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INTERVALS OF FINITELY ADDITIVE SET FUNCTIONS

Abstract. Suppose that U is a set, F is a field of subsets of U, A(R)(F) is the set of all
real — valued finitely additive functions defined on F, A(R)(F)¥ is the set of all nonnegative —
valued elements of A(R)(F), each of §,; and §, is in A(R)(F), §y— & isin A(R)(F)+, aisa
function with domain F and range a collection of subsets of R with bounded union, and for i

= 1,2, the integral | aEi, as a refinement — wise limit of sums, exists. Let T denote the
U

transformation with domain {p: p in A(R)(F), each of §y—pandp— € in A(R)(F)+} and

range C A(R)(F) given by T(p)(V) = | Vap. Continuity, closure, maximum value, minimum

value and convergence properties of T are studied.

1. Introduction. Suppose that U is a set, F is a field of subsets of F, r(F) is the set of
all functions from F into exp(R), rB(F) is the set of all elements of r(F) with bounded range
union, A(R)(F) is the set of all functions from F into R that are finitely additive, AB(R)(F) is
the set of all bounded elements of A(R)(F), and A(R)(F)" is the set of all nonnegative —
valued elements of A(R)(F); A(R)(F)* ¢ AB(R)(F) and shall be denoted by AB(RY(F)¥. For
each of (; and (,, each in A(R)(F) with (, — ¢, in AB(R)(F)+, we shall let [(1;(2] denote

{p: pin A(R)(F), each of (, — pand p— ( in AB(R)(F)¥}.

We shall now suppose for the remainder of this paper that each of El and £2 is in
AR)(F), & - § isin AB(R)(F)+, aisin rB(F), M = sup{|x|: x in range union of a}, and
for i = 1,2, the integral (section 2)
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exists.
Theorem 3.1 (section 3). If pisin [{1;62], then jUa(I)p(I) exists.

Now let T denote
{(pJap): pin [§};&,]}
(see section 2 for the notion of integral function). In this paper we investigate continuity,
representation, closure and convergence properties of T. The following theorem (section 3)

implies that T is continuous with respect to variation norm.

Theorem 3.2. If each of p; and p, is in [61;62], then each of Py =Py and
Tlpy) = Tlpg)isin AB(RXF) and M oy — py| ~ J (o) ~T(py)] is in AB(RYE)*.

Now, note that certain of the properties of T given in the theorems below (see section
4) are analogous to "standard" properties of real — valued functions continuous on a number

interval.

Theorem 4.1. If each of 5, and 7, is in [£1;£2], then there is G and (o, each in
[£1:€5) such that
Imax{T(ql),T(QQ)} = Ia(l and fmin{T( ’71)’T(772)} = 10(2-

Theorem 4.2. If pisin [El;fg], then each of
fmax{T(£,)T(£)} —T(p) and T(p)  fmin{T(;)T(£,)}

is in AB(R)(F)¥.

We have the following immediate corollary to Theorems 4.1 and 4.2; the reader can
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easily supply its proof:

Corollary 4.1. There is G and (,, each in [El;£2], such that if pis in [£l;£2], then

each of

T(¢;) = T(p) and T(p) — T((y) is in ABR)(F)™.
The next theorem is a result that deals with closest and farthest approximations.

Theorem 4.3. Suppose that X is in A(R)(F) and for some, and hence all (see section
3) elements p of [£;;65], A — T(p) is in AB(R)(F). Then there is y; and po, each in [£;;€,],
such that if pis in [fl;fz], then each of [|A —T(p)]| =[] A —T(pl)l and
JIX=T(u)| = S| =T(p)| is in ABR)(F)*.

Theorem 4.4 (intermediate value theorem). Suppose that A is in A(R)(F), each of n
and 7, is in [fl;EQ] and each of A —T(y,) and T(r)z) —Aisin AB(R)(F)+. Then there is p
in [£;;€,] such that pis in [jmin{ql,q?};jma.x{ql,rb}] and A = T(p).

Corollary 4.4. (stronger intermediate value theorem). Suppose that A is in A(R)(F)
and for each V in F there is 7, and 7, each in [£l;£2], such that

7, (V) € A(V) < T(m V).
Then there is ( in [£1;£2] such that A = T(().

Theorem 4.5. Suppose that each of 7y and 17, is in [51;52] and T(”Q) - TY( 1;1) is in
AB(R)(F)+. Then there is py and po, each in [{1;62], such that py —p, is in AB(R)(F)+
and

T([pyimg)) = [T(my ) T(my))-
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We end the paper with the following Helly — type integral convergence theorem:
Theorem 4.6. Suppose that {”i}?zl is a sequence of elements of [El;£2] and (isa
function from F into R such that for each V in F,
(V)= ((V)asn -
Then (is in [61;62] and
T(7,)(U) = T(((U) as 1 - o

2. Preliminary theorems and definitions.

We adopt the convention that if § is a function from F into R, then é shall be

regarded as "'equivalent" to the following element of r(F);
{(V.{&V)}): Vin F}.

If Vis in F, then the statement that D is a subdivision of V means that D is a finite
collection of mutually exclusive sets of F with union V. The statement that H is a
refinement of E, denoted by H << E, means that for some W in F, eachof Hand E is a
subdivison of W and each element of H is a subset of some element of E.

We shall, unless otherwise specified, use the following notational device: Suppose
that each of P and Q is a collection of sets such that each set of P is a subset of some set of
Q. Then, if I is in Q and includes some element of P, we shall let

P(I)={J:JinP, JCI}.

If S is a set, 7 is a function with domain S and range a collection of sets amd T C S,
then the statement that b is a 4 — function on T means that b is a function with domain T
such that if x is in T, then b(x) is in «x).

Suppose that yisin f(F) and V is in F. The statement that K is an integral of yon
V means that K isin Rand if 0 < c, then there is D << {V} such that f E << Dand bisa
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4 — function on E, then

IK -2 b(I)| < c. (2.1)

There is no more than one K' such that K' is an integral of y on V; if, then, K is an integral

of yon V, then K is unique and shall be denoted, variously, by
J AD, S AI) S ete,, (2.2)
\' ' \'
depending upor: circumstances. We shall use the phrase "jv')(l) exists' to mean that there

is K such that K is an integral of yon V. Now, if IU7 exists, then for each Win F, [ ¢
w

exists and
{(w,J w’r) : Win F}, (2.3)

which we shall denote by [+, is in A(R)(F).
Again, suppose that yis in r(F). If Visin F, then the statement that yis £ —
bounded on V with respect to D means that D << {U} and
{EE b(J): E << {V}, ba y—function on E, E C H for some H << D}

(2.4)

is bounded. We have the following results:

Theorem 2.A.1 (see [4]). I vis in r(F) and is £ — bounded on U with respect to D,
then the following statements are true:

1) IfVisin F, then 9is ¥ — bounded on V with respect to D.

2) Suppose that Ly() and GD( 7) denote the functions with domain F given, for

each [ in F as, respectively, the sup and inf of

{EE b(J) : E << {I}, b a y —function on E, E C H for some H << D}.

Then, if Visin F, H; << {V}, Hy << {V}and fori=1,2, M << H, then

B, oS3, O $2, I <3, L0 (2.A.11)
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3) If Visin F, then the following existence and inequality holds:
| Gp(m < Lp(m. 2.A.1.2
vD v'D ( )
4) If Visin F, then ]v'y exists iff
| Gp(7) =/ _Lp("), 2.A.1.3
v.D v D ( )
in which case
Gn(M=f v=/ Lnp(y). 2.A.1.4
f +OD f v IV D ( )
5 l{VisinF, Qis L or Gy, E << {V} and 0 <, then thereis H << Eand a y -

function a on H such that

EHIQ('r)(J) —aJ)| < (2.A.1.5)

We now state Kolmogoroff's differential equivalence theorem.

Theorem 2.K.1 (see [4,5]). If yis in r(F) and jU7 exists, then foreach I'in F, [ v
I

exists and the following existence and equality holds:
JUh(I) - II'rI =0, (2.K.1.1)

i. e, if 0 < c, then there is D << {U} such that if E << D and a is a 4 — function on E,

then
-
Yoal)-J 9] <cq (2.K.1.2)
E I |
so that if HC E and b is a 9y — function on H, then
EHlb(I) - jI7| <c. (2.K.1.3)

We refer the reader, again to [4], for certain of the more immediate consequences of
Theorem 2.K.1; these consequences treat conditions under which, given an element v of r(F)

such that jU7 exists, jl'y and 4(I) can be interchanged. Throughout this paper there will be

portions of arguments in which assertions of integral existence or integral equivalence follow
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from Theorem 2.K.1 and these consequences. In such cases we shall feel free to simply make
these assertions and leave the details to the reader.

Now, before we continue with some more specialized matters, we remark that we
shall assert and use, without preamble, certain simple inequality and linearity existence and

equivalence properties of set function integrals.

Theorem 2.A.2 (see [4]). Suppose that each of £ and nis in A(R)(F). Then the
following statements are true:
1) If Visin F, D << {V} and fori = 1,2, E; << D, then

S min{¢(J),()} <2 _min{&(I), (1)} < max{¢(1),(D)} <Z_ max{£&(J),nJ)}
B, D D E,
(2.A.2.1)

2) If Visin F, then the following two statements are equivalent:
a) {EHmin{f(J),r;(J)} : H << {V}} is bounded below.
b) jvmin{f,q} exists.

3) If Visin F, then the following two statements are equivalent:

a) {EHma.x{f(J),q(J)} : H << {V}} is bounded above.

b max{§,n} exists.
)IV {& n} exist

Theorem 2.1. Suppose that each of ¢ and pis in A(R)(F). Then the following
statements are equivalent:

1) There is A in A(R)(F) such that each of { — A and n— A is in AB(R)(F).
2) IUmax{f,r)} exists.

3) J Umin{f, n} exists.
4) € —nisin AB(R)(F).
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Proof: We first show that 1) implies 2). Suppose that 1) is true. Suppose that D
<< {U}. Then
EDmax{ﬁ(I),ﬂ(I)} = szaX{ﬁ(I) = A1) + A(T), (1) = A1) + A(D)} ¢
EDmax{IIK- Al + A(I),Jlln— A+ D} = ED[maxUllf - '\lJllfl-f\l} + AI)] =
B max{f |[{=ALf [n=A+MU)SE [ [E=A] + [ [n=2]]+ A(U) =
D [ I DI I
J =X+ |n=2Al + XU). (2.1.1)
U U
It therefore follows from Theorem 2.A.2 that ija.x{E, n} exists. Therefore 1) implies 2).
We can use the fact that 1) implies 2) to show that 1) implies 3). Suppose that 1) is

true. If pis £ or n, then [|p—A| = [|—p ——=A|, so that by the fact that 1) implies 2) and

some elementary observations, we have the following existence and equality:
I ma-x{"f,-')} = I —min{&’)} (2‘1'2)
U U
so that by linearity, ijin{f, n} exists. Therefore 1) implies 3).

Now, suppose that 2) is true. Then each of [fmax{¢, 7} — € and [max{§,n} — nis in
AB(R)(F)Y C AB(R)(F). Therefore 2) implies 1).

If 3) is true, then each of £ — fmin{£, 7} and n — fmin{¢, 7} is in AB(R)(F)* ¢
AB(R)(F). Therefore 3) implies 1).

Therefore, so far, 1), 2) and 3) are equivalent.

The fact that 4) implies 1) is immediate, since — = 0. If 1) is true, then { — p =
(€ =A) + (A — n), which is in AB(R)(F). Therefore 1) implies 4).

Therefore, 1), 2), 3) and 4) are equivalent.

The next theorem, which we use in section 4, partly involves existence assertions that

follow from Theorem 2.1.

Theorem 2.2. Suppose that X C A(R)(F), A is in A(R)(F) and for each pin X, A —p is
in AB(R)(F)+ (p—Aisin AB(R)(F)+), so that by Theorem 2.1, for each P and Py in X,
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each of / max{p;,p,} and [ min{pl,pg} exists. Suppose that if each of p; and p, is in X,
U U

then
Jmax{p;,py} is in X (fmin{p;,p,} is in X). Suppose that s is the function with domain F
given by
w(1) = sup{p(I) : pin X} (4(I) = inf{p(I) : pin X}) (2.2.1)
Then pis in A(R)(F), A —pisin AB(R)(F)+ (p—Aisin AB(R)(F)+), p— pis in AB(R)(F)
for all pin X, and, if 0 < c, then there is ( in X such that

IUI# -(l<ec (22.2)

Indication of proof: The argument is so similar to previous ones (see [2]), albeit in
AB(R)(F), that we need only make a few salient remarks and leave the rest of the routine
details to the reader. We treat the first alternative. The second follows similarly.

Suppose that V and W are mutually exclusive sets of F and 0 < c. There are P1» Py
and Py in X such that

0<MV)—py(V) < /3,0 < f(W) — pp(W) < c/3and 0 < f(VUW) = p3(VUW) < /3.
(2.2.3)
By Theorem 2.1, our previous differential equivalence replacement remarks and our

hypothesis, we have the following existence, equivalence and inclusion remark:

X contains [max{p;,max{p,,ps}} = fmax{p;,p;,p3} in A(R)(F).

(2.2.4)
Let § = jma.x{pl,pQ,pa}. Clearly, if Y is V, W or VUW and p' is py,p,, or pg, respectively,
then
0 < p(Y) = &Y) < l(Y) = pY(Y) < /3, (2.2.5)
so that

[4V) + AW) — f(VUW) | = | (V) + (W) — &V) — W) + VUW) — 5(VUW)]| <
(V) = &V)| + |(W) = &W)| + | {VUW) — f(VUW)| < 3¢/3 = c.
(2.2.6)
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Therefore p is in A(R)(F); the remainder of the inequality and inclusion assertions

follow very easily.

We end this section by stating a Bochner — Radon — Nikodym type theorem that we

shall use in section 3.

Theorem 2.B.1 (see [3]). If aisin rB(F), pisin AB(R)(F)+, IUap exists and 0 < c,

then there is D << {U} such that if H << E << D, ais an @ —function on E and b is an a —

function on H, then

DI ) - c. .B.1.
. H(I)Ia(l) b(J)[M(J) < (2.B.1.1)

3. Some existence, continuity, inclusion and uniformity theorems.
We begin this section by stating a previous integral existence theorem.

Theorem 3.A.1[1,4]. If yisin tB(F), each of p, pand p— pis in AB(R)(F)" and

| yp exists, then [ 7y exists.
U ’ U

We now prove Theorems 3.1 and 3.2, as stated in the introduction.

Proof of Theorem 3.1: Clearly | Ua(£2 - El) exists by linearity, and each of £2 - El’
p—§ and & =& — (p— fl) is in AB(R)(F)"’. Therefore, by Theorem 3.A.1, [ ofp — fl)
U

exists, so that by linearity, | ap exists.
U

Proof of Theorem 3.2: PL— Py isin A(R)(F). If Visin F, then

631



IPI(V) —PQ(V)| = ma.x{pl(V),pz(V)} - min{pl(V),pz(V)} < fg(v) = fl(v) < -fQ(U) -
£,(U).

(3.2.1)
Therefore p; — p, is in AB(R)(F).
If 1isin F, then, clearly,
IT(p (D) = T(p XD = IJIa(pl —po)| ¢ MII lpy = pgl-
(3.22)

This implies that T(p, ) — T(p,) is in AB(R)(F) and that M[|p; — py| — [|T(p;) — T(p5)| is
in AB(RYF)*.

The next theorem involves ¥ — boundedness and the functionals L and G, as defined
and discussed in section 2. In the next section we shall put this theorem to use, employing

the functional L; the functional G would serve as well.

Theorem 3.3. If ris a function from F into [0;1] and each of n, and m is in [fl;EQ],

then
mmy + (1 -7)n, (3.3.1)
is ¥ — bounded on U with respect to {U} and each of
Ju(rny + (1 - r)1;2)> and [G(rny + (1 - 7)n,) (3.3.2)

is in [ min{r;l,ng},jmax{nl,r)?}] and therefore, clearly in [{1;62].

Proof: Let {; = fmin{n,n,} and (, = fmax{n,n,}. If Visin F and D << {V}
(and therefore a subset of a refinement of {U}), then
G(V)= 2DCI(I) = ZDHI)CI(I) + (1 = n(I))¢(D)] ED[T(I)vl(I)} (1 = (1)) (1] £
ED[f(I)(g(I) + (1 =(1))((D)] = Ech(I) = (V). (3.3.3)
It therefore follows that 77y + (1 — 7)1, is £ — bounded on U with respect to {U}
(letting U = V), and for each V in F,
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41(V) < G( ™H +(1- T)'IQ)(V) < L(""Il + - 7)’)2)(\’) < (2(\’),
(3.3.4)
so that for each W in F,

W)= J_ G €S, Crm + (L= ag) ¢ Lirm + (L= ) €I Gy = (W)
(3.3.5)
Therefore each of [I( ™ + (1- 1')172) and [G( ™+ (1-17) 1)2) is in
[Jmin{n;,7,},fmax{n,,n,}] and therefore in [£;;¢,).

We end this section with a uniformity theorem that we shall use in proving Theorem

4.6.

Theorem 3.4. If 0 < c, then there is D << {U} such that f E << D, aisan a—
function on E and pis in [£;;£,], then

) - | o c.
Ela(I)P(I) JI p| <

Proof: By Theorem 2.B.1 and differential equivalence there is D << {U} such that if

E << D, ais an a—function on E, H << E and b is an a — function on H, then

IR OIICOECOIRGE (34.1)
and
EEla(I)fl(I) —EH(I)b(J)El(J)I < c/d. (34.2)

So suppose that E << D, a is an a —function on E and pis in [fl;fgl' It easily follows that
there is H << E and an a —function b on H such that if I is in E, then

|f ap=2  b(AJ)| < c/4N, (3.4.3)
[ H(I)
where N is the number of elements of E, so that
L |fap=-2 b(IpJ)]| <c/4 (3.4.4)
E I H(I)

Therefore
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3 1A(DAD = apl = 3 [sD(AD) = 1) + DD =2, WG +2, MOG(
~3 HOAD +E WD) = opl =

1B, 06D =)=, BOXAD) = (D) + BDED -5 W]+
COIORIIE

B2 o0 —HDIAD =GO + B D@ -2 DG +

12 HORD =l <

2.3, 00 ~BONED = U + e/t + e/t <aefs <

(3.4.5)

4. Closure, maximum value, minimum value and convergence properties of T.

Proof of Theorem 4.1: There is a function ffrom F into {0,1} such that if I isin F,
then

0 otherwise

an = {

Note that if I is in F, then

AL o (1-AD)S (oM = max{ f Iang,l Ianl}- (4.1.2)
By Theorem 3.3, ﬂ1)2 +(1- ﬁ)nl is £ — bounded on U with respect to {U} and
| SL(Bny + (1 = Bny) (4.1.3)

is in [£,1;§2], so that it follows, by Theorem 3.1 and differential equivalence, that for each V

in F, the following existence and equality holds:
J Jed LBy + (1= Anp)] = [ [oL(Bny + (1= Aymy)- (4.1.4)

Now, suppose that V is in F and 0 < c. There is D << {V} such that if H << D,
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then
3 Imax{f any,f an} = f max{any,an}| <cf8 (4.1.5)
and if a is an o — function on H and X is either 7, 1, or L(fn, + (1 = Any), then
zH la(3)X(1) - jJaXI < /8. (4.1.6)
By statement 5) of Theorem 2.A.1 there is H << D such that
3 1L(Bry + (1= Hm)(D) = (AN + (1= AN )] < c/I8(1 + M)
(4.1.7)

Suppose that b is an a — function on H. Leaving some minor inequality observations to the

reader, we see that

11} VGL(ﬂfig +(1=-Amy -l Vmu{anl,aﬂg}]gl <

|11, —EHb(J)L(ﬂﬂg +(1=-An)D] + IEHb(J)L(ﬂng +(1=8n)J) -

EHb(J)(ﬂ(J)f)Q(J) + (1= AN + lEHb(J)(ﬁ(J)rlg(J) + (1 - AN () -

EHmax{I Janpl Janz}l + IEHmax{I JO"II»I Janz} -[],l <

/8 + 2HM|L(/3112 + (1= B )(3) = (ANn(T) + (1 = AIN)m(N)] + IZHb(J)(ﬂ(J)ng(J) +
(1= AN)m(J) —2H(ﬁ(J)IJang +(1 —ﬂ(J’))IJGﬂl)l +c/8¢

c/8 + Mc/[8(1 + M)] + EH[ﬂJ)Ib(J)UQ(J) - IJ""?QI + (1= AN b(Nm () - IJaﬂl ]+
c/8 <

c/8 4 c/8 + EHIb(J)r;Q(J) - JJ07;2| + Eﬁlb(J)ql(J) - JJm;ll +c/8<cféd+c/8+c[8+

c/8<c.
(4.1.8)

It therefore follows, once again with reference to differential equivalence, that
f Jaf LBy + (1= Am)) = §_cL(Py + (1= Any) = f max{an any} =

f maxtSamy fans).
(4.1.9)
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In a similar fashion it follows that there is an element (2 in [61;62] such that

Jaly = jmin{jaql,jaq?}. (4.1.10)

Proof of Theorem 4.2: Suppose that pis in [61;62]. Iflisin F, then

£,(D) < A1) € EyD), (42.1)
so that if x is in ofI), then either
x€;(1) € xp(1) € x6(1) or xEy(1) € xp(1) € xé,(1), (422)
so that
min{xé,(D),x€(1)} ¢ ¥A(T) € max{xé; (x4} (423)

This clearly implies that each of fmax{a¢;,af,} — fap and fap — [min{a¢;,a,} isin
ABR)(F)T.

Proof of Theorem 4.3: The proof of Theorem 4.3 follows somewhat the pattern of
that of Theorem 4.1. We first do the ''minimal'’ extremal part.
By Theorem 4.1 there is {; and (,, each in [61;62], such that
Ja(; = fmax{a;,af,} and fa(, = [min{af;,al,}. (4.3.1)
There is a function 7 from F into [0;1] such that if I is in F, then
120 = (4D o€y + (1= D) oG] = inf{X(D) = [ a€; + (1= g 0 <1).
(4.3.2)
Let L = L(r(; + (1= 1)(,).
Again, by Theorem 3.3, [L is in [61;52], so that for each V in F, by Theorem 3.1 and
differential equivalence, we have the following existence and equality:
jvaJL = jVaL. (4.3.3)
Now, suppose that pis in [61;62] and Visin F. Suppose that 0 < c. Thereis D <<
{V} such that if H << D, then
OSIle—jaLl—EHlA(J)—IJaLl < c/8, (4.3.4)

and if b is an a —function on H and X is L, (1 or (2, then
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T |J aX —bJ)X(J)] < /8. (4.3.5)
H'J |

By Theorem 2.A.1, statement 5), there is H << D such that

1) (DG + (L= AN < </I8L + M)} (436)
Now, by Theorem 4.2, for each J in H,
J oG ¢S ap <] aty (43.7)
so that there is t(J) in [0;1] such that
J o0 = (D) oty + (1D ay (4.38)

There is an a — function b on H. It follows that
Ivll\ ~ Jop] ZEHlf\(J') -IJGPI = EHl/\(J)--(t(J)IJOlCl +(1 —t(J))JJa(g)I >
B XD~ (D) oty + (1= HD)f )l =2 XD~ oL+ f el ~HIUD) +
b(JL(T) = BINA I (T) + (1 = 1(I))((I)) + bINAD () + (1 = {(I)(AT)) -
(T(J)IJOIQ +(1- T(J))IJQ(Q)I 2 ‘JHM(J) - JJOLI —EHUJGL = b(J)L(J) | -
EHlb(J)l |L(J) = (1) () + (1 = H(I) )] —EH(T(J)Ib(J)(I(J) - IJa(ll +
(1= A IHDG) = f atgl) > § 1T) = ab| = /8 —Mef[B(L + M) ~c/8—c/8
IV |A = faL| — 4¢/8. (4.3.9)
Therefore
IVI/\-JGPI ZIVH-IC'LI =IV|A-I(0'IL)|‘ (4.3.10)
Now, the ""maximal' extremal portion of this proof is, in certain respects, quite
similar to the preceding work. We indicate modifications and leave routine details to the
reader. (l and (2 are as in the ""minimal'' extremal part.
Hpisin [£1;£2] and Visin F, then
[A(V) ‘Ival" < IUIA ~ Jap| ¢ UUM —Ia(llll + IU”C'CI — fap| < []1 + MJUICI —pl

< []1 + M(fg(U) - & (U)). (4.3.11)
Note that it follows from Theorem 3.3 that if 0 <t € 1, then t(l +(1 —t)(2 is in [61:62].
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Thus there is a function w from F into [0;1] such that if [ is in F, then
[0 = (0] a6y + (1= L) aC)] = sup{1ND) (41 a6y + (1 =0] a)] :0¢t<1)
(4.3.12)
Let I = L(w(; + (1 = w)(y)-
For win place of 7 we state inequalities and equations (4.3.3) through (4.3.8),
immediately preceding the w counterpart of (4.3.4) with the following:

0<J |[A=Jap| =% |XJ) =] ap| < /8 (4.3.13)
IVI Jap| H' J ; |
Now, the w counterpart of inequality (4.3.9) begins as follows:

A—Jap| <c/8+2 |AMI) = ap| =c/8+Z [AJ)—=(t(I) al; + (1 —t(J))[ a(
Ivl Jap| < ¢/ H| ; | HI ( IJ L+ ( )IJ M
<cf8 + EHI/\(J) —-(w(J)jJa(l +(1- w(J))IJa(Q)| = .cc.oeeruene. CONtinues as in (4.3.9),
but with "'<" instead of '>"" and ''+'' between the sums instead of ''—"' and culminates with
"¢ IV|,\ — faL| + 5c/8".

(4.3.14)

Therefore

A— Q - la = -— a . D
Ivl IP|SIVIA faL| Ivlf\ J(afL)| (4.3.15)

Proof of Theorem 4.4: There is a function 7 from F into [0;1] such that if I is in F,

then
D) = (0] oy + (1= D) any (44.1)

Much as before, let L = L(7n; + (1 - 1')1)2), so that by Theorem 3.3, [L is in [61;62], in
particular in [fmin{ny;no};f ma.x{ql;q?}], so that by Theorem 3.1 and differential

equivalence, the following existence and equality holds:
[ (afL)={ alL. (4.4.2)
\" \'

Suppose that Visin F and 0 < c. Thereis D << {U} such that if H << D, bis an a

— function H and X is " of L, then
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EH |onzX =b(NX(I)] < </8. (4.4.3)

By statement 5) of Theorem 2.A.1, there is H << D such that

B 1) = (A0 (3) + (1 = A0 < /181 + M), (144)
Now,

X(V) = ab| = I8, [10)f on, + (1= A2 ey -
B [HDBDN) + (1= AN + SO0 + (1 = D)D) =
2 b(J)L(J) + 2 b(JL(J) - oL]| <

H \Y

2 O am =bOn)] + (1= emy=bImD)| +

o=

H
2H|b(J)| | (1)ny(3) + (1 = {( D)) =L + 2H|b(J)L(J) - IJ0L| <
c/8 +¢c/8 + Mc/[8(1 + M)] +c¢/8<c/2<c. (4.4.5)
Therefore
AV) = jVaL = jv(aIL). (4.4.6)

Proof of Corollary 4.4: It clearly follows from the hypothesis, Theorem 4.2 and

Theorem 4.1 that the hypothesis of Theorem 4.4 is satisfied, and therefore the conclusion.

Proof of Theorem 4.5: Suppose that each of P and Py isin [{1;52] and fori = 1,2,
Jap, isin [Iaql;jaqgl. We shall show that if P is max or min, then jaP{pl,pg} is in
[Iaql;jmb]. Suppose that Visin F and 0 < c. Thereis D << {V} such that f E C H <<
D, ais an a —function on E and i = 1,2, then
B [aDA(D) - og] < c/3and E_|alma{py (1))} - | cmax{py pp}| < c/3
(4.5.1)
Let D, = {I: Iin D, po(1) € pl(I)} and D, = D —D;. There is an a — function b on D.

Now,
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jvaql = EDlem)l + 2D2j10q1 < [EDIIIapl + EDszap2]1 SEDlear)Q + EDszm’? =
JVG’IQ

(4.5.2)
and
11, Vamax{pl,pg}l = I23D UIGPI = b(Dpy(1)) + ED (J (%P2~ b(Dpy(1)) +

1 2

z b(I)ma.x{pl(I),pQ(I)} +1 b(I)ma.x{pl(I),pQ(I)} -J mn&x{pl,p2}| <
Dl D2 \%

B, 150 ORI+ 3, 1500y~ 60r0] + 1 0Dmasip (1) -

jvmu{pl,p2}| <cf3+cf3+cf3=c

(4.5.3)
Therefore
—<< Ivama-x{l’lypg} - ]1 <g (4.5.4)
so that adding appropriate terms in (4.5.2), we have
an, —c < [ amax{p,,pr} <[ an, +c. (4.5.5)
o<y, pPp} <J om
Therefore
Jamy < f_amax{py,pq} € |_any (456)
vy rPot 21,

Therefore each of fan, — famax{p;,p,} and [amax{p;,py} — far, isin AB(R)(F)+,
and, in a similar fashion, each of fan, — Iamin{pl,pQ} and | amin{pl,pQ} — Jap isin
AB(RY(F)T.

It therefore follows from Theorem 2.2 that there is # and Hop each in [¢ 1;£2], such
that u, — p, is in AB(R)(F)?,

{p: pin [£;€)), Sapin [fany;fanyl}; € [ayim),
(4.5.7)
and, if 0 < c, then there is G and (o each in { }1, such that if i = 1,2, then
J Ulu; =G| = (V) = GU)| < c/(1+ M), (4.5.8)
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so that, by Theorem 3.2,
IUUO’I‘i - Ia(il < MJUII‘i - (1| CMc/(1+M)<ec (4.5.9)
It therefore follows routinely that if i = 1,2, then fap, isin [jaql;jaq2], so that 4 isin { },.

Now, suppose that p is in [”1;"‘2]’ If Iisin F and a(I) is in ofI), then either
min{a(T)y (D), a(L)po()} € (D (1) € a(DAD) € alDpoll) € max{a(D)y (D 2D}

or

min{a(T)py (1), a(Dpy(D)} € alDao(1T) < A(T)A(T) < aT)py (1) € max{a( Dy (1) a(Dag( D)}

(4.5.10)
It therefore follows that if V is in F, then
an, <[ minfap,,[fap,} <[ ap <[ maxfap,,fap,} <[ an,,
Ivnlfv fapy, [ apq v Iv Japy, fapo} Ivng
(4.5.11)
so that pisin { H
Therefore [”1;"2] C{}; so that
[l = {p: pin [€;6)), fapin [fan;[an,l}, (4.5.12)
so that
T([pg5m9)) € [fany;fany). (4.5.13)

Now, suppose that A is in [Iaql; ] aqz]. By Theorem 4.4 there is an element ¢ of
[£1;£2] such that

A= fa (4.5.14)
Since [a( is in [jar)l;faqzl, it follows by (4.5.12) that (isin [4);u)]. Therefore
[Jamys Samy) € T([g5m))- (4.5.15)
Therefore
T([pyim0)) = [fany; fano). (4.5.16)

We end this paper by proving Theorem 4.6, as stated in the introduction.

Proof of Theorem 4.6: The argument, as is usually the case for this type of theorem,
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uses a uniformity of integrability condition. In this case, Theorem 3.4 gives such a condition

and our demonstration is brief.
First, showing that (is in [£1;£2] is quite routine and we leave the details to the

reader.
Now, suppose that 0 < c. By Theorem 3.4, there is D << {U} such that if E << D,

aisan a —function on E and pisin [61;62], then

|[3E3(1)P(I)] = T(p)(V)| SEE|3(I)P(I) - Ilapl <c/3. (4.6.1)
There is an a — function b in D. There is a positive integer N such that if m is a positive
integer > N, then

B 16D = 1D < /131 + M) (46.2)

so that
| T(O(U) = T(n, XU)| < |T(()(U)-3Db(1)((1)| + lsz(I)((I)—EDb(I)'Im(I)I +
1% b0, () =T )(O) €e/3 +_[MO]1AD) = 1 (D] +€/3.< e/3 + Me/[3(1 + M)

+c/3<ec.
(4.6.3)

Therefore

T(n,)(U) = T(()(U) as n + . (4.6.4)
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