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 Some Applications of an L1 Version of the
 Gauss Integral Theorem

 This paper presents some applications of a Gauss integral theorem for func-
 tions with partial derivatives defined in an integral sense. The applications are
 to a Green's representation formula, interchanging the order of partial differenti-
 ations and a form of Weyl's lemma, all for functions with L1 partial derivatives.
 This notion of differentiability is now recalled.

 Definition: A function u G I/p(Rn), 1 < p < oo is said to have an IP
 partial derivative with respect to x* if there is an IP function uXk such that if
 h = (Aļ, . • . , Ar);

 The function uXk is called the IP first partial derivative of u with respect to xk.
 Let H be an open set in Rn satisfying the following conditions:

 (i) dfi is a simple closed n - 1 dimensional surface.

 (ii) 0 G int(Q)

 (iii) Surface measure on díl is given by ds = |n(f, Tj)'dçdrj where n(£, r?) is the
 unit outer normal to the point on dû given by parameters f, r' in a C'
 parametrization.

 The following version of the Gauss integral theorem was proved in Arnold [1].

 THEOREM 1. Let fl satisfy conditions (i), (ii) and (iii) and let u 6 L1(Rn)
 have Lx first partials uy. G L1(Rn). Then for almost all x € Rn:

 / uv.dt = / uTiids (2)
 Jz+ū Jd(x+ti)

 This theorem will now be put into a form more useful in applications. First it
 is shown that (2) actually holds for all x € Rn. This should have been done
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 in Arnold [l]. It is enough to prove that both integrals in (2) are continuous
 functions of x. With x denoting characteristic function, we have the following
 estimate:

 IL> "»•<" - L„ U"A = I/,. - *.«H
 ¿ L mx-m*

 = io Mdt
 Sx, z = {x + fi) A(z + n)

 Since uVi 6 L1(R"), the absolute continuity of the Lebesgue integral will give the
 result if it can be shown that the symmetric difference (x + fi) A (2 + fi) has small
 Lebesgue measure when 'x - z' is small.

 By the absolute continuity of the integrals, fi may be assumed to have finite
 Lebesgue measure. Then finite disjoint unions of cubes form a Vitali cover and
 it suffices to prove the theorem for a cube. The result then reduces to showing
 that if fi is a cube in Rn containing 0, that the measure of SXiZ is small with
 'x - z'. This follows from an elementary geometric argument.

 The same argument holds in the n - 1 dimensional manifold dfi, transform-
 ing the n - 1 dimensional Lebesgue measure by coordinate charts, giving the
 continuity in x of the surface integral in (2). Since (2) now holds for all x we
 may drop the translation notation in (2) : any region fi is the translation of one
 containing 0.

 Next, the domain of u may be taken to be an open set fi instead of all of Rn
 by setting u = 0 off fi. For this, the limit (1) is required to hold with Rn replaced
 by fi. This is enough to prove that the extension by zero of u has L1 partials
 on Rn. In this case u is said to have L1 partials on fi. These improvements are
 summarized in the following restatement of Theorem 1.

 THEOREM 2. Let fi be an open set in R" and let u have L1 first partials
 in fi. If fi satisfies (i) and (iii) then

 / Uy.dt = / uriids
 J n Ja n

 Theorem 2 can be used to prove the divergence theorem with L 1 partials in
 place of the usual partial derivatives. This theorem will be called the L1 version
 of the divergence theorem. Green's theorem in the plane for L 1 partials is then
 a corollary. These theorems will be used several times below. Their proofs and
 those of Lemmas 1 and 3 below follow exactly as in John [2] Ch. 4 by substituting
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 Theorem 1 and the L1 version just mentioned of the divergence theorem for their
 classical counterparts.

 If the L1 first partials of u, themselves have L 1 first partíais, written uy.tfy, u
 will be said to have L1 second partials. The set of functions on fi whose L1 first
 partials have L1 first partials is denoted L1,2(fi). The Laplacian formed with
 these derivatives is:

 n

 A u = X>v.v.
 i=l

 LEMMA 1.

 / Audi = / unds
 J n Jan

 where
 n

 Un = J2 UyiTli
 i= 1

 The next fact is the analog of Lebesgue's differentiation theorem for spheres
 rather than balls. The dimension restriction is rather surprising.

 LEMMA 2. Let n > 3, / € L?oc, P > ^

 5(0,1) = {x : 'x' = 1}
 then

 ^fsW)f{x-py)d3{y] = /(x)
 for almost all x.

 Proof: Stein and Wainger [3].

 Note: This result is false for any n if p < It is an open problem whether
 it is true when n = 2, p > 2. See Stein and Wainger [3] for a discussion.

 The final preliminary result we require is the L 1 analog of a standard appli-
 cation of the divergence theorem. Again, the proof is just as in John [2], p. 96
 with the L1 version of the divergence theorem replacing the usual one¿

 LEMMA 3. Let u,v € Lx-2( Ū), B(£,p) = {y : |y-£| < p}, p> 0, S(£,p) =
 dB(£,p), ūfi = Ū - B(£,p), Av = 0 on iîp. Then

 / u Audi = / ( vun - uvn)ds + / (t tun - uvAds
 Jrip Jan

 A Green's representation theorem for a function with L 1 second partials can
 now be given along classical lines with a reliance on the absolute continuity of
 the Lebesgue integral and Lemma 2 replacing continuity assumptions.
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 Let E(r) be the fundamental solution to Laplace's equation:

 r2-n
 E(r) w = 7-
 w 7- (2 - n)<jjn r

 lo8r „ _ 9
 2 TT '

 Here wn = measure of the unit sphere. Choosing v = 2?(r) = i£(|i - £|), Lemma
 3 produces

 / v Audi = I (vun - uvn)ds - E(p) I unds
 J a? Ja n Js(ç^)

 - p1-n f uds

 Now let p - ► 0. By absolute continuity of integrals and the fact that Au G Lx(Rn)
 we get

 / A udt = / unds - »■ 0
 ./B(Ç,,>) y5(«,p)

 In addition, Lemma 2 gives for almost all £:

 P1-n Z'
 w»

 Hence the following representation theorem has been established.

 THEOREM 3. Let p > n/n - 1, n > 3. Let u € IP(Vt) D L1,2( fi), fi
 satisfying (i) and (iii). Then for almost all £ G fi

 tt(£) = Í El't - t')Au(t)dt
 Jo

 - J Jan JE('s - Č|K(S) - «(<.)£„(!« - Ćl)<fc Jan

 This theorem can be used to give a natural and quick proof of a version of
 Weyl's Lemma for the L1 derivatives considered here.

 THEOREM 4. Let u € If( fi) fi L1,2(fi), p > n/n - 1, n > 3 be continuous
 in a region fi satisfying (i) and (iii); and let u have L1 second partials in fi. Then
 Au = 0 implies that u is harmonic in fi.

 Proof: Let fi in Theorem 3 be a ball B(£>p) and replace E by G(£,t) =
 E('t - £|) - E(p) there. From Lemma 1, it follows that the formula in Theorem

 707



 3 remains valid. Note that G = 0 and Gn = ^p1 n on dii. Since Au = 0 in fi
 we get the mean value property

 = <j}npn 1 L,t Js{t,i>) ,tt(5)d5- <j}npn 1 Js{t,i>)

 This is sufficient to imply, in view of the continuity of u, that u is harmonic, (c.f.

 Stein and Weiss [1], p. 41).

 Remark: The methods used here are natural extensions of potential theoretic
 arguments. However, the restrictions on p necessary for the use of Lemma 2 are
 not necessary for the proof of Weyl's lemma by other methods.

 The next application is a theorem on interchanging the order of partial dif-
 ferentiation. In this two dimensional situation partial derivatives are written as
 subscripted x and y. For smooth functions it follows easily from Green's theorem
 in the plane that uxy = yyx. This proof can be used as a model to obtain the
 result for functions u with L1 second partials.

 THEOREM 5. Let u(x,y) be defined in a plane open set H. Suppose u €
 L1,2(fî) with L1 second partials uxy and uyx and that u is absolutely continuous
 in each variable separately. Then uxy - uyx a.e. in 0.

 Remark: There is a harmless redundancy in the hypotheses since if u(x,y) is
 absolutely continuous with respect to x for fixed y then uz(x, y) exists for almost
 every x for this fixed y. A similar remark holds with x and y interchanged.

 Proof: Let R be a rectangle contained in fi which is parameterized linearly
 with x and y as parameters on the horizontal and vertical sides respectively. The
 hypotheses imply that u restricted to the boundary dR is absolutely continuous
 with respect to each parameter. Hence, the fundamental theorem of calculus for
 Lebesgue integrals provides:

 f uxdx + uvdy = [ ^ ds = 0.
 JdR J or ds

 Now Green's theorem in the plane for L1 partials gives:

 ^ (ttjy t Łyx}dt - 0.

 Now let C be the class of all plane sets S C fi for which

 Jsiuxy - uyx)dt = 0.
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 C is a monotone class containing the a-field of all countable disjoint unions of
 finite rectangles. By the monotone class theorem C contains all the, Borei sets in
 ii. Since uxy - uyz 6 LX(R2) we conclude uxy = uyx a.e. in fi.
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