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 LIPSCHITZIAN H0ME0H0RPHISH5 WITH LARGE SETS OF DIRECTIONAL DERIVATIVES

 1, Introduction. In the calculus for vector-valued functions of sev-

 eral variables the first step is to define the notion of directional deriv-

 ative. Let f: D - Fn ( D is an open set in Fm ) be a function, ećlRm

 and X e D . Then the derivative of f at x in the direction e is

 Um fO+te? - to?
 t-0 x

 if the limit exists. This limit need not exist even if f is lipschitzian.

 But then we can define Df(x;e) (the contingent one-side derivative) to be

 the set of all limits

 f(x+t e) - f(x)
 lim

 n-oo n

 where t - 0+ as n - oo . Df(x;e) is nonempty and compact and the natural

 question arises as to what it can look like. We shall give three examples

 which show that it can have unexpected shape even if both f and its in-

 verse f~* are lipschitzian.

 |y 1^
 2. Examples . Let a function f : IR - IR satisfy the following con-

 dition
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 (1) K H x-y H 4 ||f(x)-f(y)|| 4L||x-y||

 for all x,yéRk , where 0<K4L (f is bilipschitzian) . It follows from

 the well-known Rademacher's theorem (see [3]) that f has a Frechet der-
 9 ķ

 ivatlve f (x) (being a linear mapping from IR into itself) for almost
 k k
 all x in IR . For such an x and for all e^^elR we have

 (2) Klle^ll ¿ ||f'(x)eļ - f'(x)e2|| < L||e1~e2l!

 which is easy to prove. The above condition says that f (x)(») is lip-

 schitzian and invertible in the same way as f is.

 If f is not differentiable at the point x , then one can formulate

 for Df(x;e) an equivalent of (2). Namely, for any e^^tlR and for any

 p^éDfíxje^) there exists p2€Df(x;e2) suchthat

 (3) K||eļ-e2M ^ llPļ-PjII ^ L||eļ-e2|| .

 Indeed, let

 í(x+t e.)-f(x)
 p, = lim

 n-oo n

 Since the sequence

 Ç f (x+tne2)-f (x)

 I Ç /
 is bounded, we may assume (choosing a subsequence if necessary) that it

 converges to a point p2čūf(x;e2) . Now, observing that

 ||f(x+t e2)-f(x+t ex) M
 IIPo-Pill = li«"

 n-oo n

 and using (1) we arrive at the desired inequalities (3).
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 It follows from (3) that

 H(Df(x;e1),Df(x}e2)) ^ Ulehli

 (where H denotes the Hausdorff metric, see [2]). Therefore the function

 Df(x; •) is lipschitzian with the same constant as f . The natural ques-

 tion is: Could one obtain a similar estimation from below for the Hausdorff

 distance between Df(x;e^) and Df(x;e2) ? Condition (3) enables us to
 state only that

 (4) Kl|e1-e2ll ^ H(Df(x;e1),Df(x;e2))

 whenever one of the sets Df(x;e^) , Df(x;e2) is a singleton. In general
 (4) is not true as the following example shows.

 Example 1. Let k = 2 and

 {( (0,0) xcos(lnr)-ysinClnr) , xsin(lnr)+ycos(lnr) ) if if (x,y) (x,y) i = (0,0) (0,0) (0,0) if (x,y) = (0,0)

 where r = (x2+y2)^2 . (The point (x,y) i (0,0) is rotated about the ori-

 gin through the angle lnr ).

 Then, for any ećF^ , with ||e|| = 1 ,

 Df ((0,0);e) = {pe IR2: ||p|| = l} .

 (The function Df((0,0);*) is constant on the unit circle).

 First, we should prove (1). To do this we note that all components

 of the Jacob i matrices of f and f~* are absolutely bounded by 3 at

 each point (x,y) i (0,0) and ||f(x,y)|| = Hf'^x.y)!! = (x2+y2/2 for
 2 2

 every (x,y)& R . Now it suffices to see that, for any e e IR , with

 Il e II = 1 , the quotient f(te)/t turns along the unit circle infinitely
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 many times as t - 0+ .

 k k
 Remark 1. Suppose that the billpschitzian function f: ÍR - R ,

 (5) K||x-y|| ^ ||f(x)-f(y)|| 4L||x-y||

 has a one-side directional derivative

 f(x+teQ)-f(x)
 df(x;e„) ■ li»t

 at the point x in the direction eg / 0 . Then for every e i 0 we have

 dist(Df(xje),l* ) >. Kdist(e,l* ) ,
 p0 e0

 where 1* = {spg: s>o} and 1* = -{seg : s>o} .
 Indeed, if

 f(x+t e)-f(x)
 Df(x;e) 3 p, = lim

 n-oo n

 then for s >0 we get

 f(x+t e)-f(x)

 ||p1-spg|| = lim H
 n-oo n

 f (x+t e) f(x+st_en) f(x+st LS en)-f(x)
 = lim H -j-2 n-oo xn n n

 II f (x+t e)-f(x+st en) H
 = lim n-oo *n U e0

 and therefore

 dist(Pl,l! ) ^ Kdist(e,l* ) .
 p0 e0

 As a corollary we get that if there exists e e Fk n {o} such that

 {qeffik; there exists p£Df(x;e) such that q = jļ^jļ

 699



 u

 is the entire unit sphere in IR , then the function f has no one-side

 directional derivative df(x;eg) at the point x in any direction eg i 0.

 Remark 2. Example 1 can suggest that if for a bilipschitzian
 2 2 2

 function f: IR -IR there exists eQelR such that

 {qfelR^: there exists peDf(x;eg) such that q = ļj^ļļ }•

 is the unit circle, then the same holds for all directions e i 0 . The

 above conjecture is not true as Example 2 shows.

 Example 2. We define g^: [j,l] - IR (i=l,2,3) and

 h: [jłl] * [-TVft] - [j»l]xR in "the following ways

 '2Jtr - 37C , j 4r Š 1

 -2 7Tr , 4 4 r ^ I
 gi(r) = < 3 i ;

 ~47tr + 'K , ^ 4 r í 2"

 c47tr - 27T , £ 4r

 r4Jlr - ATT , I ^ r ^ 1

 -47tr + 2tí , 4 < r
 g2(D = < , § ? 5

 -8 3tr + 4 IZ , ģ í r ^ j'

 ^Bjür - 27ī , ^ r ^ ■g-

 g5(r) = gļ(r) + 2jt for re [j,l] ;

 f(r ' " 9l(r) + ("rc +1)92(r>) for re[j,l] ,<f€[-X,0]
 h(r,</>) =< ^ .

 L(r , (1- £ ^ )g2(r) + ^ . g3(r)> for te [i l] , <^e[o,3r] .

 It is easy to observe that h and h~* are lipschitzian and they

 generate f and f"1 from the annulus P={xêIR2: j ^ ||x|| 4 l} onto
 P , which are also lipschitzian mappings. Now the following extension f
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 |Y2kf(22kx) for 2~2(k+1) ^ II X M ^ 2*2k , k=2,3,...
 f(x) = 0 for X = 0

 lx for ||x|| > 1

 is bilipschitzian and for = (1,0) we have

 |qelR2: there exists peDfiOje^) such that q - =
 = -[qé IR2: H Q 1 1 = l} i

 i {qt IR2: there exists peDfiOj-e^) such that q = ļfp|]"} =
 = fq = (qļ,q2)6lR2: ||q|| » 1 , qj Ś o} .

 Now we show what we can obtain after a modification of Example 1

 to IR3 .

 Example 3. Let f(0,0,0) = (0,0,0) and

 f(x,y,z) =

 = [ xcosdnr)-ysin(lnr) , (xsin(lnr)+ycos(lnr))cos( V21nr) - zsin(V21nr) ,

 (xsin(lnr)+ycos(lnr))sin(V21nr) + zcos(V2lnr) ļ

 if (x,y,z) i (0,0,0) , where r = (x2+y2+z2)^2 .

 Proceeding as in Example 1 it follows that both f and are

 lipschitzian which yields condition (1). Now, let us take e^ = (1,0,0)

 and e2 = (0,0,1) . Then, for t>0 , we have
 f(te,)

 - ļ

 f(te7)
 - ^

 Employing arguments analogous to those used in Example 1 one can

 prove that

 Df((0,0,0);e2) = {(x,y,z)é IR3: x = 0 , y2+z2 = l^T .
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 We claim that Df((0,0,0);e^) is the whole unit sphere in IR^ . In-

 deed, let us fix any (x,y,z)£ Ir' with x2+y2+z2 = 1 and take tg>0 to

 satisfy X = cos(lntg) . Let

 t = t e~^k7r » k * = 1 1 f 2 L t UQC » k * = 1 1 f 2 L » • • • •

 Then t^ - 0 as k - oo and cosQnt^) = x , sin(lntk) = sin(lntg) for
 k = 1,2,... .

 In the case of x2 = 1 we thus obtain the claim since

 f(t.e,)

 k

 Now, let x2 < 1 . Then y2+z2 > 0 and sin(lntg) i 0 . Therefore it

 suffices to note that the sequence -[(cosCV^lnt^jSinC^lntk))}' ,k=l,2, . . . ,

 is dense in the unit circle on the plane (see for example M>.

 Remark 3. Let us observe that the mapping given in Example 3 is a

 superposition of two relevant lipschitzian transformations, which allows us
 k

 to generalize this example to the case of IR with k > 3 . We must only

 apply the following theorem, due to Kronecker (see [l]):

 If y1,...,yn_1€ IR N<3> and yi(y^)"1€ IR'<Q> for i i j , then for

 every p>0 and x^, . . . ,xn_^e IR there exist te (N and p^, . . . ,Pn_jt ^

 such that I tyj+p^-x^ | < p , for i = l,2,...,n-l .

 Open problem.

 Can one construct a bilipschitzian function f: - IR"* such that

 for some x6 (R*' we have

 £qelR^: there exists pčūf(x;e) such that q = = {qelR^: llq 11=1}
 for every e e Ir''(0} ?
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