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 AN ANALOGUE OF CHARZYNSKI'S
 THEOREM

 §1. Introduction. In this note we wish to show how some recent methods
 introduced by Chris Freiling can be used to prove what we could call an even
 analogue of a well-known theorem of Charzyński [3]. The original problem
 addressed by Charzyński was to determine the continuity properties of a
 function / that satisfies the condition

 fež/(I+Vx-Ā).0 <»
 at every point x. Mazurkiewicz [8] had already demonstrated that for a
 measurable function / this condition could hold only if the discontinuity
 points of / were nowhere dense, while Sierpiński had shown that in this
 situation the discontinuity points of / were at most denumerable. Charzyński
 relaxed these conditions by removing the measurability hypothesis and asking
 instead that

 lim sup /(* + *) -/(*-*) < +00 (2)
 /i-o 2ft

 at each point x. Originally he proved that this hypothesis was enough to
 show that the set of points of discontinuity was countable and nowhere
 dense. It was conjectured by Szpilrajn that the set was in fact scattered
 (clairsemé) and thus we are led to the final version of the theorem as it ap-
 peared in Charzynski's classical paper in Fundamenta Mathematica in 1931:
 any function which satisfies the condition (2) at every point x ģis continuous
 everywhere excepting only at the points of some scattered set.
 The proper context for discussing these kind of ideas is in terms of the

 properties of the even and odd parts of a function. The expression

 f(x + t) = f(x + t) + f(x - *)] + f(x + t)~ f(x - ť)]

 743



 defines the even and the odd parts of the function / at the point x. It
 is natural in many contexts to examine the continuity and differentiability
 properties of / by studying those properties in these two parts. Thus we
 might be led to an investigation of "even continuity" and "odd continuity",
 and of "even differentiability" and "odd differentiability". Unfortunately the
 terminology has not evolved in this way. Continuity of the odd part of a
 function / is known as symmetric continuity while / is said to be symmetric
 if the even part is continuous. The derivative of the odd part of / at t = 0
 is exactly the symmetric derivative of the function / at the point x. On the
 other hand differentiability of the even part of / at t - 0 is equivalent to the
 requirement that

 Um/(* + Q + /(*-0-2/(«)=0 (3)
 «-►0 t

 and this condition is usually called the smoothness of the function / at the
 point x. This is the even analogue of (1). The analogue of (2) is the condition

 f(x JK + t) ' + f(x-t)-2f(x) JK J-^-L
 lim sup JK ' JK
 «-►o t

 which is sometimes called quasi-smoothness. For a survey of these and other
 even and odd properties of functions see [7].
 While there are differences between the even and odd properties there

 are also close parallels. The differences are most notable in the study of the
 differentiation properties of functions satisfying some symmetric condition.
 The condition (2) requires / to be almost everywhere differentiable; in con-
 trast there are continuous, nowhere differentiable functions / that satisfy (4)
 even uniformly. The stronger condition (3) on a measurable function requires
 the derivative to exist on a c-dense set but it can be of measure zero.

 For continuity properties there are striking similarities however. Perhaps
 the best known example is a theorem of Stein and Zygmund [12, Lemma 9,
 p. 266]. (Note that there is an oversight in the original proof, as observed
 in [2], but it is easily amended.) They show that for a measurable function /
 that is symmetrically continuous at every point of a measurable set E, f is
 continuous almost everywhere in E] in the same lemma and with very much
 the same kind of arguments they show that "symmetrically continuous" may
 be replaced by "symmetric".
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 Armed with these and other analogies between the even and odd proper-
 ties of a function one should be inevitably led to try for the even analogue of
 the Charzyński theorem. The addition of some regularity hypothesis, such
 as measurability, to the even analogues is always necessary because of the
 existence of nonmeasurable additive functions; this is not necessary in the
 original Charzyński theorem since the condition (2) already implies that the
 function / is measurable and has the Baire property.

 THEOREM 1 Let f be a measurable function that satisfies the condition

 f(x + h) + f(x - h) - 2 f(x) -^-L
 limsup -

 A- o h

 at every point x. Then f is continuous at every point with the exception only
 of a scattered set.

 This theorem can very nearly be found in the literature. Auerbach [1]
 shows that for an integrable function and any a > 0 the condition

 f(x + h) + f(x-h)-2f(x) =
 h-*Q ha

 holding at every point will require the set of discontinuity points to be mea-
 sure zero and nowhere dense. Neugebauer [10] applies this to measurable,
 smooth functions and obtains the same conclusion. In a later paper [11] he
 shows that the set is countable. Evans and Larsou [4] carry this to the final
 version by showing that the set of discontinuities can be characterized as scat-
 tered. Their proof, which is a modification of the original Charzyński proof,
 shows that the same conclusion holds for measurable, quasi-smooth functions
 if the set of discontinuities is granted to be countable. Thus the theorem is
 available just by proving that quasi-smooth functions have a countable set
 of discontinuities, a result whose proof could be fashioned after the original
 Charzyński proof for the odd symmetry case.
 We shall give two proofs of Theorem 1. The first in Section 2 uses the

 methods introduced by Freiling; the second proof appeals to Theorem 3
 below so that Theorem 1 then becomes an easy corollary of the original
 Charzyński theorem. A direct proof however should not be unwelcome since
 the Charzyński theorem requires itself a rather difficult proof; the proof given
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 here can be viewed as an interesting application of Freiling's monotonicity
 theorem from [5]. Note that this proof and Freiling's proof of the Charzyński
 theorem in [5] axe equally non-elementary since both require an appeal to
 the Khintchine theorem.

 To show that Theorem 1 cannot be further improved we shall present as
 well the following assertion from [4].

 THEOREM 2 (Evans- Larson) Let S be a scattered subset of the inter-
 val (0,1). Then there is a smooth, measurable function f defined on that
 interval that is discontinuous precisely at the points in the set S.

 Finally one might ask whether there is some more transparent reason why
 the continuity properties of functions satisfying an even symmetric growth
 condition so closely parallel the continuity properties associated with odd
 conditions. The following elementary theorem may help display the reason.
 (A similar version for o(<ļ>(h)) holds too.)

 THEOREM 3 Let <f> be a positive function on an interval (0, tj) and let f
 be a function possessing a dense set of points of continuity. If at every point
 X of a set E

 I f(x + h) + f(x -h)- 2/(*)| = O(W)) (7)

 as h - ► 0+ then there is a measurable Junction g such that

 I g(x + h)~ g(x - A)| = 0(<1>(h )) (8)

 as h - > 0+ at each x € E and f is continuous precisely at the points at which
 g is continuous.

 There are a number of applications of Theorem 3 that come to mind.
 Theorem 2 above now can be viewed as a corollary of Theorem 3 together
 with the Charzyński theorem: any measurable function that satisfies the
 condition (5) must be symmetric and so is continuous on a dense set.

 The classically known continuity properties of symmetric functions in turn
 can be deduced from similar results for symmetrically continuous functions.
 All that is required is to show that the hypotheses require continuity on a
 dense set. If / is symmetric and also bounded then an elementary argument
 of Mazurkiewicz [9] will show this. If / is symmetric and measurable then
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 one can show that / is bounded on a dense set of intervals and so conclude
 that / has a dense set of points of continuity. If / is symmetric and has the
 Baire property then by essentially the same methods one can show that /
 is bounded on a dense set of intervals and so yet again / has a dense set of
 points of continuity. Thus the theorems [10, Theorem 1, p. 24] and [4, Theo-
 rem 1.2, p. 252] can be made to follow from a statement about symmetrically
 continuous functions.

 §2. Proof of Theorem 1. As in [5] we are able to prove a somewhat
 sharper version of the theorem. We suppose that / is measurable, that the
 condition (5) holds at every point x except possibly for x in a countable set
 C and that / is symmetric at every point in C. Under these hypotheses /
 is symmetric everywhere and hence from classical material we know that its
 set of discontinuities has measure zero (from Auerbach [1] and the extension
 in Neugebauer [10] or alternatively from Stein and Zygmund [12, Lemma 9,
 p. 266] as mentioned earlier). We wish to show that this set of discontinuity
 points is scattered.

 The proof follows from a general monotonicity theorem of Freiling [5]
 stated within the setting of interval functions. An interval function F is
 simply an extended real- valued function assigning a number F(a, b ) to every
 pair of numbers a < b. For an interval function F we define the following
 additivity conditions: we say that / is superadditive if whenever a < b < c
 then

 F(a, b) + F(b, c) < F(a , c).
 It is subadditive if whenever a < b < c then

 F(a , b) + F(b , c) > F(a , c).

 Finally it is quasi-subadditive if whenever a <b < c then

 f(a,6)>F(a,c)-|F(6,c)|

 and

 F(h,c) >F(a, c)-|F(a,6)|.

 For reference we state a version of Freiling's monotonicity theorem.

 THEOREM 4 (Freiling) Let F be a superadditive and quasi-subadditive
 interval function such that
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 (i) lim infť_o+ F{x - t,x + t)/t > O almost everywhere, and
 (ii) lim sup^o^. |F(x - t,x + t)/t' < +00 for every point x except possibly in
 a countable set C,
 (iii) liminfť_o+ F(x - t,x + t) > 0 at every point in C.
 Then there is a scattered set S and such that F(a , b) > 0 for every a, b $ S,
 a < b.

 Freiling has shown how this theorem can be used to give an elegant proof
 of Charzynski's theorem. Without much alteration the same argument pro-
 vides a proof of Theorem 1 under the weaker hypotheses we have assumed
 above.

 For any pair of real numbers a, b define F(a, b) as the supremum of all
 numbers t < 0 with the property that there exists a 8 > 0 such that

 |/(4 + h) + /(«-*)- /(6) -/(o)|<-(

 whenever |Ä| < 8. The function F provides the proof of the continuity
 properties of the function / by virtue of the fact that should F (a, b) = 0
 then / is continuous at a if and only if / is continuous at b. Conversely if /
 is continuous at both points a and then b then certainly F(a , 6) = 0.

 We check first the additivity properties of F. For any a, b, c (in any
 order) we show that

 F(a, c) > F(a, b) + F(b, c). (9)

 If F(a,b) = -00 or F(b, c) = -00 then (9) holds trivially. Otherwise let
 - £1 < F(a,b ) and -£2 < F(b,c). Then there are positive numbers ¿1 and <$2
 for which |A| <61 implies

 |/(6 + A) + /(« -h)- m - /Ml < <. (10)

 and 'h' < 82 implies

 |/(c + h) + f(b - h) - /(c) - m' < ej. (11)

 Certainly (10) and (11) show that if |Ä| < min{¿i, ¿2} then

 |/(c +h) + f(a - h) - f(c) - /(a) I < tx + e2.
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 From this we may conclude the relation (9). Both the superadditivity and
 the quasi-subadditivity of F follow now since we have not assumed any order
 requirements on the points a, b and c.

 Now let us show that F satisfies the condition (ii) in the statement of
 Freiling's theorem. Note that - oo < F(a, b) < 0. At any point x at which
 the condition (5) holds (i.e. at every point not in the countable set C) we
 may determine positive numbers 8 and K so that

 I f(x + s) + f(x -s)- 2f(x)' < Ks

 if 0 < s < 8. Then if 0 < t < 8/2 and |/i| < t we have from this inequality
 that

 I f(x + t + h) + f(x -t - h)- 2f(x)' < K(t + h)
 and

 |/(x + t) + f(x -t)- 2f(x)' < Kt
 and hence

 I f(x + t + h) + f(x - t-h) - f(x + t)- f(x - ť)| < 3 Kt.

 This gives
 0 > F(x - t,x + t) > ^3Kt

 for all 0 < t < 8/2 and consequently

 lim sup I F(x - t,x + t)/t' < +00
 t-> o+

 as we require.
 A nearly identical proof shows that property (iii) also holds because / is

 symmetric at every point and so at every point in C.
 Finally, in order to apply the Freiling theorem it remains to verify the

 property (i). We recall that / is continuous almost everywhere. Fix a point
 c at which / is continuous; then at any other point x at which / is also
 continuous we know F(c, x) = 0. Thus we can define the function g(x) =
 F(c, x). This function vanishes almost everywhere and so is measurable.

 Because of (9) we have at any point x that

 H(x - t,x + t) < H(c, x + t) - H(c , x - t) = g(x + t) - g(x - t).
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 Thus
 g(x + t) - g(x - t) H(x -t,x + t)

 t * t

 and so, from what we have already proved, the lower symmetric derivate
 of g is always greater than - oo outside of C. By a well-known theorem of
 Khintchine [6] then g is almost everywhere differentiable. At any point at
 which g'(x) exists it is easy to see that g'(x) = 0.
 Suppose that x is now a point of continuity of / and that g(x) = g'(x) = 0;
 almost every point x has this property. We apply (9) three times more to
 obtain

 F(x, x + t) > F(c , x) + F(c, x + t) = F(c , x + ť),

 F(x , x - t) > F(c, x) + F(c, x - t) = F(c, x - t)

 and

 F(x - t,x + t) > F(x - t, x) + F(x, x + t).

 Together these give

 F(x -t,x + t)> g(x -t) + g(x + 1).

 Thus
 F(x -t,x + t) g(x - t) g(x + t)
 t t t

 Since each of these expressions on the right of the inequality tends to g'(x) =
 0 as t - ► 0 we must have

 limjnf F(x - t,x + t)/t > 0

 at any such point x and hence almost everywhere. This is assertion (i) of the
 theorem.

 We now apply the Freiling theorem and the proof of Theorem 1 is com-
 plete. There is a scattered set S so that F(a, b) = 0 for every a, b £ S,
 a < b. Take any point a £ S at which / is continuous and we see that / is
 continuous at any point 6^5.

 §3. Proof of Theorem 2. The theorem of Charzyński is completed
 by an example due to Jurek and Szpilrajn. (See also the related example
 in Freiling [5]). They show that for any scattered set S C (0, 1) there is a
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 function g positive on S and vanishing on (0, 1) ' S and which satisfies at
 every point x the inequalities g(x + h) < h2 and g(x - h) < h2 for sufficiently
 small h.

 Evans and Larson have shown that similar arguments provide a smooth
 function with the same set of discontinuity points. Their arguments are
 clarified if we appeal directly to the earlier construction. Let Si, 52, S3 ... be
 an enumeration of the set S. We define the function h on the interval (0, 1)

 hix ) = H 2~,-1g(si).
 Si<X

 This function is a saltus function that has jump discontinuities exactly at
 the points of S. We can adjust this function so as to be smooth by defining
 f(x) = h(x) if x £ S and at any point x in S we write

 r, N h(x + 0) + h(x - 0)
 f(x) r, N =

 We claim that / is smooth and that its set of discontinuity points is
 precisely S. The latter fact is clear. To see that it is smooth take any point
 x € (0, 1). If x £ S then for sufficiently small h

 I f(x + h) + f(x - h) - 2f{x)' < [f(x + h)~ /(z)] + [/(x) - f(x - /1)]

 < sup {^(s,); Si € {x - h, x)} + sup {<7(s¿); st- € (x, x + h )} < 2h2.

 If x 6 S then

 |/(x + h) + f(x -h)- 2/(x)| < [f(x + h)~ f(x + 0)] + [f(x - 0) - f(x - /1)]

 and again |/(x + h) + /(x - h) - 2/(x)| < 2h2.
 In each case |/(x + h) + f(x - h) - 2/(x)| = 0(h2) as h - > 0 and so / is

 smooth. Since / is monotone it is measurable and the proof is complete.

 §3. Proof of Theorem 3. For the function g in the statement of The-
 orem 3 we have merely to take g = u>/, the oscillation of the function /, if
 this is finite. If there are points where it is infinite then we take g(x) = 1 at
 those points and everywhere else g(x) = u>j(x). The function / is continuous
 precisely when uif vanishes. If / has a dense set of points of continuity then
 u)j vanishes on a dense set and so u;/(x) = 0 if x is a point of continuity of
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 Uf. In the other direction it is clear that if / is continuous at a point x then
 so too is ioj. Finally g too has the same continuity points as /.

 Here are the computations needed to check that the even symmetric con-
 dition (7) on / at a point will require that ujf satisfies the parallel odd
 condition (8) there. At any point x 6 E and for any some C > 0 we may
 choose 0 < 6 < tj so that

 |/(x + h) + f{x -h)- 2/(x)| < C<t>(h) (12)

 if 0 < h < 6. If 0 < ho < S and t is any number t < w/(x + ho) then we
 may choose sequences {xn} and {yn} converging to x + ho in such a way that
 I f(xn) - f(yn) I > t- Reflect these sequences about the point x by writing
 x'n = 2x - xn and y'n = 2x - yn; these new sequences converge to x - ho and
 for sufficiently large n both of the inequalities

 i f(xn) + fM - 2/(x)i < cm

 and

 i/(sC) + /w - 2/wi < cm
 must hold because of the inequality (12). Thus we have

 I /(in) - f(y n)| < I f(xn) + f(x'n) - 2f(x)'+
 '2f(x)-f(yn)-f(y'n)' + 'f(y'n)-f(x'n)'

 < 'f{y'n)-f{x'n)' + 2C<j>{h).

 We can conclude from this that u>f(x - ho) > t - 2C<f>(h). This is true for
 every t < u>j(x + ho) and hence either u>j(x + ho) is infinite or

 u>f(x + ho) - u7/(x - ho) < 2C<ļ>(h).

 Note that if u?/(x + ho) = -f oo then necessarily u>/(x - h0) = +00.
 Identical arguments show that

 Uf{x - h0) - u>j(x + ho) < 2 C<ļ>(h)

 or else if u>f(x - h0) = +00 then necessarily Wf(x + h0) = +00.
 Hence we have proved that u)f has the odd symmetric property required

 at x at least discounting infinite values. If uj is not finite then replacing it
 by g will supply a finite function with the property required in the statement
 of the theorem.

 752



 References

 [1] H. Auerbach. Sur les derivées generalisées. Fund. Math., 8 (1926) 49-55.

 [2] C. L. Belna. Symmetrie continuity of real functions. Proc. Amer. Math.
 Soc., 87 (1983) 99-102.

 [3] Z. Charzyński. Sur les fonctions dont la derivée symetrique est partout
 finie. Fund. Math., 21 (1931) 214-225.

 [4] M. J. Evans and L. Larson. The continuity of symmetric and smooth
 functions. Acta Math. Hungar., 43 (1984) 251-257.

 [5] C. Freiling. Symmetric derivates, scattered and semi-scattered sets.
 Trans. Amer. Math. Soc. (to appear).

 [6] A. Khintchine. Recherches sur la structure des fonctions mesurables.
 Fund. Math., 9:212-279, 1927.

 [7] L. Larson. Symmetric real analysis: a survey. Real Analysis Exchange, 9
 (1983/84) 154-178.

 [8] M. Mazurkiewicz. On the generalized first derivative (in Polish). Prace.
 Mat. Fiz. 28 (1917) 79-85.

 [9] M. Mazurkiewicz. On the relation between the existence of the second
 symmetric derivative and the continuity of a function (in Polish). Prace.
 Mat. Fiz. 30 (1919) 225-242.

 [10] C. J. Neugebauer. Symmetric, continuous and smooth functions. Duke
 Math. J. 31 (1964) 23-32.

 [11] C. J. Neugebauer. Smoothness and differentiability in Lp. Studia Math.
 25 (1964) 81-91.

 [12] E. M. Stein and A. Zygmund. On the differentiability of functions.
 Studia Math., 23 (1964) 247-283.

 Received 6 December, ¡989

 753


	Contents
	p. 743
	p. 744
	p. 745
	p. 746
	p. 747
	p. 748
	p. 749
	p. 750
	p. 751
	p. 752
	p. 753

	Issue Table of Contents
	Real Analysis Exchange, Vol. 15, No. 2 (1989-90) pp. 420-777
	Front Matter
	CONFERENCE ANNOUNCEMENTS [pp. 422-422]
	ERRATA: THE PACKING DIMENSION OF A TYPICAL CONTINUOUS FUNCTION IS 2 [pp. 423-423]
	TOPICAL SURVEY
	Porosity in Convexity [pp. 424-436]

	RESEARCH ARTICLES
	On the Maximal Multiplicative Family for the Class of Quasicontinuous Functions [pp. 437-441]
	ORDERED FAMILIES OF BAIRE-2-FUNCTIONS [pp. 442-444]
	Finite Representation of Continuous Functions, Nina Bary's Wrinkled Functions and Foran's Condition M. [pp. 445-469]
	The algebra generated by derivatives which are continuous almost everywhere [pp. 470-482]
	THE STRUCTURE OF ω-LIMIT SETS FOR CONTINOUS FUNCTIONS [pp. 483-510]
	EXTENSIONS OF DARBOUX FUNCTIONS [pp. 511-547]
	FUNCTIONS WHOSE LEVEL SETS ARE ALL PERFECT [pp. 548-558]
	ON SOME QUESTIONS RAISED BY J. FORAN [pp. 559-581]
	Darboux Functions with a Perfect Road [pp. 582-591]
	ON ω-LIMIT SETS FOR VARIOUS CLASSES OF FUNCTIONS [pp. 592-604]
	On Sets of Points of Approximate Semicontinuity in Euclidean Spaces [pp. 605-621]
	INTERVALS OF FINITELY ADDITIVE SET FUNCTIONS [pp. 622-643]
	On Functions Discontinuous on Countable Sets [pp. 644-651]
	Convexity Theorems for Generalized Riemann Derivatives [pp. 652-674]
	LOCAL CONVEX HULLS OF A CURVE, AND THE VALUE OF ITS FRACTAL DIMENSION [pp. 675-695]

	INROADS
	LIPSCHITZIAN HOMEOMORPHISMS WITH LARGE SETS OF DIRECTIONAL DERIVATIVES [pp. 696-703]
	Some Applications of an L¹ Version of the Gauss Integral Theorem [pp. 704-709]
	ON LEVINSON'S INEQUALITY [pp. 710-712]
	A FURTHER EXTENSION OF A RESULT OF BORWEIN AND DITOR [pp. 713-723]
	ANOTHER LOOK AT A CONVERGENCE THEOREM FOR THE HENSTOCK INTEGRAL [pp. 724-728]
	ON MINIMAL CONVEX USCO AND MAXIMAL MONOTONE MAPS [pp. 729-742]
	AN ANALOGUE OF CHARZYŃSKI'S THEOREM [pp. 743-753]
	ON ACG FUNCTIONS [pp. 754-759]
	A CONVERSE TO A THEOREM OF SIERPINSKI ON ALMOST SYMMETRIC SETS [pp. 760-767]
	A historical note on the measurability properties of symmetrically continuous and symmetrically differentiable functions [pp. 768-771]
	A THREE-DART RESPONSE TO AN ARGUMENT OF BAGEMIHL [pp. 772-776]

	QUERIES [pp. 777-777]
	Back Matter



