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 In the whole paper we will work in the n-dimensional Euclidean space

 IRn, where nil is arbitrary but fixed. We denote by d the ordinary

 density topology on IRn, i.e. a set A is d-open iff
 I:_ X(B(x,r)'A) _
 lim I:_ •> / r> /

 r,0 MB(x.r)) •> / r> / rr-

 holds for each x e A. (Here A denotes the (outer) Lebesque measure over

 IRn and B(x,r) = { y € IRn; II x - y II s r >.)

 For a given function f:IRn - »IR we define the following sets:

 C(f) = { x e IRn; f is continuous at x },

 C (f) = { x € IRn; f is approximately continuous at x
 d

 S+(f) = { x € IRn; ap lim sup f(t) s f (x) >, this is the set of
 d t

 points of approximate upper semicontinuity,

 T+(f) = { x € IRn; ap lim sup f(t) < f(x) }, and similarly
 d t

 S (f) = { x 6 IRn; ap lim inf f(t) s f(x) >, and
 d t

 T (f) = { x e IRn; ap lim inf fit) > f(x) ).
 d t

 The prefix "ap" expresses that we consider lower and upper limits with

 respect to the topology d , see [5;Cor.6.22. ]. Finally we put

 CH (f) = (C if), S^(f), T*(f), S"(f), T~(f )) . d d d d d d

 to be the d-characterizing quintuple of the function f.

 In [2] Z.Grande stated
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 Problem A Let C,S+,T+ be subsets of the real line such that C is

 Lebesque measurable, C c S+'T+, T+ c S+, and S+'C has inner Lebesque

 measure zero. Must there exist a function f :IR - MR with C = C (f),
 d

 S+= S+(f), and T+= T+(f) ?
 d d

 T.Natkaniec studied the question for which quintuples (C,S+,T+,S ,T )

 of subsets of the real line a function f:IR - MR satisfying the equality

 CH (f) = (C,S+,T+,S ,T ) exists in his PhD-Thesis [71 and in his paper
 d

 [81. He formulated

 Problem B Let f:IR- MR be arbitrary. Must there exist a set D c IR of

 type G. such that C (f) = D'(T+u T~) ?
 o d

 The goal of the presented paper is to derive a complete description

 of all "extended" d-characterizing sextuples

 (C(f), C (f), S*(f), T*(f), S"(f), T~(f))
 d d d d d

 in IRn. However, in Corollary 9.a) the description of the original

 quintuples CH^(f) is given. Our main result is

 1 .Theorem Let n s l and let d be the ordinary density topology

 on IRn. For a given sextuple (Ce>C,S+,T+,S ,T ) of subsets of IRn the
 following two statements are equivalent:

 a) It holds (i) S *r' s"= C

 (ii) T+c S+'C, T c S 'C and both the sets T+ and T

 have Lebesque measure zero.

 (iii) Both the sets S+'C and S 'C have inner

 Lebesque measure zero.

 (iv) There is some set D c IRn of type F „ such
 CTÒ

 that C = D'(T+u T").

 (v) C is of type G_ and contained in C.
 6 O
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 (vi) The closure of Cg contains each point
 X e C '(T+u T ) at which C is of the second category

 (i.e. B(x,r) n C is a second category set if r > 0).

 b) There is some f :Rn - MR such that C(f) = C and
 e

 CH (f) = (C,S+,T+,S~,T~).
 d

 From this theorem (essentially from Corollary 9.a.) negative answers

 to both Problem A and Problem B easily follow. Indeed, we choose a set

 M c IR such that A(M) = 0 and that M is not of type G_ . Then we put
 OCT

 C = IR'M, S+= IR, and T+= 0 , these sets clearly satisfy the assumption of

 Problem A. But if the required function f exists then we obtain from

 Theorem 1 that S = C, T = 0 and D = C = IR'M is of type F _ , a
 <ro

 contradiction. (This idea occurs already in [9].) To disprove the conjecture

 of Problem B it suffices to set C = 0, C = S+= S = 0 (rationals), and
 e

 T+= T = 0. This sextuple satisfies the condition a) of Theorem 1 , let f

 be a corresponding function from statement b). According to a.iv) we

 obtain that D = C (f) = (Q , but Q is not of type G_.
 d Ò

 However, we can not directly turn to the proof of Theorem 1; we must

 at first derive some helpful technical statements. We begin with some

 notation, agreements and facts. In the sequel topological notations

 referring to the topology d will be qualified by the prefix V' to

 distinguish them from those pertaining to the Euclidean topology, for

 example resp. Der^ denotes the closure resp. the set of cluster
 points in the topology d Further, in what follows words like measure,

 measurable and so on pertain to the Lebesque measure A . For x € (Rn,

 and A c IRn we put

 dist(x,A) = inf((l> u { r ; B(x,r) n A * 0 >).
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 If f maps IRn into IR and if x e Rn then we define

 osc(f,x) = lim sup{|f(y) - f(z)|; y,z e B(x,r) >.
 r» 0

 We note that the function x - *>sc(f,x) e [0,» ] is upper semicontinuous.

 In our approach the complete Lusin-Menchoff property of the topology

 d will play the key rôle (however, compare with Remark 10). It says the

 following. Whenever P c Rn, F and F are disjoint subsets of P, and F
 d

 resp. F is closed resp. d-closed in P then there exist disjoint subsets
 d

 G and G of P such that F c G , F c G and G resp. G is open
 d d d d

 resp. d-open in P, see [5; 3.18. and 6.34(B)a.]. This property reminds

 normality and it really ensures the existence of "sufficiently nice"

 extensions of certain functions. A comprehensive treatment of these

 questions can be found in [5]. We will use

 2.Fact Let P c IRn be arbitrary. Assume that S c P is both

 d-closed and of type Gs in P. If g:S - >t-l, 1] is both approximately
 O

 continuous and a Baire one f unction on S then there exists an

 approximately continuous function f:P - »1-1, 1] such that

 i) f(x) = g(x) if x e S

 ii) f is continuous on P'Š

 iii) f is continuous at those points of S at which g is.

 Indeed, this statement quite easily follows from [5; Theo.3.30.) and

 [5; Exer.3.E.21.(b)].

 Further we recall the following important fact which seems not to be

 known very well.

 3. Fact Let A c Rn be arbitrary. Then there exists a sequence A.,
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 i s 0, of mutually disjoint subsets of A with A(A) = X(A() for any i.

 This is mentioned in [10] and based on a result of Lusin in (6). The

 paper [6] is really remarkable since it works only with the axiom of

 choice and offers an approach independent on and more general than

 Vitali's or Bernstein's constructions. Further on, in part b) of Lemma 4

 we use an idea from [1].

 I

 4. Lemma Suppose that M c U c IRn, A(M) = 0 and U is open.

 a) Then we can find a d-closed G--set F such that M c Int F c F c U
 ò

 and that F u M is closed.

 b) For each c > 0 there is an open set V such that M c V c U and that

 for each x e M some r e (0,e) satisfying the inequality

 A(B(x,r) a (UW)) ł (l-e)*A(B(x,r)) exists.

 Proof

 a) Because M is d-closed, the Lusin-Menchoff property ensures the

 existence of an open set U with M c t^c U We put
 W = { x ; dist(x,M) < dist(x,Rn'U ) }. Then M c W c U , W is open, and

 W c { x ; dist(x,M) £ distix.R'Nu )> c M u U . Therefore we can choose a
 i i

 G^-set S such that MS'[(W'M) u W]) = 0 and M a (W'M) uW cScUaM. _
 Consequently S is d-closed. Now the required set is defined by

 F = S u (W'M). Then F is of type G_. , M c W c Int F c F c U, and
 O

 FuM = WuM is closed. Since

 _

 _ Fdc S u (W'M)

 we conclude that F is also d-closed.
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 b) For any x € U we define r = min < § , dist(x,IRn'U) >. Clearly, if X ¿

 S € (0,^ ] then there is some open set V(5) with { x € M ; r i 48 ) c
 2 x

 V(Ô) c { x e U ; r > 20 > and A(V(Ô)) s 5-'(B(0,Ô)). This choice of V(ô)
 X

 ensures that for each x € U ^(Bix.r^) n V(6)) s S'MBÍx.r^)) holds.
 Indeed, if r s 5 then 5*X(B(x,r )) s S A(B(x,S)) a X(V(5)) and in case

 X X

 r < 5 we have B(x,r ) n V(ô) c B(x,õ) n{y€U;r>2ô} = 0.
 xx y

 00

 Since for any x 6 U A(B(x,r * )'U) = 0, the set V = 11 V(2~ke) sat- * k= i

 isfies X(B(x,rx) n (U'V)) = X(B(x,rx))-A(B(x,rx) n V) fc (1-e) MBix.r^))^

 5. Proposition Let M c IRn be a set of type satisfying MM) = 0.

 Then

 a) there exist d-open sets and Mz of type such that

 M2= IRn'M and that for i = 1;2 M^'M is open and
 Der (IRn'M ) 3 M .

 d i

 b) there exists a function f:flRn'M)- >[-1, 1] such that f is approxi-

 mately continuous on its domain and is continuous on IRn'M and that

 for each x e M the following is true:

 ap lim inf f(t) = -1 and ap lim sup f(t) = 1.
 t

 Proof
 00

 a) Let M = U , where the ...U z> U o ... are open. We put
 k=i k k+1

 G = IRn and now we assume that for some k s 0 the sets G ,G ,...,G and
 0 Olk

 FQ,...,Fk t have already been chosen. According to Lemma 4.a) we can
 choose a d-closed set F of type G* such that F u M is closed and

 k o k

 that M c Int F c F c G r' U . Furthermore, we can find G open K such k k k k . k+l K

 that M c G c Int F and for any x € M there is some r € (O.r^-r) with
 k+l k k+l
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 XfB(x.r) * n (F 'G )) ' > (1/2)- MB(x.r)) (*) * k k + 1 '

 oo

 We proceed in this way and finally we define ļ^J ^ ant*
 k=0

 00

 M = M (G 'F ). It is obvious that M and M are d-open and of 2 KJ 2k+ 1 2k + 2 12
 k = o

 co

 type F , moreover M u M = I I (G 'G ) = IRn'M. For i = 1, 2 the set <r , i 2 'J k k+ 1
 k = o

 »

 M 'M = I ļ V. (G Nip u M)ì ) is open. * Since (F 'G ) n M and 1 W V. 2k+ ( I - 1 ) 2k+ 1 ) open. * 2k 2k+l 2
 k = 0

 (F2k ^'G^^) n are empty if k s 1, it follows from (*) that for any
 X € M and i = 1, 2

 '(B(x,r) n (IRn'M )1 * „ 1
 Jup " ÃTBÍxTrT) * „ 2 '

 Therefore M c Der (IRn'M ) r' Der (IRn'M ) ; part a) is proved.
 d 1 d 2

 b) We r put P = IRn'M and F = P'M , F = P'M , where the M are taken r 112 , 2 , 1

 from statement a). Now we define S = F u F and the function g:S- >(-1, 1]

 ^ 1 if X e F
 1

 g(x) = < (of course F n F = a ).
 12

 -1 if x € F
 2

 Both F and F are d-closed and of type G_. in P, moreover F 'M and 12 S i

 F2'M are closed in P'M. Obviously, P, S, and g fulfill the assumptions
 of Fact 2. Now any function f from the conclusion of this statement has

 all properties required for it. Indeed, because g is continuous at any

 point x € S n (P'M) and because P'Š o (P'M)'S , f is continuous on the

 set P'M = IRn'M and the statement for the upper and lower approximate

 limits immediately J follows from Der F Der F 3 M, f(F ) = <-U, and J d 1 d 2 1

 f (F ) = <1> .
 2 □

 6. Proposition Let (C,S+,S~) be a triple of subsets of IRn satis-

 fying

 i) C = S+n S is d-open and of type F^, and
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 ii) S+'C and S 'C have inner measure zero.

 Then there exists f:IRn - >1-1, 1] continuous on Int C such that

 CH (f) = (C,C u S+, 0 ,C u S , 0 ) and that moreover
 d

 ap lim inf f(t) = -1 and ap lim sup f(t) = 1 (**)
 t

 holds whenever x i C.

 Proof Since C is of type F , we can find a set M c IRn'C of type

 Gs with {x € Rn'C ; x « Der (IRn'C)> c M and A(M) = 0. We choose a
 o d

 function f according to Proposition 5.b). Fact 3 ensures the existence
 00

 of mutually disjoint sets K , k ł 1 , satisfying = IRn'(S u S ) and
 k = 1

 Der^K^ Derd(IRn'(S+u- S )] for kil Indeed, we need only to guarantee
 that for any k , m ł 1

 ÀÍK^n { x ; m-1 s llxll < m >) = x ; m-1 s llxll < m >'(S+u S ))

 holds. Now we define the function f:IRn - >[-1, 1) by

 f(x) if x 6 C

 -, . Il if X 6 S+'C
 fix) -, . = •

 - 1 i f x e S 'C

 (-1 )k( 1-Ì) if x e Kk
 Clearly M n Int C = z , hence f is continuous on Int C . Since C is

 d-open, we have C (f) d C. Therefore, in order to finish the proof it
 d

 suffices to show that the statement (*») holds for any x e IRn'C. If

 x <ê Der (IRn'C) then x e M n Int ({x> u C) and (**) follows from the
 d d

 choice of f and f . Because S+'C has inner measure zero, the set Rn'C

 is a measurable hull of IRn'S+. Hence, for any k ł 1 we obtain

 Der (IRn'C) = Der (IRn'S+) = Der (S"'C) u Der [IRn'(S+u S")]
 d d d d

 = Der (S"'C) u Der K
 d d k

 Similarly, we have Der (IRn'C) = Der (S+'C) u Der K if ksi. This shows
 d d d k
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 that (**) holds also in case x € Der (IRn'C).
 d □

 7. Lemma

 a) For each open set G c IRn there exists an approximately continuous

 f :IRn - >[-1, 1] such that f is continuous on IRn'3G and that for each

 x € dG lim inf f(t) = -1 and lim sup f(t) = 1 hold,
 t

 b) For each d-open set D c IRn of type F^ there exists an approximately
 continuous map f :IRn - >[0, 1] which is continuous on Int D and satis-

 fies D = { x ; f(x) > 0 ).

 Proof

 a) It is well known that one can find a countable set A c G with

 Der A = dG. The Lusin-Menchoff property guarantees the existence of an open

 set U fulfilling A c U c Üd c G. Because A r' Der A = 0 ,for each

 x e A there is an r > 0 such that B(x,r ) c U and B(x,2r ) n A = <x}.
 x x X

 Then B(x,r ) r> B(y,r ) = a whenever x,y e A and x * y. Therefore, the
 x y

 formula

 0 if x i U <B(y,r ) ; y € A>

 f3w- llx-yin ._ ,
 cos ^ - 2t ._ X 6 y , ' an<* y € A ^ 2t y ' y

 defines a function on Rn. Since the set U <B(x,r ) ; x € A} is closed in
 X

 G whenever A c A , it is quite easy to show that f has all required

 properties.

 b) A well-known theorem of Zahorski yields the existence of an approx-

 imately continuous and upper semicontinuous map g:IRn - »10, 1] such that

 D = { x ; g(x) > 0 > ( see, for example, (5; Cor.3.14 ] ). We set P = IRn,

 S = IRn'Int D , and g = g According to Fact 2 there exists an

 approximately continuous f :(Rn - »10, 1] which is continuous on Int D and

 satisfies f(x) = g(x) for x £ Int D. Now one easily verifies that the
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 function f defined by

 f(x) = min { 1 , distíx.nťNlnt D) + f(x) }

 exhibits all properties ascribed to it.Q

 8. Proposition Assume that the sets Ce>D,C,S+,T+,S , and T fulfill
 the conditions a) of Theorem 1. Then

 a) there exists a nonincreasing sequence of d-open sets Dfc, k s 0, of type
 09 0#

 F such that D = Rn, O D = D and C c Int D c C u T+u T . <T 0 Ilk ell k e
 k-0 k = 0

 b) there is a function f:Rn - >[-rl, 1] such that C(f)'T+u T = C 'T+u T ,
 e

 C(f) d C and CH (f) = ( D, S+u D, 0, S~u D, a) .
 e d

 oo

 Proof Let D = (| D , where the sets D are F -sets and hence
 k = 0

 of type G„ in the topology d (Each measurable set can be written ás the
 d

 set difference of a G^-set and a set of measure zero, hence it is of d
 00

 d-type G^.). Therefore D = U(k,i) with U(k,i) d-open. For each
 l =o

 pair (k,i) there is a d-open set D(k,i) of type F^ satisfying
 D c D(k,i) c U(k,i) , indeed, we select the sets D(k,i) to fulfill

 k
 oo

 A(U(k,i)'D(k,i)) = 0. Consequently we can write D = D , where the
 k = 0

 D^, k a 0, form a nonincreasing sequence of d-open sets of type F^.
 Further on, we can choose a nonincreasing sequence of open sets G such

 » . « k
 that G 0 = IRn, Pļ G k = C e and G~ k = C- e , the last equality holds if we 0 k=o k e k=o k e

 guarantee G c { x ; dist(x,C ) < ^r-r- > for kal. Next, since the set

 IRn'(T+u T u D) is of type G_ , it has the Baire property. Consequently
 0<T

 we can „find some G^-set S c IRl'(T+u T u D) such that ļ(Rn'(T+u T u D)j'S
 is a first category set, see [4; § 11. IV. 1. Now we select a G »-set S c S

 O
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 with MS) = 0 and S d S . We define D = (D 'S) v G for k a 0.
 k k k

 Since S is d-closed, each is d-open. Clearly, the sets are of
 CO CO

 type F^, D^= D and C^c c Int D^. To finish the proof of part a) we
 k=o c k=o

 fix an arbitrary x e IRn'(T+u T~u C ). Then we can find k s l with
 e o

 x «E . According to the condition l.a.vi) B(x,r)'D and hence also
 o

 B(x,r) n S are second category sets whenever r > 0. This shows that

 x € S'G~ k and implies x « Int(lRn'(S'G le )) 3 Int((D le u G le )'(S'G le )) = Int D le . k le le le le le
 0 0 0 0 0 0

 00

 We have just proved Int D c T+u T u C and turn to part b).
 k=o e

 Fix any ksi According to Proposition 6 we can select a function

 f :Rn - »I- 1» 1] continuous on Int D such that CH (f ) = ( D , D v S+, 0,
 k k d k k k

 D u S , 0 ) and that for each point x tf D both ap lim inf f (t) = -1
 k k . k

 t .

 and ap lim sup f (t) = 1 hold. Further on, Lemma 7 ensures the existence
 t

 of two approximately continuous maps gk;IRn - >[0, 1] and hk;IRn - »1-1, ll

 such that g is continuous on Int D , D = { x ; g (x) > 0 } , h is
 k k-i k-1 k k

 continuous on IRn'3G , and osc(h ,x) = 2 if x e 3G . We define
 k k k

 f(x) = ļ 2 if (x)-g (x) + h k (x) • dist(x,IRn'G )1 k 2 ^ k k k k-lj
 00 -k

 and f(x) = Y. 2 -k •? (x). One easily verifies that each f fulfills
 k = l

 CH (f ) = ( D U (IRn'D ), C (f ) v S+, 0, C (f ) u S", 0 )
 dk k k-1 d k dk

 and is continuous on at any point in (Int D )'(3G n G ). Since f is
 k k k- 1

 the sum of a uniformly convergent series and since C (f ) u C (f ) = (Rn
 d k dm

 for k * m, we immediately obtain that

 cHa(f) = c ñ CA>- Ů u <%,<"• «•
 k = 1 k = 1

 • Û (s¡(í>cd(ív) u ca(r)' ° 1
 k= 1
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 = < n D s*u n o, • ° • s~« ňv"
 k= 1 k= 1 k = 1

 = ( D , D U S+, 0 , D V S , 0 ).

 Because each f is continuous on G , we conclude that really J k k , J
 00

 C e = ļ*~ļ G c C(f). It remains to show that f is discontinuous at any e k = i

 X e IRn'(T+u T u C ). In case x e O Int D for the unique k ł 1 with
 0 e Olli

 1 = 1

 x € G 'G also x € C~" c G~ holds, hence we conclude x 6 dG . and
 0 k-l k 0 e k 0 . k

 ose (2"k"1#h • disti • »IRn'Gk ļ)»x0) = 2 k-distíx^U^NG^ ^ > 0. It is easy to
 - le- 1 - i ~

 see that both 2 -f *g and T 2 *f are continuous at x , hence
 k k "'i 0

 I *k
 00

 osc(f,x ) = osci 2 k_1*h • disti • ,IRn'G ),x 1 > 0 If xť O Int D we o v. k k-l 0' oll i

 fix the unique k s 1 such that xq€ Rn'Dk n Int ^ . Suppose that there
 exists an open set U with x€Uc{x;g(x)>4 g(x)}c Int D

 0 k 2 k 0 k-l

 and I f (x) f (y) | < 2~k3gk(xo) if x,y € U. Fix any x^ UND^. Since
 -k-l

 f - 2 ffegk is approximately continuous at x^ , we find a
 d-open K set U with x € U c U and K d Id

 2_lt_1 1 f fc(x) * gfcf*) - fk(y)'gk(y)l < 2 "k"2gk(xo) if x,y e IK

 This implies |f (x)-g (x) - f (y)*g (y) I < i-g (x ) if x,y € U and
 K K K K ó KU Q

 contradicts to the following facts: g a 4 g (x ) on U ,
 k 2 k o d

 lim inf f (t) = -1 and lim sup f (t) = 1
 k . k

 t

 t e U1 t e U1
 d d

 Consequently osc(f,x ) s 2~k3,g (x ) > 0 .
 0 k 0 □

 ii

 After the foregoing preparations we return to the

 Proof of Theorem 1 At first we show that b) implies a). There-

 fore, let f:IRn - )IR satisfy C(f) = C and CH (f) = ( C, S+, T+, S~, T-).
 e d
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 Then clearly S+n S = C, T+c S+'C , and T c S 'C. The statements

 A(T+) = A(T ) = A„(S+'C) - X0(S 'C) = 0 have already been proved in [2],

 but we can derive them also from the following facts holding even in

 general topological spaces and f rom the well-known statement that

 d-discrete and d-first category sets are of measure zero, see for example

 [5; Theo.6.9.]. Indeed, T+= 11 { x ; f(x) > r > ap lim sup f(t) > ( and
 red t

 similarly T ) is a countable union of d-discrete sets. Further on,

 because Int S+'Cdc I I d { x e Int S+; f(x) < r > is d-open and of the
 d d d
 r€d

 +

 d-first category, we see that Int (S 'C) = 0. To finish the proof of the
 d

 first implication, we simultaneously prove iv), v) and' vi). For this

 purpose we denote for k ł 1 and q € 0

 / _n '™ X[B(x,r)'f 1 ( (q-k-1, q+k"1))] < . 1 '
 - ' / x * " _n : '™

 It is well known (and easy to show) that each F(k,q) is of type F . Now
 »

 we define F(k) = [I F(k,q) and then D = O F(k). Obviously, D is of
 qeQ k= i

 type F^g. Moreover, it is the set of all points at which the approximate

 limit of f exists. This quite directly follows from the fact that

 ap lim f(t) does not exist iff ap lim inf f(t) < ap lim sup f(t) iff
 t - >x t

 there exist a < b such that both f_1((-eo, a)) and f_1((b, »)) have

 positive upper density at x. Consequently, C = D'(T+u T ). For kal we
 n 3

 put Gfc= { x € IRn; n osc(f,x) < ^ 3 }. Then each is an open set and
 co

 C d C^= e Gfe. Moreover, for k a 1 ļļ Int F(k,q)'T+u T c holds. e k= i q€0
 Indeed, from the density theorem A[(Int F(k,q))'f '((q-k 1 ,q+k 1 ))] = 0

 if q € <Q follows. Hence, for x € Int F(k,q) ap lim inf fit) ł q-k 1
 t

 and ap lim sup f(t) s q+k"1 holds. Since x € T+vj T implies the estimate
 t

 ?

 ap lim inf f(t) s f(x) s ap lim sup f(t), we obtain osc(f,x) s - if
 t
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 X e Int F(k,q)'T+u T~. Next, we define S to be the get of all

 points X € C'T+u T~ at which C is of the second category. Since

 ļc'T+u T~j'S is a first category set, the statement vi) easily follows if

 we show that II Int F(k,q) d S for any k s 1. But indeed, if x e S,
 qeO

 ksi , and 0 < r < dist(x,T+u T )) then B(x,r) n C = B(x,r) n D c

 yB(x,r) r> F(k,q). Consequently, there is some q e Q such that the
 A

 F^-set B(x,r) r' F(k,q) is of the second category and , therefore, has
 nonempty interior.

 It remains to show that b) follows from a). Let (C ,C,S+,T+,S ,T )
 e

 (and D) satisfy the conditions a). We choose a function f:IRn - »[-1, ll

 according to Proposition 8.b). Then we select a map A:IRn - »[-1, 1] such

 that T+= { x ; A(x) > 0 >, T = { x ; A(x) < 0 } and that for arbitrary

 x e Der(T+u T ) the statement lim A(t) = 0 holds iff x e C . The
 t - « e

 existence of such functions is mentioned (in a more general setting) in

 [3], but since this paper is still in print, we shortly outline the

 construction. Let IRn= U d' U 3 ... be a sequence of open sets such that
 00 -

 U «Cr» Tu T . For amy positive integer k let T+ and T satisfy
 k=o e k k

 T+c T+n U , T c T r» U , and moreover Der T+= Der(T+n U )'U , and
 k k k k k k k

 Der T~= Der(T~n U )'U . We define A :IRn - »1-1, 1] by
 k k k k

 /1 if x € T+u (T+'U )
 k k

 A (x) = - -1 if x e T~u (T"'U )
 k k k

 v 0 else .

 Then Der A X( <1> ) = (Der T+)'U and Der A-1«-l>) = (Der T )'U . Conse-
 k k k k

 00 - i ~
 quently it suffices to set A = £ 2 - k*A . Finally we put f = ^(f i ~ + A).

 k= 1
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 Since ap lim A(t) = O everywhere and since also ap lim sup f(t) = f(x)
 t - « t

 if X € S u D, and ap lim inf f (t ) = f(x) if x € S u D , we immediately

 conclude that CH (f) = (D'(T+u T~), (D u S+)'T~, T+, (D v S~)'T+, T~ ) =
 d

 (C, S+, T+, S ,T ). Further on, because for each x e C 1lRn'T+u T j

 lim A(t) = A(x) = 0 , it follows that C(f)'T+u T~= C(f)'T+u T~=
 t - >x

 C 'T+u T and C(f) d C . Hence, the proof of Theorem 1 will be finished
 e e

 if we show that f is discontinuous at any point x e T+u T ' C^. We may
 assume that x e Der(T+u T ) because the case x e T+u T c IRn'C (f) is

 d

 trivial. From T+(f) = T (f) = 0 we derive that osc(f,t) ł ì |A(t)| for
 d d 6

 any t e T+u T . Since this inequality holds also if t t T+u T we get

 osc(f,x) - lim sup osc(f,t) s 4'^m SUP 1^(^)1 > 0» i-e- f discontinu-
 t

 ous at x.
 □

 We remark that it is quite easy to show that a.vi) is equivalent to

 a. vi') The closure of contains each point in C'T+u T at which C
 is residual.

 From Theorem 1 we immediately obtain the following

 9. Corollary

 a) For a given quintuple ( C, S+, T+, S , T ) of subsets of IRn the

 following two statements are equivalent:

 i) The conditions a.i)...a.iv) from Theorem 1 hold .

 ii) There is a function f:IRn - >(R such that CH (f) = (C,S+,T+,S ,T ).
 d

 b) For a set M c IRn the following is equivalent:

 i) M is a measurable set with empty interior.

 ii) There is a function f:IRn - MR such that M = C (f)'C(f).
 d
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 Proof

 a) According to Theorem 1 we need only to show that a) implies the

 existence of a set C such that the conditions l.a.i)...a.vi) hold.
 e

 Since C'T+u T = D'T+u T has the Baire property , we can choose a

 Gg-set C^c C'T+u T such that ļ C'T+u T jV% *s a f'rst category set.

 Obviously, is dense at any x e C'T+u T at which C is of the second

 category.

 b) Since Int(C (f )'C(f )) c C (f)'C(f) v T+u T the implication iiM)
 d d

 follows from the statements l.a.iv),v) and vi). Conversely, let M c IRn

 be a measurable set with Int M = 0 . We can choose a G^-set D satisfying

 M c D, MD'M) = O and Ď'M = IRn. Then the sextuple (0, M, D, D'M, M, 0 )

 fulfils the conditions l.a).
 □

 10. Remark In our approach we mainly used topological methods. More

 special properties of the measure A or of the topology d were used only

 at some few places (mainly Fact 3 and Lemma 4). Therefore, it seems to be

 highly probable that this approach applies also to other "reasonable"

 (Lusin-Menchoff property ! ) density topologies, examples may be found in

 [5: 6.11 & 6.34(B)] Here we restricted our attention to the familiar

 topology d since this keeps the whole matter clearer and avoids undue

 technical complications. However, since it looks hopeful to study by this

 approach also the question of characterizing quintuples for other types of

 fine topologies (for instance r.- and a.e.- modifications, see [5;7.A &

 7.B]), we make the following, perhaps useful, remark. For our purpose it

 suffices to know only that d has the Lusin-Menchoff property, its

 completeness is superfluous. Indeed, we use Fact 2 , the only statement

 requiring the Lusin - Menchoff property of some induced fine topology ,

 only in cases where P is of type F^ . But in [5; Exec. 3.B. 1.1 it is
 shown that the Lusin-Menchoff property is hereditary with respect to

 F -subsets.
 <r

 Finally, it seems to be a more difficult problem to describe all pairs
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 consisting of the d-characterizing quintuple and the euclidean-

 characterizing quintuple of any real function on IRn. The notion of an
 "extended" d-characterizing quintuple is , of course, only a first step in

 this direction. The same problem appears for pairs of qualitative- and

 euclldean- characterizing quintuples, see [3]. In both cases the description

 of all pairs consisting of the "fine topological"-characterizing quintuple

 and the euclldean (C+(f),S+(f),S"(f)) - triple would already be very
 interesting.

 I wish to express my sincere gratitude to L. Zajíček for suggest-

 ing this problem to me, for his continuous interest and for many stimulat-

 ing discussions in the course of my work. Further I am thankful for the

 information about paper [10] I have received from L.Bukovski .
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