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 A CONVERSE TO A THEOREM OF SIERPIŃSKI ON ALMOST SYMMETRIC SETS

 A collection of sets of reals, «ž", is called a "notion of largeness" if it is closed under

 supersets. When we are considering a notion of largeness, a set will be called large if it is

 in JĆ and small if its complement is in Jt. We say that a set is large in an interval I, if the

 intersection of its complement with I is small. A real function f will be called

 J!*- symmetric (resp. locally «¿^-symmetric) iff for each real x, the set of h for which

 f(x+h)=f(x- h) is large (resp. large in some neighborhood of zero). We say a set of reals is

 JČ- symmetric (or locally JĆ- symmetric) when its characteristic function is. For a real

 function f, define the «¿f-flymmetric derivative (when it exists) to be lim^Q

 (f(x+h)- f(x- h))/2h where lim^Q denotes that for each x a small set of h's may be

 ignored in the limit. Note that if J? is a non- trivial filter (ie. IR eJf, and the

 intersection of two sets in J? is also in Jf) then lim^Q cannot take on two different

 values. Similarly we have the upper and lower .if- symmetric derivates.

 Let C be a collection of closed intervals and I an open interval. For each x in I, let Ex

 = {h| [x- h,x+h]cl but [x- h,x+h]gC }. C will be called a locally ož*- symmetric cover of I,

 if for each x in I there is an e>0 such that Ex D (0,e) is small. C is called a globally

 «if- symmetric cover of I if for each x in I, Ex is small. A collection of closed intervals, C,

 is transitive if [x,y]eC and [y,z]€C imply [x,z]eC.

 F.-ramplp«-

 (a) -2={[R}. Then " J!"- symmetric" is abbreviated "full symmetric" or just "symmetric".

 (b) y is the collection of sets whose complement has cardinality less than k. Then

 " «¿¡"-symmetric" is abbreviated "co</c-symmetric". When «=1^ we abbreviate this as
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 v>

 "co-countably symmetric". The case where /c=2 0 is what Sierpiński calls "almost

 symmetric". [6]

 (c) Jf is the collection of sets of full Lebesgue measure. Then " ^-symmetric" is

 referred to as "essentially symmetric" (cf. [1]).

 (d) Jf is the collection of sets which have zero as a point of density. Then

 " .if- symmetric" is referred to as "approximately symmetric".

 (e) Jf is the collection of sets which have zero as a point of outer density. Then

 " «¿"-symmetric" is what Sierpiński calls "approximately symmetric in the large sense"
 Jf

 Note that in this case Jf is not necessarily a filter and lim is not necessarily uniquely

 defined.

 Theorem (Sierpiński [6]): (ZFC) There exists a non- measurable set which is

 co <2 °- symmetric.

 As Sierpiński pointed out, this immediately implies the following:

 Corollary A: (ZFC) There is a non- measurable set which is approximately symmetric in

 the large sense.

 Corollary B: (ZFC) There is a non- measurable function whose approximately symmetric

 derivative in the large sense is everywhere zero.

 If one assumes in addition to the axioms of ZFC the continuum hypothesis, CH, then;

 Corollary C: (ZFC+CH) There is a non- measurable set which is co-countably symmetric.

 Corollary D: (ZFC+CH) There is a non- measurable function whose approximately
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 symmetric derivative is everywhere zero.

 In his paper [6] Sierpiński also gives an alternate proof of the first two corollaries. This

 proof, which is much simpler than the proof of Sierpinski's Theorem, is attributed to M.S.

 Ruziewicz and uses Hamel basis.

 We will provide here a short proof of Sierpinski's whole theorem using a Hamel basis.

 We will also establish the following converse:

 Theorem: Let £ be a non- trivial filter on IR, which is translation and reflection invariant,

 which is closed under countable intersections, and such that every singleton is small.

 Suppose further that for some cardinal k:

 (i) The intersection of fewer than k large sets is never empty.

 (ii) Every non-small set contains a subset of size <k which is also

 non-small.

 Let C be a transitive locally Jf-symmetric cover of an open interval, I. Then there is a

 small set E such that C contains of all the closed intervals whose endpoints are in I- E.

 The proof of this theorem, which will be provided, does not contain any new ideas but

 merely combines ideas from [2], [4], and [7]. It immediately implies the following

 corollaries:

 Corollary 1: Let Jf be as in the previous theorem. Then any function whose J!"- symmetric

 derivative is non- negative on an open interval I, is non- decreasing on a large set in I.

 Proof: Let f be a function with a positive ^-symmetric derivative on an open interval I.

 Then the collection of intervals [a,b] for which f(b)>f(a) forms a transitive locally

 symmetric cover of I. Therefore Corollary 1 follows for positive derivatives. If f has a
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 nonnegative derivative, then consider the functions fn(x) = f(x)+x/n for n=l,2,.... Then

 each fn(x) has a positive derivative and hence a set Ln which is large in I, such that f is

 monotone on Ł . But then since f -»f, ' f must be monotone on flL . n . n ' n

 Note: In the foregoing proof it is not necessary for the limit to exist. Thus the theorem

 also holds for a non- negative «y -symmetric lower derivate. Note also that if Jâ is

 translation and reflection invariant then the characteristic function of any large set has an

 J!"- symmetric derivative which is everywhere zero. Thus whenever JĆ is translation

 invariant we refer to the conclusion of Corollary 1 as "Monotonicity for the JÉ-symmetric

 derivative". On the other hand let "Monotoni city for the approximately symmetric

 derivative" denote the proposition that every function with a non- negative approximately

 symmetric derivative on an open interval I, is non-decreasing on a set of full Lebesgue

 measure.

 If JČ is the collection of sets of co-cardinality less than k and k is an uncountable
 v> I

 cardinal less than 2 0 then (i) and (ii) hold for the cardinal k . If we combine this with

 (the proof of) Sierpinski's Theorem then we immediately get:

 Corollary 2: Let k be any uncountable cardinal. Then Monotonicity for the
 v>

 coc/c- symmetric derivative holds iff °.

 Corollary 3: (ZFC) Monotonicity for the co-countably symmetric derivative is equivalent

 to the negation of the continuum hypothesis.

 When S is the ideal of Lebesgue measure zero sets then the axioms (i) and (ii) are known to

 be consistent (in fact they become true when K2 random reals are added to a model of

 ZFC+CH). Therefore, we also get the following consistency results:
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 Corollary 4: If ZF is consistent then so is ZFC + Monotonicity for the essentially

 symmetric derivative.

 It was proved in [3] that every approximately symmetric transitive cover is also essentially

 symmetric. Thus:

 Corollary 5: If ZF is consistent then so is ZFC + Monotonicity for the approximately

 symmetric derivative.

 Proof of Main Theorem:

 Call a non- trivial filter on IR suitable if it is translation and reflection invariant, is

 closed under countable intersections, and every singleton is small. The Theorem follows

 from the following three lemmas:

 Lemma 1: Let «if be a suitable filter on R. Let C be a transitive locally Jâ- symmetric

 cover of an open interval I. Then C is also a globally «if- symmetric cover of I.

 Proof: This proof is identical to a proof for symmetric covers appearing in Thomson [7],

 and which Thomson attributes to McGrotty. Let B be the sup of all e such that Ex n (0,e)

 is small. Clearly, Ex il (0,B) is small by countable additivity. Since {B} is also small, we

 have Ex n (0,B] is small. Hence, we may assume that [x- B,x+B]cl, since otherwise

 Ex=Ex n (0,B] and we are done. For each z in I let ez be as in the definition of locally

 «¿¿-symmetric cover, and let e < min {ex_B>cx_|_ļj»B} be small enough that

 [x- B- e,x+B+c] c I. We show that Ex n (B,B+e) is small, contradicting the choice of B.

 Let heEx fi (B,B+e). Then [x- h,x+h] is not in C. It follows by transitivity that one of

 the intervals [x- h,x- 2B+h], [x- 2B+h,x+2B- h], or [x+2B- h,x+h] is not in C. Hence

 either h- B is in Ex_g or 2B- h is in Ex or h- B is in Ex^p. That is, h€
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 (B+Ex-bM2B-ExMB+Ex+b) ^ so Ex n (B,B+e) is small. □

 Lemma 2: Let JČ be a suitable filter satisfying (i) and (ii) for some cardinal k, and let C be

 a transitive globally ^-symmetric cover of an open interval I. Then there is a set E which

 is the union of <k many small sets such that C contains of all the closed intervals whose

 endpoints are in I- E.

 Proof: This proof is identical to the proof in Preiss and Thomson [4]. We start with a

 non-small set X of size </c and assume without loss of generality that X is not small in any

 interval, and is closed under addition, subtraction, and division by 2. Let w€E iff wel and

 (3p,q in X) ( I p- w | eEp or | q- (2p- w) | €E^). Notice this says that if w€l is not in E, then

 for any p, q in X, w can be "flipped" over p to form an interval in C and 2p- w can be

 "flipped" over q to form another interval in C, that is, as long as these intervals are in I.

 Since X has size </c, E is the <k- union of small sets.

 Now, C contains every closed subinterval of I with at least one endpoint not in E and

 whose length is in X. To see this, for example, when the left endpoint is not in E, consider

 the interval [w,w+x] with wel- E, w+xel, and xeX, choose pe[w,w+x/2] in X and

 q=p+x/2 which is also in X by closure properties. Then since wgE, we have C contains

 [w,2p- w] and also [2p- w,2q- (2p- w)], which is the same as [2p- w,w+x]. Hence C contains

 [w,w+x]. The case where the right endpoint is not in E is handled similarly.

 We must show that C contains each interval [w,z] with endpoints in I- E. Let

 c=(w+z)/2 be the center of such an interval. Choose xeX such that C contains

 [w+x,2c- (w+x)], using the fact that X is not small in any interval. But [w,w+x]eC since

 wgE and xeX, and similarly, [2c-(w+x),z] =[z- x,z]eC. By combining these three intervals

 we get that [w,z]eC. □

 Tiamina. 3: Let Jf be a suitable filter satisfying (i) and (ii) for some /c, and C be a transitive
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 globally ^-symmetric cover of an open interval I. If there is a set E, which is the union of

 <«- many small sets, such that {[a,b]| a,b e I- E}cC, then there is also a small set E' such

 that {[a,b]| a,b e I- E'}cC.

 Proof: For each rational e>0 which is less that the length of I, let Lf={x| [x,x+e]cl and C

 does not contain any interval [x,h]c[x,x+e] where h£E} and let Rf={x| [x- e,x]cl and C

 does not contain any interval [h,x]c[x- e,x] where h¿E}. We will show that each Lf is

 small. Suppose then that for some e, L( is not small. Let Y denote a non-small subset of

 of size <k (using ii). Let J be an interval, [p,q], of length less than e/4 such that

 [p,2q- p]cl and YflJ is not small Since E+Y={e+y| eeE, y€Y} is the </c- union of small

 sets it does not contain [2q, 4q- 2p]. Hence there is a c such that 2cč[2q, 4q- 2p]'(E+Y), so

 that if x€Y then 2c- xgE, and if x€J then ce[x, x+e/2]. Therefore, if xeYflJ (a non- small

 subset of Lf), then the interval [x, 2c- x] is a subset of I but not an element of C. This

 contradicts that C is a globally ^-symmetric cover of I and proves that each Lf must be

 small. Similarly each Rf is small.

 Let E'=(ULf)U(URc). Then E' is small. Let [x,y] be a subinterval of I with endpoints

 not in E'. We will show that [x,y]eC. Since xgl)Lf there is an h<y, hgE such that

 [x,h]eC. Since y¿URc there is a kgE such that h<k<y and such that [k,y]eC. But also

 [h,k]eC since both endpoints are in I- E. Putting the three together by transitivity we get

 [x,y]€C. Hence C contains all closed intervals with endpoints in I- E'. □

 F.YftTnnIp (Sierpiński [6]) Assume ZFC. Let H={hph2,...} be a Hamel basis for the real
 V>

 numbers over the field of rationals (of length 2 °), so that Heven={h2,h^,...} and

 H0dd={^i»^3>" } both have full outer measure. Thus each real number has a unique

 representation qļhn +q2^n + "+q¡hn where each q is rational and i is finite. For each
 12 i

 real r let s(r) denote sup {a|ha is used in the Hamel representation of r}. Let S be

 766



 {r|s(r)€H„t. Ift is any real number for which s(t)>s(r) (for each r the set of t for C VCI1

 v>

 which this is false has size <2 °), then s(2r- t)=s(t) and hence teS iff 2r- teS. Therefore S
 V>

 is co<2 0-symmetric.
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