J.E. Pečarić, Faculty of Technology, University of Zagreb, Ive Lole Ribara 126, 41000 Zagreb, Yugoslavia

ON LEVINSON'S INEQUALITY

The purpose of this paper is to give a simple proof of a result of S.Lawrence and D.Segalmon [1] for 3-convex functions. Namely, S. Lawrence and D.Segalmen proved the following generalization of the well-known Levinson's inequality for 3-convex functions:

THEOREM A. Let f be a continuous function defined on ($0,2 a$) for which $\Delta_{h}^{3} f(x)>0$ for all x in ($0,2 a$) and $h>0$ for which $\Delta_{h}^{3} f(x)$ is defined (i.e. for all x in $(0,2 a)$ ond $h>0$ for which $x+3 h<2 a)$. Let x_{1}, \ldots, x_{n} be numbers in $(0,2 a)$ such that $x_{1} \leqq x_{2} \leqq \ldots \leqq x_{n}$ and $x_{i}+x_{n+1-i} \leqq 2 a, i=1, \ldots, n$. Then
(1) $\quad \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \leqq \frac{1}{n} \sum_{i=1}^{n} f\left(2 a-x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n}\left(2 a-x_{i}\right)\right)$ with equality if and only if either all the x_{i} are equal or $x_{i}+$ $x_{n+1-i}=2 a, i=1, \ldots, n$.

Here, we shall prove the following:
THEOREM 1. Let f be a real-valued function defined on ($0,2 a$) for which $\Delta_{k}^{2} \Delta_{h} f(x)>0$ for all x in $(0,2 a)$ and $h>0, k>0$ such that $x+h+2 k<22$. Let x_{1}, \ldots, x_{n} be defined as in Theorem A. Then (1) is valid with the same conditions for equality.

Froof. As in [1] we have for $h=2 a-x_{n}-x_{1}, k=\left(x_{n}-x_{1}\right) / 2$, in the case when $x_{1}+x_{n}<2 a$ and $x_{1}<x_{n}$, i.e. $h>0, k>0$,

$$
\begin{aligned}
0<\Delta_{k}^{2} \Delta_{h} f(x)= & f\left(x_{1}+h+2 k\right)-2 f\left(x_{1}+h+k\right)+f\left(x_{1}+h\right)-f\left(x_{1}+2 k\right) \\
& +2 f\left(x_{1}+k\right)-f\left(x_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & f\left(2 a-x_{1}\right)-2 f\left(2 a-\left(x_{1}+x_{n}\right) / 2\right)+f\left(2 a-x_{n}\right)-f\left(x_{n}\right) \\
& +2 f\left(\left(x_{1}+x_{n}\right) / 2\right)-f\left(x_{1}\right) .
\end{aligned}
$$

If either $x_{1}+x_{n}=2$ ar $x_{1}=x_{n}$, we have equality in the above result. Hence
(2) $f\left(2 a-\left(x_{1}+x_{n}\right) / 2\right)-f\left(\left(x_{1}+x_{n}\right) / 2\right) \leqq \frac{1}{2}\left(f\left(2 a-x_{1}\right)-f\left(x_{1}\right)+f\left(2 a-x_{n}\right)-f\left(x_{n}\right)\right)$, with equality if and only if either $x_{1}=x_{n}$ or $x_{1}+x_{n}=2 a$. Of course, if $x_{1} \leqq a$ and $x_{n} \leqq a$, then the above conditions are satisfied, and from (2) we have that the function $x \mapsto f(2 a-x)-f(x)$ is strictly J-convex on (0,2]. Using this fact and inequality (2) for all relevant pairs of numbers we have:

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(f\left(2 a-x_{i}\right)-f\left(x_{i}\right)\right)= \\
&=\sum_{i=1}^{n} \frac{1}{2}\left(\left(f\left(2 a-x_{i}\right)-f\left(x_{i}\right)\right)+\left(f\left(2 a-x_{n+1-i}\right)-f\left(x_{n+1-i}\right)\right)\right) \\
& \geqq \sum_{i=1}^{n}\left(f\left(2 a-\left(x_{i}+x_{n+1-i}\right) / 2\right)-f\left(\left(x_{i}+x_{n+1-i}\right) / 2\right)\right) \\
& \geqq n\left(f\left(2 a-\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}+x_{n+1-i}\right) / 2\right)-f\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}+x_{n+1-i}\right) / 2\right)\right) \\
&=n\left(f\left(2 a-\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)\right) .
\end{aligned}
$$

In the last inequality we used Jensen's inequality for J-convex function $x \mapsto f(2 a-x)-f(x)$ and for numbers $t_{i}=\left(x_{i}+x_{n+1-i}\right) / 2$ since $t_{i} \leqq 2$. Equality conditions for Jensen's inequality are $t_{1}=\ldots=t_{n}$ 。 So, using the equality conditions for (2) we obtain that equality in (1) is valid if and only if either all the x_{i} are equal or $x_{i}+x_{n+1-i}$ $=2 a, i=1, \ldots, n$.
Remarks: It is noted in [1] that if f is continuous and $\Delta_{h}^{3} f(x)>0$ for all x and $h>0$, then $\Delta_{k}^{2} \Delta_{h} f(x)>0$. The reverse implication is
obvious. But, in Theorem $1 f$ can be discontinuous.
The above proof can be used for generalization of the above result for functions of several variables.

By using the fact that $x \mapsto f(2 a-x)-f(x)$ is J-convex function on (0,2] and known results for J-convex functions we can obtain many new results.

REFERENCE:

1. S.LAWRENCE and D.SEGALMAN, A Generalization of Two Inequalities Involving Means. Proc.Amer.Math.Soc. 35 (1972), 96-100.

Recoivad March 28, 1989

