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 INTERVALS OF FINITELY ADDITIVE SET FUNCTIONS

 Abstract. Suppose that U is a set, F is a field of subsets of U, A(R)(F) is the set of all

 real - valued finitely additive functions defined on F, A(R)(F)"'" is the set of all nonnegative -

 valued elements of A(R)(F), each ol ^ and ^ 's A(R)(F), ^1 *s 'n a *s a
 function with domain F and range a collection of subsets of R with bounded union, and for i

 = 1,2, the integral J a £j, as a refinement - wise limit of sums, exists. Let T denote the

 transformation with domain {p' p in A(R)(F), each of ^ - P P ~~ Čj i*1 A(R)(F)"*"} and

 range Ç A(R)(F) given by T(/?)(V) = / ap. Continuity, closure, maximum value, minimum

 value and convergence properties of T are studied.

 1. Introduction. Suppose that U is a set, F is a field of subsets of F, r(F) is the set of

 all functions from F into exp(R), rB(F) is the set of all elements of r(F) with bounded range

 union, A(R)(F) is the set of all functions from F into R that are finitely additive, AB(R)(F) is

 the set of all bounded elements of A(R)(F), and A(RXF)"'' is the set of all nonnegative -

 valued elements of A(R)(F); A(R)(F)+ Ç AB(R)(F) and shall be denoted by AB(R)(F)+. For

 each of ^ and eac^ 'n A(R)(F) with (2 - (ļ 'n AB(RXF)"'", we shall let [Cļ^l denote

 {p . p m A(R)(F), each of ~ P an<^ P~(' in AB(R)(F)"*"}.

 We shall now suppose for the remainder of this paper that each of ^ and ^ i3 ¡n

 A(RXF), ^2 ~ Čj i® AB(R)(F)"'", a is in rB(F), M = sup{ |x J: x in range union of a}, and

 for i = 1,2, the integral (section 2)
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 J 0(1)^1)

 exists.

 Theorem 3.1 (section 3). If p is in i ¿ then / o(I)/j(I) exists. i ¿ y

 Now let T denote

 (see section 2 for the notion of integral function). In this paper we investigate continuity,

 representation, closure and convergence properties of T. The following theorem (section 3)

 implies that T is continuous with respect to variation norm.

 Theorem 3.2. If each of p j and p ^ is in ^en eac^ P' ~~ P<2 anc'

 T(řl)-T(ř2) is in AB(ÍXF) and M/|Pl -^1 - J|T(Pl) -T(^)| ■ in AB(R)(F)+

 Now, note that certain of the properties of T given in the theorems below (see section

 4) are analogous to "standard" properties of real - valued functions continuous on a number

 interval.

 Theorem 4.1. If each of ^ and r ^ is in ^en there is and (ņ eac^ in
 suc^ ^at

 JmaxfT^XT^)} = /a^ and /miniT^/T^)} = ja <2-

 Theorem 4.2. If p is in ^en eac^

 /raax{T({1),T(ť2)} -Hj>) and T(rf - JminfTUjļ.T^)}

 is in AB(R)(F)+.

 We have the following immediate corollary to Theorems 4.1 and 4.2; the reader can
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 easily supply its proof:

 Corollary 4.1. There is ^ and ^ eac^ suc^ ^at ^ ? *8 *n 1^1»^' ^en
 each of

 T(Cļ) - Tip) and T(/>) - T( C2) is in AB(K)(F)+.

 The next theorem is a result that deals with closest and farthest approximations.

 Theorem 4.3. Suppose that A is in A(R)(F) and for some, and hence ail (see section

 3) elements p of ^ - T(aO 's 'n AB(R)(F). Then there is p^ and p^ each in

 such that if p is in ^en eac^ of / 1 A - T(/?) ļ - J ļ A - T(p^) | and

 / 1 A - T^) I - / 1 A - TOO I is in AB(«)(F)+.

 Theorem 4.4 (intermediate value theorem). Suppose that A is in A(R)(F), each of i/j

 and ^ is in eac^ °f ^ ~ T(jjļ) and T()^) - A is in AB(R)(F)^*- Then there is p

 in Uļī^l such 4^at f is in [Jininjrçj.ij^îjmaxfijpj^}] and A = T(/i).

 Corollary 4.4. (stronger intermediate value theorem). Suppose that A is in A(R)(F)

 and for each V in F there is rj ^ and each in suc^ ^at

 T(^)(V)<A(V)<T(^)(V).
 Then there is ( in such ^at ^ = T(0*

 Theorem 4.5. Suppose that each of and is in an<^ T(fj^) - T(j^) 's 'n

 ABiRXF)"*". Then there is p^ and pņ each in such that ^ - /*j is in AB(RXF)"'"
 and

 T ([/ip^]) = [T(^);T(^2)].
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 We end the paper with the following Helly - type integral convergence theorem:

 00

 Theorem 4.6. Suppose that {>jļ}ļ_ļ is a sequence of elements of Uļī^l ( is a

 function from F into R such that for each V in F,

 '(V) -» C(V) as n -» oo.

 Then ( is in [^;^] and

 T(>?n)(U)-T(0(U)asn-œ.

 2. Preliminary theorems and definitions.

 We adopt the convention that if S is a function from F into R, then S shall be

 regarded as "equivalent" to the following element of r(F);

 {(V.MV)» : V in F).

 If V is in F, then the statement that D is a subdivision of V means that D is a finite

 collection of mutually exclusive sets of F with union V. The statement that H is a

 refinement of E, denoted by H « E, means that for some W in F, each of H and E is a

 subdivison of W and each element of H is a subset of some element of E.

 We shall, unless otherwise specified, use the following notational device: Suppose

 that each of P and Q is a collection of sets such that each set of P is a subset of some set of

 Q. Then, if I is in Q and includes some element of P, we shall let

 P(I)={ J: Jin P, J Ç I}.

 If S is a set, 7 is a function with domain S and range a collection of sets and T Ç S,

 then the statement that b is a 7 - function on T means that b is a function with domain T

 such that if X is in T, then b(x) is in t(x).

 Suppose that 7 is in r(F) and V is in F. The statement that K is an integral of 7 on

 V means that K is in R and if 0 < c, then there is D << {V} such that if E << D and b is a
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 7 - function on E, then

 |K - E b(I)| < c. (2.1)
 E

 There is no more than one K' such that K' is an integral of 7 on V; if, then, K is an integral

 of 7 on V, then K is unique and shall be denoted, variously, by

 / 7(1), /v7> etc> Í2-2)
 depending upon circumstances. We shall use the phrase "J 7(1) exists" to mean that there

 is K such that K is an integral of 7 on V. Now, if / 7 exists, then for each W in F, Í 7
 U W

 exists and

 {(W, J 7) : W in F}, (2.3)
 W

 which we shall denote by /7, is in A(R)(F).

 Again, suppose that 7 is in r(F). If V is in F, then the statement that 7 is E -

 bounded on V with respect to D means that D << {U} and

 {S b( J) : E « {V}, b a 7 - function on E, E C H for some H << D}
 E

 (2.4)

 is bounded. We have the following results:

 Theorem 2.A.1 (see [4]). If 7 is in r(F) and is S - bounded on U with respect to D,

 then the following statements are true:

 1) If V is in F, then 7 is E - bounded on V with respect to D.

 2) Suppose that Lp(7) and Gjj(7) denote the functions with domain F given, for

 each I in F as, respectively, the sup and inf of

 {E b( J) : E « {I}, b a 7 - function on E, E C H for some H << D}.
 E

 Then, if V is in F, « {V}, H2 << {V} and for i = 1,2, M << Hj, then

 E GD(7)(I)<£ Gd(7)(J')<E Ld(7)(J')<E Ld(7)(I). (2.A.1.1)
 Hj M M H2
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 3) If V is in F, then the following existence and inequality holds:

 Jvgd(7) * J ldM (2.A.1.2)
 4) If V is in F, then Í 7 exists iff

 V

 J gd(t) = J LD<7)' <2AU)
 in which case

 ÍvGd't) -Jy7 = /vlD(t)- (2.A.1.4)
 5) If V is in F, Q is Lp or G^, E « {V} and 0 < c, then there is H « E and a 7 -

 function a on H such that

 s |Q(T)(J)-a(J)l<c. (2.A.1.5)
 H

 We now state Kolmogoroff's differential equivalence theorem.

 Theorem 2.K.1 (see [4,5]). If 7 is in r(F) and / 7 exists, then for each I in F, J 7

 exists and the following existence and equality holds:

 i liaWłl-O. (2.K.1.1)

 i. e., if 0 < c, then there is D << {U} such that if E << D and a is a 7 - function on E,

 then

 X,aú)-/7l<c, (2.K.1.2)
 E I

 so that if H Ç E and b is a 7 - function on H, then

 s |b(I)-/7l<c. (2.K.1.3)
 H I

 We refer the reader, again to [4], for certain of the more immediate consequences of

 Theorem 2.K.1; these consequences treat conditions under which, given an element 70i r(F)

 such that / 7 exists, / 7 and 7(1) can be interchanged. Throughout this paper there will be

 portions of arguments in which assertions of integral existence or integral equivalence follow
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 from Theorem 2.K.1 and these consequences. In such cases we shall feel free to simply make

 these assertions and leave the details to the reader.

 Now, before we continue with some more specialized matters, we remark that we

 shall assert and use, without preamble, certain simple inequality and linearity existence and

 equivalence properties of set function integrals.

 Theorem 2.A.2 (see [4]). Suppose that each of £ and ņ is in A(R)(F). Then the

 following statements are true:

 1) If V is in F, D << {V} and for i = 1,2, Ej << D, then

 S min{£(J),»j(J)} < £ min{£(I),ņ(I)} < £ max{£(I),jj(I)} < £ max{Č(J),ņ(J)}
 Eļ D D E2

 (2.A.2.1)

 2) If V is in F, then the following two statements are equivalent:

 a) {£ min{£(J),ij(J)} : H << {V}} is bounded below.
 H

 b) / min {£,»;} exists.
 V

 3) If V is in F, then the following two statements are equivalent:

 a) {£ max{£( J),»^J)} : H << {V}} is bounded above.
 H

 b) J max{£}T)} exists.

 Theorem 2.1. Suppose that each of ( and ņ is in A(R)(F). Then the following

 statements are equivalent:

 1) There is A in A(R)(F) such that each of ( - A and r¡ - A is in AB(R)(F).

 2) / max{£,rç} exists.

 3) / min{£,ty} exists.

 4) č - tļ is in AB(R)(F).
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 Proof: We first show that 1) implies 2). Suppose that 1) is true. Suppose that D

 « {U}. Then

 E max{«I),ą(I)} = E max{tfl) - A(I) + A(I),ņ(I) - A(I) + A(I)} <
 D D

 ^ I í - A I + A(I) , J | , - A | + A(I)> = E [max{ J | f - A | J | , - A | } + A(I)] =

 (S mM{J |ť-A|JJ,-A|}] + A(U)<[E J |ť-A| + M,-A|] + A(U) =
 J U-A| + J U-A| + A(U). (2.1.1)

 It therefore follows from Theorem 2. A. 2 that J max{£,»;} exists. Therefore 1) implies 2).

 We can use the fact that 1) implies 2) to show that 1) implies 3). Suppose that 1) is

 true. If p is £ or rç, then / 'p - A | = J 1 -p

 some elementary observations, we have the following existence and equality:

 J^max{- 7?} = J^-min{&ņ} (2.1.2)
 so that by linearity, / min{^,ņ} exists. Therefore 1) implies 3).

 Now, suppose that 2) is true. Then each of /max{£,rç} - £ and Jmax{£,rç} - ņ is in

 AB(R)(F)+ Ç AB(R)(F). Therefore 2) implies 1).

 If 3) is true, then each of £ - Jmin{£,»;} and tj - Jmin{£,ņ} is in AB(R)(F)"'' Ç

 AB(R)(F). Therefore 3) implies 1).

 Therefore, so far, 1), 2) and 3) are equivalent.

 The fact that 4) implies 1) is immediate, since ņ - t¡ = 0. If 1) is true, then £ - ņ =

 (£ - A) + (A - rj), which is in AB(R)(F). Therefore 1) implies 4).

 Therefore, 1), 2), 3) and 4) are equivalent.

 The next theorem, which we use in section 4, partly involves existence assertions that

 follow from Theorem 2.1.

 Theorem 2.2. Suppose that X Ç A(R)(F), A is in A(R)(F) and for each p in X, A - p is

 in AB(R)(F)"'" (p - A is in AB(R)(F)^"), so that by Theorem 2.1, for each p ^ and p^ in X,
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 each of / maxfpj,/^} exists. Suppose that if each of pj and />2 is 'n X,

 then

 Jmax{/?ļ,/?2} is in X (/min {pļtpņ} is in X). Suppose that p, is the function with domain F

 given by

 M1) = sup{/<I) : p in X} (/<I) = inf{p(I) : p in X}) (2.2.1)

 Then p is in A(R)(F), X - p is in AB(R)(F)"*" (p - X is in AB(R)(F)*), ft - p is in AB(R)(F)

 for all p in X, and, if 0 < c, then there is ( in X such that

 J I/* ~ ' Cj < c. (2.2.2)

 Indication of proof: The argument is so similar to previous ones (see [2]), albeit in

 AB(R)(F), that we need only make a few salient remarks and leave the rest of the routine

 details to the reader. We treat the first alternative. The second follows similarly.

 Suppose that V and W are mutually exclusive sets of F and 0 < c. There are p j,

 and in X such that

 0 < MV)-Pļ(V) < c/3, 0 < KW) -p2(W) < c/3 and 0 < M VUW) -/>3(VUW) < c/3.

 (2.2.3)

 By Theorem 2.1, our previous differential equivalence replacement remarks and our

 hypothesis, we have the following existence, equivalence and inclusion remark:

 X contains Jmax{pj,max{p2>/>3}} = *n A(R)(F).
 (2.2.4)

 Let S = Jmax{/>|,/>2)/>ß}- Clearly, if Y is V, W or VUW and p* is p-^py or P31 respectively,

 then

 0 < KY) - i(Y) < ¿Y) -/>'( Y) < c/3, (2.2.5)

 so that

 |^V) + /j(W) - /<VUW) I = {¿V) + /<W) - ¿(V) - S( W) + á(VUW) - /i(VUW) I <

 |#<V)-*V)| + 'KW)-KW) ' + I *VUW)- fi VUW) I < 3c/3 = c.

 (2.2.6)
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 Therefore ft is in A(R)(F); the remainder of the inequality and inclusion assertions

 follow very easily.

 We end this section by stating a Bochner - Radon - Nikodym type theorem that we

 shall use in section 3.

 Theorem 2.B.1 (see [3]). If a is in rB(P), ft is in AB(R)(F)"*", / aft exists and 0 < c,

 then there is D << {U} such that if H « E « D, a is an a - function on E and b is an a -

 function on H, then

 EE |a(I) - b(J)|/i(J) < c. (2.B.1.1)
 E H(I)

 3. Some existence, continuity, inclusion and uniformity theorems.

 We begin this section by stating a previous integral existence theorem.

 Theorem 3.A.1 [1,4]. If 7 is in rB(F), each of ft} tj and ft - r¡ is in AB(R)(F)"'" and

 j 1ft exists, then J 7 rj exists.

 We now prove Theorems 3.1 and 3.2, as stated in the introduction.

 Proof of Theorem 3.1: Clearly J - čļ) exists by linearity, and each of ^ - £ļ>

 p - and ^2 ~ ~~ (P ~ Ćj) *n AB(R)(F)"'". Therefore, by Theorem 3.A.1, J o(p -

 exists, so that by linearity, / ap exists.

 Proof of Theorem 3.2: p j - p^ ^ in A(R)(F). If V is in F, then
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 |Pj(V) - Í»2(V) I = niax^V),^ V)} - min^f V),?2(V)( < (2(V) - ťj(V) < Í2(U) -

 ÍX(U).

 (3.2.1)

 Therefore is in AB(R)(F).

 If I is in F, then, clearly,

 m^KO-Tí^Xi)! = ÍM/jW -^l-
 (3.2.2)

 This implies that T(p^) - T^) is in AB(R)(F) and that M/ 'p^ - p^' - J |T(pj) - T (p^ | is

 in AB(R)(F)+.

 The next theorem involves £ - boundedness and the functionals L and G, as defined

 and discussed in section 2. In the next section we shall put this theorem to use, employing

 the functional L; the functional G would serve as well.

 Theorem 3.3. If r is a function from F into [0; 1] and each of ^ and ^ is in [čļī^L

 then

 rVi + (1 - t)T2 (3.3.1)
 is £ - bounded on U with respect to {U} and each of

 JL (tiìx + (1 - t)t¡2) and JGiri^ + (1 - r )ņ2) (3.3.2)

 is in [/min{ņļ,ņ2}»/max{,/ļ)72^ an<* therefore, cleanly in

 Proof: Let (ļ = Jminfijj,^} and If V is in F and D « {V}
 (and therefore a subset of a refinement of {U}), then

 <i(y) = 2^(1) = SMtKfi) + (1 - TWKjÍDI < + - TO))^)] <

 SdWI)(2(I) + (1 - KI))(2(I)I = s c2(l) = <2<V). (3.3.3)
 It therefore follows that rņj + (1 - is £ - bounded on U with respect to {U}

 (letting U ss V), and for each V in F,
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 Ci<V) < G(r,, + (1 - r),2)(V) < L(r,j + U - r)^)(V) < <2<V),

 (3.3.4)

 so that for each W in P,

 ci(w) = 'wci - 'wG(r,?i + (1 " T)n^ - 'wL(r,?i + (1 " t)v^ - 'wc2 = ^(W)'

 (3.3.5)

 Therefore each of JL (rņ^ + (1 - and JG(rjjj + (1 - t)ī)0) is in

 [Jminl^.^JJmaxi^,»^}] and therefore in [čļī^J-

 We end this section with a uniformity theorem that we shall use in proving Theorem

 4.6.

 Theorem 3.4. If 0 < c, then there is D << {U} such that if E « D, a is an or -

 function on B and p is in ^en

 2 |a(IV(I)- J ap' < c.
 E I

 Proof: By Theorem 2.B.1 and differential equivalence there is D << {U} such that if

 E << D, a is an a - function on E, H « E and b is an a - function on H, then

 X £ |a(I) - b( J) 1 1 ť2( J) - <ļ( J) I < c/4 (3.4.1)
 E H(I)

 and

 S |a(I)ť1(I) 1 -E MJKjd)! 1 <c/4. (3.4.2) E 1 H(I) 1
 So suppose that E « D, a is an a - function on E and p is in ^ easily follows that

 there is H « E and an a- function b on H such that if I is in E, then

 I/ ap-l b( JV( J) I < c/4N, (3.4.3)
 I H(I)

 where N is the number of elements of E, so that

 S I Ja/>-E b(J)/<J)| <c/4 (3.4.4)
 E I H(I)

 Therefore
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 £ |a(lV(I)-J<v|=S WIJWD-MW + adK.m-ï , MJ)f.(J)+ï 1 E IE H(I) , 1 H(I) 1
 -S KJWJ) + E W JM J) - / ap' =
 H(l) H(I) I

 £ |(S »(DM J) - (,(J)) 1 -S ; M JXí(J) - fjU))] 1 + MDfļd) 1 -S , KJ)iļ(J)] 1 + E H(I) 1 H(I) ; 1 1 H(I) , 1
 (£ MJMJ)-/«rih
 H(I) I

 E S |a(I) - b(J)| |/t< J) - ^ļ(J) 1 I + E |a(I)^(I)-S 1 WJ^J)! 1 + E H(I) 1 E 1 H(I) 1
 S |E b(J)/j(J) - / ap' <
 E H(I) I

 E S |a<I)-b(J)|(^(J)-í1(J)) + c/4 + c/4<3c/4<c.
 E H(I)

 (3.4.5)

 4. Closure, maximum value, minimum value and convergence properties of T.

 Proof of Theorem 4.1: There is a function /Jfrom F into {0,1} such that if I is in F,

 then

 «i) = { 1 " 'i 0,1 ~ V1*2 <411)
 0 otherwise

 Note that if I is in F, then

 + i1 - = ma*{J oij^/ ai^}. (4.1.2)

 By Theorem 3.3, ßify + (1 - is E - bounded on U with respect to {U} and

 JL (ßv2 + (1 - ß)Vi) (4.1.3)
 is in so *bat it follows, by Theorem 3.1 and differential equivalence, that for each V

 in Ft the following existence and equality holds:

 iy[<*iUßV2 + (1 - ß)v{)] = iyWßfy + i1 - čhļ)]- (4-1.4)
 Now, suppose that V is in F and 0 < c. There is D « {V} such that if H « D,
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 then

 ~ /^maxfari/^fCrT^} ļ < c/8 (4.1.5)

 and if a is an a - function on H and X is either tj^, ņ ^ or Lißify + (1 - #)»7ļ), then

 E |a(J)X(I) - / aX| < c/8. (4.1.6)
 H J

 By statement 5) of Theorem 2.A.1 there is H « D such that

 E IK/Jķ + (1 + (1 -«J)),j(J))| < c/[8(l + M)] H

 (4.1.7)

 Suppose that b is an a - function on H. Leaving some minor inequality observations to the

 reader, we see that

 UJ aL(0l^ + (1 -fliJjMj -1/ <

 Ulj-S b(J)L(i%2 + (l-«>,1)(J)|+ |S b(J)L(^ + (l-ffl,jXJ)-
 H H

 E MJMÂJJ^JJ + íi-ÃJJhjlJ))! + |£ KJ)(ÄJ)^(J) + (1-«J))^(J))-
 H H

 S max{J at)vi a^}) + |E max{J or^J ar»J2}-[]2| <
 H J J H J J

 c/8 + ï M|L<^ + (l-«,1XJ)-(/S(J)ņ2(J) + (l-/3(J))v1(J))| + |E KJKĀJļ^J) +
 H H

 (l-«J)),j(J))-S (flJ)J rn^ + ņ-mi «łj)l +c/8<
 H J J

 c/8 + Mc/|8(l + M)] + S («J)|b<J)^(J)-/ ai^| +(l-«J))|KJ),ļ(J)-/ 0,11] +
 H J J

 c/8 <

 c/8 + c/8 + S IKJ^J) - J + S |b(J)^(J) - J arj j | + c/8 < c/4 + c/8 + c/8 +
 H J H J

 c/8 < c.

 (4.1.8)

 It therefore follows, once again with reference to differential equivalence, that

 fyl<*fi(0V 2 + Í1 ~ = f <*4012 + Í1 ~ fill) = Jvmax{°í'?i»a!'?2^ =

 /^maxf/a^Ja^}.
 (4.1.9)
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 In a similax fashion it follows that there is an element suc^

 ja C2 = Jmin {/a^Jan^}. (4.1.10)

 Proof of Theorem 4.2: Suppose that p is in If I is in F, then

 iļ(i) < d i) < ^1)' í4-2-1)
 so that if X is in a(I), then either

 *^(I) < */>0) < *Č2(I) or ^ - ^l^1)» (4.2.2)
 so that

 minfx^IXx^I)} < *¿>(1) < maxfx^iO.x^I)}. (4.2.3)

 This clearly implies that each of /max{a£j,a£2} - fop and fap - /minfa^a^} *8 in

 AB(R)(F)+.

 Proof of Theorem 4.3: The proof of Theorem 4.3 follows somewhat the pattern of

 that of Theorem 4.1. We first do the "minimal" extremal part.

 By Theorem 4.1 there is and (2, each *n Kj>Č2]i suc^

 JaCj = /max{a^,ai2} and fa(2 = /minf»^,«^}. (4.3.1)
 There is a function r from F into [0;1] such that if I is in F, then

 I A(I) - MI) J aCj + (1 - i<I))/ ay I = inf{ | X(l) - [t J + (1 - 1) jaty | : 0 < t < 1}.

 (4.3.2)

 Let L = L(r(ļ + (1 - r)(2).

 Again, by Theorem 3.3, JL is in 80 f°r eac^ V in F, by Theorem 3.1 and

 differential equivalence, we have the following existence and equality:

 J^aJL = J^aL. (4.3.3)
 Now, suppose that p is in [fyy V 's Suppose that 0 < c. There is D «

 {V} such that if H « D, then

 0 < J I A - JaL| - S J A( J) - J arL I < c/8, (4.3.4)
 V H J

 and if b is an a - function on H and X is L, or (2, then
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 E I) aX - b(J)X( J) ¡ < c/8. (4.3.5)
 H J

 By Theorem 2.A.1, statement 5), there is H << D such that

 S |L(J) -(HJ)iļ(J) + (1 - HJ)K2(J))I < c/[8(l + M)]. (4.3.6)
 H

 Now, by Theorem 4.2, for each J in H,

 / «Co < / op < / aL, 1 (4.3.7) J J J 1

 so that there is t(J) in [0;1] such that

 J ap = t( J)J a(, 1 + (1 - t(J))/ aC2. (4.3.8) J J 1 J
 There is an a - (unction b on H. It follows that

 ) I A - jap' > £ I A(J) - / Qř| = £ I A( J) - (t( J)/ + (1 - t(J))/ a(ý | >
 V H J H J J

 S I A( J) - (r( J) / oCj + (1-T<J))/ a(2) I = E ļ A( J) - / ah + j aL-b(J)L(J) +
 H J J H J J

 b(j)L(j) -bCOWKjtJ) + (l - t<J))C2(J)) + KJXHJXjťJ) + (1 - »(J))^)) -

 (HJ)i «Cl + (1 - ^J))/ «<2)t > S |A(J)-/aL|-ï I/ oL-KJ)m)| -
 J J H J H J

 E |b(J)| |L(J) -(TļJJCļiJ) + (1 - t<J))C2(J))1 -E (HfllKJKļiJ)-/ «Cxl +
 H H J

 (l-7<J))|b(JK2(J)-/ a(2|)>/ I Af J) - / oL|-c/8-Mc/|8(l + M)]-c/8-c/8>
 J V J

 J^|A - jaL ' - 4c/8. (4.3.9)
 Therefore

 / |A-/«,>| > J |A-/aL| = J |A-J(aJL)|. (4.3.10)

 Now, the "maximal" extremal portion of this proof is, in certain respects, quite

 similar to the preceding work. We indicate modifications and leave routine details to the

 reader, (j and (2 are 218 >n the "minimal" extremal part.

 If p is in V is in F, then

 I A(V) - J op| < / J A - lap' < U J J - Jaq llj + / I Mj - < [ ]j + M | q - p'

 illj + Mf^Uļ-^U)). (4.3.11)
 Note that it follows from Theorem 3.3 that if 0 < t < 1, then t^ + (1 - t)(2 is in Uļ:Č2]-
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 Thus there is a function w from F into [0;1] such that if I is in F, then

 |A(I)-(«(I)/ oCx + (1 -4I))J aCpi = supdAOMtJ^! + (1 - 1)/ «Cg) I : 0 < t < 1}
 (4.3.12)

 Let L = L( u-'Cļ + (1 -

 For w in place of r we state inequalities and equations (4.3.3) through (4.3.8),

 immediately preceding the u counterpart of (4.3.4) with the following:

 0<J I A - Jay>| - £ I A( J) - J ap' < c/8 (4.3.13)
 V H J

 Now, the a/ counterpart of inequality (4.3.9) begins as follows:

 J I A - Japļ < c/8 + S |A(J) - / ap' = c/8 + £ |A(J) -(t(J)/ a(i 1 + (1 -t(J))J aCo)l V H J H J 1 J

 < c/8 + E I A( J) - (u^J)J a(ļ + (1 - J))/ <*(2) I -
 H J J

 but with "<" instead of ">" and "+" between the sums instead of " and culminates with

 "</ I A - /aLļ + 5c/8".

 (4.3.14)

 Therefore

 f < Í |A -/orL) =MA-j(afL)|. (4.3.15)

 Proof of Theorem 4.4: There is a function r from F into [0;1] such that if I is in F,

 then

 A(I) = tO)/^ + (1 - i(I))| «%. (4.4.1)
 Much as before, let L = L(tj^ + (1 - r)^), so that by Theorem 3.3, /L is in *n

 particular in [/minjf^^jjmax^;)^}], so that by Theorem 3.1 and differential

 equivalence, the following existence and equality holds:

 J^(aJL) = íyáL. (4.4.2)
 Suppose that V is in F and 0 < c. There is D « {U} such that if H « D, b is an or

 - function H and X is i/j, of L, then
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 E |/ aX - b( J)X( J) I < c/8. (4.4.3)
 H J

 By statement 5) of Theorem 2.A.1, there is H << D such that

 £ |L(J)-(t(J),1(J)+(1-I(J))^(J)|<C/[8(1 + M)]. (4.4.4)
 H

 Now,

 |A(V)-i oL|= |£ KJ)/ ay. ' + (X - r(J))ļ avj- V H J ' J

 £ WJ)KJ)ņi(J) + (1 - r(J))l>U)l2(J)] + Ï MflMfl'īļiJ) + (1 - r<J))^(J)] - H H

 E b(J)L(J) + E b(J)L(J) - / aL' <
 H H V

 E MJ)|J -b(J)7l(J)| + (1 - T<J)) |J aii2-b(J)^(J)| +
 H J J

 £ IMfllKfl^JJ + d-TiJļļ^Jļ-UJil+E |b(J)L(J) - J <*L| <
 H H J

 c/8 + c/8 + Mc/[8(1 + M)] + c/8 < c/2 < c. (4.4.5)

 Therefore

 A(V) = J^aL = yaJL). (4.4.6)

 Proof of Corollary 4.4; It clearly follows from the hypothesis, Theorem 4.2 and

 Theorem 4.1 that the hypothesis of Theorem 4.4 is satisfied, and therefore the conclusion.

 Proof of Theorem 4.5: Suppose that each of p j and />2 's *n [čji^J an<^ ^or i = 1,2,

 / or/?- is in s^ow that if P is max or min, then 'dP{pyp^ is in

 [JarçpJa^]. Suppose that V is in F and 0 < c. There is D << {V} such that if E Ç H «

 D, a is an a - function on E and i = 1,2, then

 E 1*0)^(1)-/ <xp'' <c/3and£ la^max^I),/^!)} - / amax^,^} | < c/3
 EIE I

 (4.5.1)

 Let Dļ = {I : I in D, Pq(1) < /?ļ(I)} and D2 = D - D^. There is an o - function b on D.

 Now,
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 V1 = sd/.°" + y Ia" - V1 + V<a'211 ' V-"'2 + V* =
 V*2

 (4.5.2)

 and

 IMj-J amaxO-j,^} | = |E (¡ <VX~ bfl)řl(l)) + S (/ ap2 - l(l)p2(i)) +
 V Dj I D2 I

 I bCtymax^I),/^!)} + bíljmax^l),^!)} - /^am ax{pļtp2} ' <
 1 2

 SD ' ' iaf>1 ~ ' + Sd ' Kap2 ~ I + - 1 2

 j c»max{/)ļ,/>2} | < c/3 + c/3 + c/3 = c.

 (4.5.3)

 Therefore

 -c < J^amax{pvp2} - [ ]ļ < c, (4.5.4)
 so that adding appropriate terms in (4.5.2), we have

 fyatll - c < J^<Hnax{pp/>2} < J^arl2 + c- (4.5.5)
 Therefore

 $ J - fvaņ2' (4.5.6)
 Therefore each of jarj^ - Jamax-fpj,/^} /omaxfp^,^} - far¡i is in AB(RXF)"'",

 and, in a similar fashion, each of jaņ 2 - J amin{ppp2} and Jaininf/jj,/^} - /a^j is in

 AB(R)(F)+.

 It therefore follows from Theorem 2.2 that there is /ij and /^, each in [^;^]» such

 that /<2 - /iļ is in AB(R)(F)"'",

 {p ' P i" íaP in ;/ał?2]}i Ç I
 (4.5.7)

 and, if 0 < c, then there is and (2. each in { }j, such that if i = 1,2, then

 i |Ą - Ci I = |Ą(U) - Cj(U) I < c/(l + M), (4.5.8)
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 so that, by Theorem 3.2,

 / l/o^-Kil <M/ l^-Cļl <Mc/(l + M)<c. (4.5.9)

 It therefore follows routinely that if i = 1,2, then Ja/i j is in so that fp is in { }^.

 Now, suppose that p is in ^ I is in F and a(I) is in o(I), then either

 miniail^I), 3(1)^(1)} < *(1)^(1) < a(I)/<I) < a(I)^(I) <
 or

 minia^O), a(I)/^(I)} < a(I)/y(I) < a(I)/<I) < «(1)^(1) < max^I^I MI^I)}.
 (4.5.10)

 It therefore follows that if V is in F, then

 iy<*Vl < J min Ja^Jayij} < < J^maxJa/ij, Ja/^} <

 (4.5.11)

 so that p is in { }j.

 Therefore [/^;/^] Ç { }ļ, so that

 'Mi^] -{P ' P in laP in (4.5.12)
 so that

 - UarIi>íaT}ý- (4.5.13)
 Now, suppose that A is in [fotrj^jaņ^ļ. By Theorem 4.4 there is an element ( of

 [Čļ!^ such that

 A = fa( (4.5.14)

 Since ja( is in [/ ar^l» ^ f°M°ws by (4.5.12) that ( is in [^;^]. Therefore

 Uarj^ja^] Ç T^j/iJ). (4.5.15)
 Therefore

 Td^ļi/^]) = U°"1i>í<*vý- (4.5.16)

 We end this paper by proving Theorem 4.6, as stated in the introduction.

 Proof of Theorem 4.6: The argument, as is usually the case for this type of theorem,
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 uses a uniformity of integrability condition. In this case, Theorem 3.4 gives such a condition

 and our demonstration is brief.

 First, showing that ( is in routine and we leave the details to the

 reader.

 Now, suppose that 0 < c. By Theorem 3.4, there is D « {U} such that if E « D,

 a is an a - function on B and p is in [^;^]* ^en

 IP «<IMI)]-TOO<U)I WWD - J <y| < c/3. (4.6.1)
 E E I

 There is an a - function b in D. There is a positive integer N such that if m is a positive

 integer > N, then

 s I«1) -")„,(!) I < =/[3(1 + M)], (4.6.2)
 so that

 |T(0(U)-T(V)(U)| m < |T«)(U)-£ b(I)C(I)| + |S b(I)<(I)-S b(I)ņ (I) ļ + m D DD

 IS b(I) vjl) - T(V)(U) I < c/3 + I |b(I) 1 1 C(D - 9m(I)| + c/3 < c/3 + Mc/[3(1 + M)]

 + c/3 < c.

 (4.6.3)

 Therefore

 T(v)(U)-T(C)(U)asn^«. (4.6.4)
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