly integrable if there is c Ç. R such that for every e > 0 there is a function
 8:1 - ► (0, oo) such that |c - (A) ^ f(t)m(J)' < e for every finite family A
 of tagged intervals (ť, J) such that t € J C B(t, £(<)), reg J > a, the intervals
 J are non-overlapping and their union is I (we then write c = (a) fj /). Our
 aim is to show that while the value of regularity is irrelevant for the a-regular
 differentiability, it is essential for the a-regular integrability.

 To prove that a-regular differentiability does not depend on a, we first estab-
 lish a general property of additive functions of interval. Let an additive function
 G of interval be defined on an interval I C Rn, let t € Int/, r > 0 such that
 B(t,r ) C I . We denote

 Ū = £l(t,r,G) = sup{|G( «7)|; J C B(t, r), ./interval}

 and, given a, 0 < a < 1,

 u =<jj{t,r,G,a) = sup{|G(/i)|; t G K = [ui,üi] x . . . [un,un],or < u,- - m < r}.

 (Note that K C B(t,r ); reg K > a.)

 Proposition. There is a constant k = fc(n, a) such that

 u <Q < ku)

 for every additive interval function G on I and any B(t , r) C I.
 Putting G(J) = F( J) - fm(J ) in Proposition, we obtain as a corollary.

 Theorem 1. Let 0 < ß < a < 1, let an additive function F be a-
 differentiable to f at t. Then F is ß -differentiable to f at t, as well.

 (An analogous result holds if we replace "differentiable" by "lipschitzian" ,
 defining a-lipschitzianity in the obvious way.)
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 The other result has the character of a counterexample.

 Theorem 2. Given a, 0 < a < 1, there exists a function f = fa : Rn - > R
 which is ai-regularly integrable on I = [-1,2]" for every c*i,a < ol' <1, and is
 not <X2~regularly integrable for every <*2,0 < a-i < a.

 Let us mention that the function / can be constructed in such a way that the
 set of points at which the primitive F is not a-lipschitzian is closed and has an
 arbitrarily small Hausdorff measure.

 In the discussion at the Conference, a question was raised by W. F. Pfeffer
 whether / is a-integrable. Since then, it was proved that for each a,0 < a < 1,
 there exist functions g, h such that g is /^-integrable for ß > a but not for ß < a
 while h is /^-integrable for ß > a but not for ß < a.

 Theorems 1 and 2 have an interesting consequence relative to the property
 of "«-variational normality of F" (also called "good behavior on sets of zero
 measure"). Recall that given 0 < a < I, A C I, then an additive function of
 interval F defined on I is said to be a-variationally normal on A if for every set
 N C A with measure zero and every e > 0 there is a function 6 : 1 -* ( 0, oo) such
 that (A) 22 1^(^)1 ^ £ for every finite family of tagged intervals (t, J) such that
 t € J C B(t,S(t)), reg J > a, the intervals J are non-overlapping and t G N for
 every ( t , J) € A.

 The following theorem was proved (in a more general form) by the authors in
 [1] (Theorem 4.2):

 Theorem 3. A function f : I - ► R is a-regularly integrable with a "primitive
 Fiff
 (i) F is additive;
 (ii) F is a-regularly differentiable to f(t) at almost every t € I;
 (iii) F is a-variationally normal on I.

 Consequently, the property (iii) is not independent of the value of regularity
 a.

 The detailed account of the results will appear in Resultate der Mathematik,
 special volume in honour of the 65th birthday of Prof. H.-W. Knobloch.

 Reference

 [1] Kurzweil J. and Jarník J.: Equiintegrability and controlled convergence of
 Perron-type integrable functions. Real Analysis Exchange (1991), in print.
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