Paul D. Humke, Department of Mathematics, St. Olaf College, Northfield, MN 55057

Some Remarks on the Density (Property) of O'Malley

This talk is based on work by the speaker and C. Freiling which appears in this issue under the title *The exact Borel class where a density completeness axiom holds.* A collection \mathbf{A} , of subsets of \mathbb{R} has the O'Malley density property if whenever a non-empty bounded set $A \in \mathbf{A}$ has right density 1 at each of its points, then there is point in A^c at which A has left density 1. We prove the following two theorems

Theorem 1 The $G_{\delta\sigma}$ subsets of \mathbb{R} have the O'Malley density property.

Theorem 2 There is an open proper subset $A \subset (0,1)$ such that for every $x \in [0,1]$ if A has left density 1 at x, then A has right density 1 at x.

It follows easily from this second result that the $F_{\sigma\delta}$ sets do not have the O'Malley density property.