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 Introduction

 In the study of the iterative behaviour of a self-map / of a closed
 interval, say [0,1], one is often interested in the ©-limit sets which
 arise, that is, the sets ú>(x,f) which are the cluster sets of the sequences

 ••

 of iterates {/"(*)} . There are, of course, many possibilities for such
 n "0

 sets. For example, the function fix) -k: c(l-x) has only the set {0} as
 an ©-limit set if 0< k < 1, but it has a wide variety of ©-limit sets
 when k = 4, including [0,1] itself [cf. D].

 On the other hand, in [ABCP] a continuous function
 / : [0,1] -» [0,1] was constructed having a rich system of ©-limit sets
 in the sense that to each nowhere dense closed set M there corresponds
 an X such that ©(*,/ ) is homeomorphic to M .

 This result and others suggest the following questions:

 (1) What sets can be ©-limit sets for continuous functions?

 (2) What families of closed sets can constitute the family of all
 ©-limit sets for a single continuous function?

 (3) What are the answers to the corresponding questions for other
 families of functions?

 Question (1) has been answered in [ABCP] by the following:
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 Theorem I. A nonvoid subset E of [0,1] is an œ -limit set for a
 continuous function f : [0,1] -> [0,1] if and only if E is either a closed,
 nowhere dense set, or it is a union of finitely many nondegenerate closed
 intervals.

 We have found very little work in the literature related to Question
 (2). There are some fragmented results, but not enough to suggest any
 promising conjectures.

 Question (3) does not seem to have been posed or studied before.
 In fact, the vast literature on iterative behaviour dealing with self-maps
 of a closed interval focuses almost exclusively on continuous functions,
 often assuming a great deal of additional regularity. Nevertheless, some
 applications arise naturally in which the continuity restriction may be
 inappropriate. For example, the familiar Newton's method for locating
 zeros leads to the iteration

 /(*«)
 x-i = x- - /'(X,) •

 If g(x) = X - (fix ) / / '(x )) and g is defined on [0,1] and maps [0,1]
 into [0,1], we are led to the kind of problem under consideration. The
 natural condition for the application of Newton's method is to assume no
 more than just differentiability for / . If the resultant function g maps
 [0,1] into [0,1], then g will be Darboux Baire 1 but not necessarily
 continuous. Therefore it seems appropriate to study the iterative
 behaviour of Darboux Baire 1 functions. We know of no natural smaller

 class of functions containing all functions g of the form
 g(x) = x - (fix ) / / '(x )) mapping [0,1] into [0,1].

 The main purpose of this article is to study Question (3) for several
 classes G of functions larger than ü , the class of continuous functions.
 In particular, we answer the analogue of Question (1) for any class
 containing JSHß, and we obtain partial answers to Question (2) for certain
 classes containing «083,. We get a complete answer to the analogue of
 Question (2) for the class of measurable functions having the Darboux
 property.
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 Notation and Terminology

 Throughout the sequel / will denote the interval [0,1]. Unless
 otherwise specified, all functions considered will be from / to / . For
 /:/-»/ and x e I we define f°(x ) =x and f"*'x) = /(/"(*)).
 We put y(x,f) - {/ "(x ) : ne co0 } and co(x,f ), the ¿»-limit set for /
 at x , is defined to be the cluster set (i.e., the set of all subsequential limit

 om

 points) of the sequence {/"(*)} . By A(f ) we mean the set of all
 A »0

 ú) - limit sets of / . We use cl A or A to denote the closure of a set A.
 A function /:/->/ is Darboux if it maps intervals onto intervals.

 A function / is in Baire (or Borei) class ļ_ (resp., 2D if and only if / is a
 pointwise limit of a sequence of continuous functions (resp., functions of
 Baire class 1). This is equivalent to the condition that / (G) is an
 F„- set (resp., G - set) for each open set G. We denote these three S <7

 classes by J9, J3 1 and J32, respectively. It is well known that / € Ä3, if
 and only if the restriction of / to each perfect set has a point of
 continuity. Moreover, the set of points of continuity of a Baire 1 function
 is a residual Gg - set. For facts about «©Î3, functions see the survey paper
 [CP]. In particular, the class 3, contains all derivatives and is closed
 under multiplication by, and addition of, continuous functions.

 Darboux Baire 1 Functions

 The example from [AB CP] cited in the introduction can be
 improved for functions in J953r

 Example 1. There exists a Darboux, Baire 1 function f such that A(f)
 contains a homeomorph of each nonempty, nowhere dense closed set .

 Proof. We will use the ternary representation for points in [1, |] . Thus,
 [r, r] is [.l, .2] .

 Let S consist of [.1,.2] minus the open interval (.110, .120) and
 all open intervals of the form ( ... a„ 1 10, ...aM 1 20) . Then
 S is closed and, with the exception of the left-hand endpoints of the
 deleted intervals, it consists of all points in [.1,.2] whose representation
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 lacks two consecutive l's. If x € S , x = jcxx %... and yH = .jci jc2...jc„ 1, then

 y h -*x and y H * S . Hence S is nowhere dense.
 Let Q consist of all nonempty blocks of O's and 2's, finite or infinite.

 If A € 0 , let p (A') denote the length of A . For each x e S there exist
 blocks A. € 0 such that either

 X ™ .1^& |1^ J 1^^ u • . •
 or

 x = JA,1A2...1A m .

 Now let S, = {x: x - . 1 A¡ for some Ai e O). Then S0 c S . Also, S0
 is [f,f] minus all open intervals of the form (.la2 ... a„02, .1 a2 ... a, 20) .
 Hence is closed. Moreover, 5« is nowhere dense relative to S . To see
 this, suppose x - . 1jc2 jc3 ... belongs to Sc. Let yn - Ax2...xh'0'xh^a... .
 Then y m -> x but ym e S - S0.

 Next we define a function g : S -> / by

 f.lA2lAj... AA2..AAm .1 if if if x x x = = = .1A, .lAj-.-lA,, .1A,1A21A3... f.lA2lAj... AA2..AAm if x = .lAj-.-lA,, .1 if x = .1A,

 Suppose x € S - S0. Then x = .lAr..lA m or x - .lA^Aj...,
 where m >1. Put it = 1 + p(Aj) + p(A2). Suppose y e S and
 |y - x | < 3 ("+1) and m k . Then oc and y agree in the first m
 ternary positions and consequently g (x) and g (y ) agree in the first
 m -(1+ p(Aj)) ternary positions. Hence

 !*(*) -*(y)| < 3 =3

 So, given € > 0 choose m £ it such that 3 < € and put
 S Then |x - y | <5 implies |$ (jc) - g (>)| < e , i.e., g is
 continuous at each point of S - S„. Since ^ 1(5 - Se) is continuous and g
 is constant on S0 , it follows that g is Baiie 1 on S .
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 Now let

 ' g(x) if X € S -{.2}
 /*(*) = ] .2 if X =.2

 . .1 if X € [.1,.2] -5 .

 Then h is Baire 1. By Proposition 1 of [BCK] there exists a function / in
 «0ÍO, such that / : [. 1, .2 ] - > [. 1,. 2 ] and / = h on S . (Note that both .1
 and .2 are fixed points for / , a fact we shall need in Example 2.)

 Now suppose M is any closed, nowhere dense subset of I . Then
 there exists a subset M0 of the Cantor set S0 such that M0 is
 homeomorphic to M . We can_find a countable subfamily JC of C[ such
 that the closure of the set {l£ 0 : B e JC} is exactly M0' in addition we

 may specify that p(B) < <» for each B e X . Enumerate X as {£„}
 nm'

 where p(Bn ) ú p(^n+1) for each n, and put x - n.... Then
 X e 5 - S0 and / "+1(x) = .15 „15^... is also in S - S0. Since
 i i -I " ))
 |/',+ i i (^) - .15w0ļ -I ^ 3 " and p(Bn ) -> <*» , it follows that

 ••

 {/ "(*)} has M0 as its cluster set. That is, co(x,f) = M0.
 n*0

 We have been unable to determine whether a continuous function

 exists satisfying the condition of Example 1.
 According to Theorem 1 an co -limit set for a continuous function

 is either nowhere dense and closed, or it is a finite union of closed
 intervals; it cannot be a combination of these two types of sets. However,
 for Darboux Baire 1 functions such combinations are possible, as shown
 by the next theorem. First, we need a lemma.

 «•

 Lemma 1. There exists a sequence {a„ } of positive integers such that
 n »1

 (I) each positive integer is cofinal in {a* } , and (2) any pair k%m of
 n »1

 positive integers appears at most two times as consecutive terms in

 iaS .
 n «1

 Proof. Let N denote the set of positive integers. Well-order N x N as
 indicated in the following array.
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 (1,1) -> (1,2) (1,3) -» (1,4) (1,5) (1,6)
 ^ s* ^

 (2,1) (2,2) (2,3) (2,4) (2,5)
 * s*
 (3,1) (3,2) (3,3) (3,4)

 (4,1) ^ (4,2) ^ (4,3) ^
 (5,1) (5,2)

 <r'
 (6,1)

 oo

 Let {a,} be the sequence obtained by lining up the coordinates of the
 n «1

 «•

 above pairs in the order given. Thus, {<*»} will be 1,1,1,2,2,1,
 n ai

 3,1,2,2,1,3,1,4,2,3,3,2,4,1,... . It is easily verified that {<*„} has the
 n *1

 desired properties.

 Theorem 2. Any nonempty, closed subset of / is an œ -limit set for
 some Darboux, Baire 1 function.

 Proof. Let F be a closed, non-empty subset of / . If F is nowhere
 dense then by Theorem 1 F is an cd -limit set for some continuous
 function. So we may assume that F has nonempty interior.

 «•

 Let ce(a,fc)cF. Choose monotonie sequences {a„} in ( a,c )
 n «1

 M

 and {£„} in (c,b) such that an c and bn-*c. Let

 /,= [infF, /2=(/>,.supF]. J2„, = and Jln =(¿>„,,6.)
 mm

 for each n>l. For each n let {dm } be a sequence in J„ whose

 cluster set is F n Jn . Let D be the set of all possible dm>H.

 Now let {an } be a sequence as specified in Lemma 1. Define bH
 n al

 to be l+card{& : k < n, ak-aH}. Then we may enumerate D as
 T L d a ' b ' where da b * da ' b whenever m * n . Define g as follows: L « ' « J n* b n m ' b m
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 d .= d. . if X = c
 V*i 11 .

 8(x)=' t if * = da >b
 * + 1 rt + 1 * *

 . c if * e D u {c} .

 It is easily seen that F = a)(x,g) for each x in D. In fact,
 ••

 g "(dļ t) = da ķ for each n . From property (2) of the sequence {a„ }
 for any m and k there can be at most two pairs of consecutive iterates

 of the form dm a,dk ß. Therefore, for any m and k the graph of g
 intersects Jm x J k at most twice. From this it is easy to see that for an
 open set G, (1) g"l(G) is finite or a sequence converging to c whenever
 G misses c and (2) g~'G) is the complement of a finite set or a
 sequence converging to c when c e G. In either case g"l(G) is an
 Fa- set, so g is Baire 1.

 By Proposition 1 of [BCK] there exists a Darboux Baire 1 function /
 such that / = g except on a null, meager set which misses D . Then
 clearly a>(dxVf) = F . This completes the proof.

 It is natural to ask whether the results of Example 1 and Theorem 2
 can be combined. Specifically, does there exist a Darboux Baire 1 function
 / such that A(f ) contains a homeomorphic copy of every nonempty
 closed set? We do not have a complete answer to this question.
 However, Example 2, below, shows that functions in «0J 3, can produce
 copies of all the <o -limit sets for continuous functions (see Theorem 1).

 Example 2. There exists a Darboux Baire 1 function f such that A(f )
 contains homeomorphic copies of all possible ©-limit sets for
 continuous functions.

 Proof. Let 1 0 =[y»l] and I k =[772,771] for k From Example 1 there
 exists a «©03, function f0 such that /„(7) = y, fJS) =1 and A(f0)
 contains a homeomorph of each closed nowhere dense set.

 For each k choose Fk to be a subset of the interior of I k which is a
 union of k disjoint nondegenerate closed intervals. By Lemma 9 of
 [AB CP] it follows that there exists a continuous function fk : I h I k such
 that Fk € A (Ą ) and the endpoints of I k are fixed points of f k .
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 Now put /( 0) = 0 and /(jc )=/„(* ) for x s /„ . It is readily
 M

 checked that f e J9d 3, and U <A(/„) = A(f). By Theorem 1, / has the
 n »0

 desired properties.

 Baire 1 and Darboux Baire 2 functions

 By relaxing the requirements for membership in we arrive
 naturally at the classes JDl 32 and 53, . Since each contains JBl 3, we know
 from Theorem 2 that each non void closed set is realizable as an co -limit

 set for functions in each of these classes. This raises the question of
 determining the possible families A(f ) for / in these classes. We have
 some partial results which show that various possibilities exist for these
 classes which do not exist for functions in .(953,.

 Our results show, in particular, that any nonvoid closed set can be
 the only œ - limit set for a function in J91 3Z or in 53, . Since a function in
 ,©53, has a fixed point this situation is possible for a ,(953, function only
 when the given closed set is a singleton.

 Theorem 3. If Cl is a nonvoid countable family of nonvoid closed sets,
 then there exists a Darboux Baire 2 function f such that A(f ) - Q.

 Proof: We give a proof for C[ infinite. The modifications necessary for

 the finite case will be apparent. Let {An} be an enumeration of C[ .
 n * 1

 First we may pick a sequence of mutually disjoint countably infinite
 «• ģ

 sets { Dm } such that Dm = Am for each m. (See the proof of Theorem
 m* 1

 6 for the details.) Put D = KJ~ Z) m and enumerate each Dm m as m -1 m m

 {*..»}" •
 k si

 Since each uncountable Borei set contains a Cantor set we can find a
 ••

 sequence {C4} of mutually disjoint Cantor sets such that C ^I.-D
 km 1

 mm

 for each k , where {/4} is the set of all open rational intervals. Let
 *»i

 C = KJ~ C . Let p be a continuous function from C. onto I . Define
 k si * * *

 h. by h Áx) =x for x e I - KJ~ C. and h Xx) =c for x e C. ,
 * j mk J j mk )
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 where c € C . Put fk - hk o gk. Then fk is a Baire 2 function mapping
 C onto / - U" C .
 * j.k i
 Now define / as follows:

 ( dm.k*x if * =d~k
 f(x) = < fSx) if XeCk
 [dn if xml -C .

 Then it is easily checked that / is Baire 2. Since / maps each
 interval onto / / will also be Darboux. Moreover, A(f ) = <5.

 For Theorem 3 to hold for a family Ô of functions, C must have
 mm

 members whose graphs are dense in / x / . To see this choose {<*,,}
 H «0

 to be a sequence of distinct points in I such that »ö2<.+i) ' n 6
 is dense in I xl. Put Cf = {{(a2„ »ö2<. +i)} • n e ^-et ^ anc^ H
 any two open subintervals of I . Choose n so that (a2 „ > û2ii +1) e J x H .
 If for some x and /, a> (x,f)= {a2 a2n +1} for some n, then

 • •

 {fk(x)}k is eventually in J u H and frequently in each of J and H .
 This implies that the intersection of the graph of / with J x H is
 nonempty. Hence the graph of / is dense in / x / . As a consequence /
 is discontinuous everywhere and hence, cannot be a Baire 1 function.

 It follows that Theorem 3 cannot be valid when JD1ß2 is replaced by
 53, even in the case when Cf is a disjoint family. But Theorem 3 is valid
 for Baire 1 functions when Cf is a finite disjoint family.

 Theorem 4. If C| is a finite nonempty family of nonempty mutually
 disjoint closed sets, then there exists a Baire 1 function f such that
 A(f) = Cl.

 Proof : If <3={F}, then the function g constructed in the proof of
 Theorem 2 has the property that F = to (x, g ) for all xe I . Suppose
 Cl ={F1,...,F„}. Let cH and gH correspond to the special point c and
 function g constructed in Theorem 2, with Fn being the counterpart of
 F . Let W W n be disjoint open sets such that F„ cWH. Define / as
 follows:
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 r gk(x ) if X e wk
 )= < c, if X c U" W. * l' kml *

 Then / is Baire 1 and A(f) = Q.

 We can prove a more restrictive countable version of Theorem 3 for
 Baire 1 functions.

 Theorem 5. If Q is a nonempty countable family of nonempty closed
 sets such that u Q is nowhere dense, then there exists a Baire 1 function
 f such that A(f ) = 0.

 Proof: For any set A let BJiA) ={x :dist(x,A) < n"1}. Enumerate C[ as

 {*.} • « is finite the necessary modifications will be clear.)
 n«l

 Since U" AT is nowhere dense we will be able to find a sequence
 *-i "

 ••

 } of mutually disjoint open sets such that (1) K H r' W m =<f> for each
 m «1

 n and m ; (2) Kn cW H for each n ; (3) W K c BH(KH) for each n , and (4)
 W H o W m = <ļ> for n * m .

 To prove this we proceed as follows: First we construct a sequence

 - cl , Km ) whose cluster set is Ä1, and such that

 dim* dXj when m * j . To accomplish this let £ be a countable dense
 M

 subset of Aļ and let {£„} be an enumeration of
 m «1

 {Bh(x ) :x e E , ne œ0- {0}}. If S„ = Bk(x ) , put TH = Bm(x ) where
 m = n + k . Then (diam Tn) -> 0. By induction pick

 dx j e Tļr' B1(K¿ - cl ^ A^). Having selected d{. for j < k pick dļk

 in Tk n Bx (Ä1) - cl (u~ AT.) - {dXj : i < k }. Clearly {dlm} has Kx
 mm 1

 as its cluster set.
 mm

 Likewise we may choose { d2m } to be a sequence in
 m *1

 w*)- ¡(y- : m £ 1} whose cluster set is K2 and such
 that d2m* d2j for j * m . We continue in this way obtaining for each k
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 a sequence {dk J in Bk ( Kk ) - cl (u~M AT.) - {d.m : j < k , mži}.
 mal

 Let : m il, ik il}. Then each dmk is isolated in D since any
 limit point of D is contained in cl which misses D .

 It follows that for each m and k there exists an open interval
 W c B m (K m 1 centered at d . with radius less than mk m ' m ' m *

 j. dist(dmk, D-{dmk}). Now put WM = ^ ^ mk- It ls clear that con-
 ditions (1) through (4) are satisfied.
 By Lemma 1 and Theorem 2 of [ABGP] we can find a sequence of
 •• ••

 points {y,} and a sequence of continuous functions {£«} such that
 n »1 n Ä I

 (o{yn,gH) = Kh and y(yH,gH) cWm.
 Define / as follows:

 J gjx ) if * s
 /<;t)=ļ y , if X* y(ym,gm) .

 We will show / is Baire 1 by showing each of its countably many level
 sets is the difference of two closed sets, and hence, both an Fa- and Gg -
 set. First since y(yH,gH) C W„ , a(ym,gm) c / - W H and
 cl(r (yn>8n)= o>(yHtgĄ) u we have
 r(yn,g„) = cl(Y(y»,g*))- û>(y„,$„). Secondly we show

 Clearly the left
 hand side is a subset of the right hand side. Let x belong to the right

 hand side. Then there is an open neighborhood V of x missing ^Km
 such that V hits only finitely many of the sets Bn (KĄ) and hence finitely
 many of the sets 7 (>„ » £„) • Hence, x belongs to the left hand side.

 Neither Theorem 4 nor Theorem 5 is valid in general for continuous
 functions. For example, if O, = where K is any closed subset of

 [0,y] consisting of more than one point, then the continuity of / would
 force a fixed point in [0, j] giving an additional member of Q.

 However, Theorem 5 and hence, Theorem 4, is valid for a contin-
 uous function in case C[ consists of singletons and u Cf is closed. We may
 define a continuous function / giving A(f ) = Cl as follows: let / be the
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 identity on uQ and for (a,b) an open component of / - uQ select / to
 be a piecewise linear function connecting (a, a) to to (b,b).

 Measurable Functions

 When all the members of a class of functions C are well-behaved,
 the problem of characterizing the sets A(f ) for / e Ô becomes difficult
 for at least two reasons. Firstly, the existence of one type of to -limit set
 may require the existence of others. For example, if some (o (x ,/ ) for a
 continuous function contains an interval, then / must have infinitely
 many pairwise disjoint ca - limit sets. (See [BCR].) Secondly, certain
 combinations of cd -limit sets are ruled out by continuity considerations.
 For example, we saw in the previous section that certain countable
 families of sets are not realizable as a> -limit sets for a single /e ß,
 even though any finite subcollection can constitute the entire family
 A(f ) for some / e Î3,

 One might expect that dropping regularity conditions on £ will
 allow a large variety of combinations of sets to serve as (ù -limit sets for
 a single function. But it may not be obvious to what extent one can select
 exactly which sets are to be û> -limit sets for some functions and which
 sets are not. The final result settles this.

 Theorem 6. If Cl is any nonempty family of nonempty closed subsets of
 I , then there exists a function f which is Lebesgue measurable and
 Darboux such that A(f ) - 0 .

 Proof: Let Q be a null, meager Fa subset of / which is c-dense in I .
 Let C[ = {Aa} where | is some ordinal not greater than c, the power

 of the continuum. Let {za : a < ß} be a well-ordering of Š x (^ ~ (°})
 where ß= card x ao) (a cardinal is an ordinal not bijective with any

 smaller ordinal). Let {/,} be a countable base of open intervals for /
 n «1

 such that diam JH -> 0 .
 By induction on ß we pick a set {wtf : a < ß} as follows: If

 z#=(y,n) choose we eQnJ„. Having chosen for each ij < a sup-
 pose za = (/x, m); pick wa e Q n Jm -{w„ : r¡ < a}. For each y<| put
 &r~ {w« • za-(Y>n)f for some n}. Then DrnDn=4>
 whenever 7 * t) . It is easy to see that d1= Ar. Since each Dr is
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 mm

 countably infinite we can enumerate Dr as {^rt} Finally put
 D =u {Dy : y < £} and note that D c Q.

 Since each uncountable Borei set contains a Cantor set we can find a

 sequence {Ct} of mutually disjoint Cantor sets such that
 à mí

 mm

 C. Cl.-Qçl.-D for each k , where {/t} is an enumeration of all
 km 1

 open rational intervals. Put C = KJ~ C. * km 1 *

 As in the proof of Theorem 3 let fk be a Baire 2 function mapping
 C. onto I C. . Then we define
 * jmk 1

 id,, 4+1 if X = d k b y 4+1 y k b

 /(x) = j fk(x) if xe q
 if X € / - C .

 oo

 As in Theorem 3, / is Darboux because it maps each I k onto I .
 The function / restricted to the Gt - set / - Q is a Baire 2 function.
 Sinće Q has measure zero / | Q is Lebesgue measurable and hence, / it-
 self is Lebesgue measurable. It is obvious that A(f ) = Cf.
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