Vasile Ene, Institute of Miathematics, str. Academiei 14, 70109 Bucharest, Romanis

ON SOUR CUESTIONS RAISRED BI J. TORAN

In a comprebensive survey article [7], J. Foren bas raised several interesting questions related to some classes of continuous functions. In the following, we are dealing witb tbree of these questions. As a part of our approuch, we will settle in the negative two cf Foran's conjectures.
iet $\zeta=\{F: F$ is contimous $\} ; L=\{F: F$ is Lipscbitz $\} ; H=$ $\{b:[a, b] \longrightarrow[c, d]: b$ is a hameomorphism $\} ; \bar{H}=\{b \in H: b \in A C\}$. Banach's conditions T_{1}, T_{2}, S, Lusir's condition N and conditions $\mathrm{VB}, \mathrm{VBG}, \mathrm{VB}{ }_{*}, A C, A C G$ are defined in [13]; $A(N), B(N), \mathcal{F}, \beta$ in [9].

Definiticn 1.[8]. A functicn $F:[0,1] \longrightarrow R$ satisfies Foran's condition M (resp. \mathbf{M}_{*}) on $E=\bar{E} \subset[0,1]$ if F is $A C$ on each closed subset of E on which F is $V B \cap C$ (resp. $V B, \cap \ell)$.

Definition 2. [12]. Let $\mathrm{F}:[0,1] \longrightarrow \mathrm{R}, \mathrm{E}^{\infty}=\left\{\mathbf{x}: \mathrm{F}^{\prime}(\mathrm{x})= \pm \infty\right\}$; $N^{\infty}=\left\{F:\left|F\left(E^{\infty}\right)\right|=0\right\}$.

Definition 3.[7]. A continuous functicn f on a closed interval is B_{2} provided $\left\{y: f^{-1}(y)\right.$ is finite $\} \cap J$ is uncountable, where J is any open interval in the range of f.

Definiticn 4.[7]. A continuous function f on a closed interval satisfies condition S^{\prime} provided to eacb open interval J in the range of f corresponds a number ε_{J} sucb tbat $|\mathbb{F}| \geqslant \varepsilon_{J}$, whenever E is a measurable set for which $F(E) \supset J$.

Definiticn 5. Let $P=\bar{P} \subset[0,1]$. A function $f: P \longrightarrow R$ is S^{*} (resp. $T_{1}^{*}, S^{1^{*}}, B_{2}^{*}$) on P if f_{P} is $S\left(r e s p . T_{1}, S^{\prime}, B_{2}\right.$) on $[a, b]$, where $a=\inf (P), b=\sup (P),\left\{\left(a_{n}, b_{n}\right)\right\}_{n}$ are the intervals contiguous to P and $f_{P}:[B, b] \longrightarrow R$ is cefined as follows: $f_{P}(x)=$ $f(x), x \in P$ and $f_{F}(x)=\frac{f\left(b_{n}\right)-f\left(a_{n}\right)}{b_{n} a_{n}} \cdot\left(x-a_{n}\right)+f\left(a_{n}\right), x \in\left[a_{n}, b_{n}\right]$.

Definiticn 6. Given s natural number \mathbb{N}, let $\mathcal{F}(\mathbb{N})$ (resp. $B(\mathbb{N})$) be the class of all continuous functions F defined on a closed interval I for which there exist a sequence of sets $\left\{\mathbb{F}_{\mathrm{n}}\right\}$ and a sequence of natural numbers $\left\{N_{n}\right\}$ sucb that $\sup \left\{N_{n}\right\}=N, I=U E_{n}$ and F is $A\left(N_{n}\right)$ (resp. $B\left(N_{n}\right)$) on E_{n}. If we drop the condition $\sup \left\{N_{n}\right\}<\infty$ we obtain Fcran's class \mathcal{F} (resp. B). If the sets E_{n} are supposed to be closed ve cbtain conditions $[\mathcal{F}(\mathbb{N})],[B(\mathbb{N})],[\mathcal{F}],[\mathcal{B}]$.

Definition 7. [12] (p.416). For a function f satisfyine property
 (resp. f $\in[G P]$ on E) if E can be aritten as the union of countably many sets (resp. closed sets) on each of which f is P. Thus we bave properties like $G S^{*}, G S^{\prime *}, G B_{2}^{*}, G T_{1}^{*}, G S, G T_{1}$ (resp. $\left[G S^{*}\right],\left[G S^{\prime *}\right]$, $\left.\left[G B_{2}^{*}\right],\left[\mathrm{GT}_{1}^{*}\right],[G \mathrm{~S}],\left[\mathrm{GT}_{1}\right]\right)$.
J. Foran asks for a characterization of each of the follonine classes of continuous functions: a) H०VBC, b) $\bar{H} \circ A C G$, c) $\bar{H} \circ V B G$. With respect to the class a) we prove that it is contained in the class $\left[G B_{2}^{*}\right]$ and our conjecture is that the converse inclusicn is also true. Witb respect to the class b) we sbow that it is contained in the class $\left[G S^{*}\right]$ and cur conjecture is that the converse inclusion is also true. at the same time, we show that the class [GS*] is strictly contained in the Lusin class N. In this way, we settle in the negative Foran's conjecture asserting that the class $\bar{H} \ominus A C G$ is
identional to the class N. With respect to the class c), we prove that it is contained in the class $\left[\mathrm{CN}_{1}^{*}\right]$ and we conjecture that the converse inclusion is also true. Horeover, we shon that [$\mathrm{GT}_{\mathrm{l}}^{*}$] is strictly contained in the Banani class T_{2}; this settles in the necative Foran's conjecture asserting the identity $\bar{H} \circ V B G=T_{2}$.

In what follows re need the following results:
iemma 1. Let $f: P \rightarrow R, F=\bar{F} \subset[0,1], f \in C$ and let $s: f(P) \rightarrow \bar{R}_{+}$, $s(y)$ is the number (finite or infinite) of points of $f^{-1}(y)$. Then $s(y)$ is Borel measurable.

Prcof. The procf is similar wi.th that of [13] (Theorem 6.4,p. 280). Indeed, let $a=\inf (P), b=\sup (P)$ and let $s_{k}^{(n)}$ be the characteristic function of the set $f\left(I_{k}^{(n)} \cap P\right)$, where $I_{k}^{(n)}$ are defined as in [13]. Clearly $s_{k}^{(n)}$ are Borel measurable and fellewing [13], $s(y)$ is Berel measurable.

Lemman 2. $S=N \cap T_{1}$ for continueus functions on each closed subset of $[0,1]$.

Proof. The proof is identinel with that of [13] (p.284-285) if re use Lemma 1 instead Theu: 2 E. $4, \mathrm{p} .280$ of [13].

Theorem A. (Theorem 7. 42 p .284 of [13] and the Corollary of p . 131 of [12]). $S=N \cap T_{1}=N^{\infty} \cap T_{1}$ for continuous functions on a closed interval.
peuma 3. (Krzyzeuski-lemma, see [20]). If $F_{a p}^{\prime}$ exists at every point of a set E and $|F(E)|=0$ then $F_{a p}^{\prime}(x)=0$ at almost all points $x \in E$.

We will need the symmetric perfect sets and functions defined on these sets which are given in the following construction:

Let $\alpha=\left\{a_{k}\right\}_{k}, k \geqslant 0$, be a sequence of positive numbers such that $a_{0}=1, a_{k-1} \geqslant 2 a_{k}>0$ and let $c_{k}=a_{k-1^{-a_{k}}}$. Let $\sigma(\alpha)=$ \{x: There exists $e_{i}(x)$ taking on 0 or 1 and $\left.x=\sum e_{i}(x) c_{i}\right\}$. If $\alpha=\left\{1 / 3^{k}\right\}_{k}$ then $C(\alpha)=C(C=$ the Cantor ternary set $)$ and if $\alpha=\left\{1 / 2^{k}\right\}_{k}$ then $0(\alpha)=[0,1]$. The open intervals deleted in the s-step of the construction of $C(\alpha)$ are $0_{e_{1}} \ldots e_{s-1}(\alpha)=\left(\sum_{i=1}^{s-1} e_{i} c_{i}+\right.$ $\left.a_{s}, \sum_{i=1}^{s-1} e_{i} c_{i}+c_{s}\right),\left(e_{1}, \ldots, e_{s-1}\right) \in\{0,1\}^{s-1}=\{0,1\} \times \ldots x\{0,1\}$ (sol) times and the remaining intervals of the s-step are $z_{e_{1}} \ldots e_{s}(\alpha)=\left[\sum_{i=1}^{s} e_{i} c_{i}, \sum_{i=1}^{s} e_{i} c_{i}+a_{s}\right]$, where $\left(e_{1}, \ldots, e_{s}\right) \in\{0,1\}^{s}$. Then $C(\alpha) \subset \underbrace{}_{\left(e_{1}, \ldots, e_{s}\right) \in\{0,1\}} s^{\mathrm{R}_{e_{1}} \ldots e_{s}}(\alpha)$, hence $|O(\alpha)|=$ $\lim _{s \rightarrow \infty} 2^{s} a_{s}$. We say that α is of type (*) if $a_{k-1}>2 a_{k}, k=1,2, \ldots$. Then each $x \in C(\alpha)$ is uniquely represented and $O(\alpha)$ is a symmetric perfect nowhere dense subset of $[0,1], 0,1 \in C(\alpha)$. te say that is of type ($+*$) if $a_{k-1} \geqslant 2 a_{k}, k=1,2, \ldots$. We say that α is of type (***) if $c_{2 k-1}=2 \cdot c_{2 k}, k=1,2, \ldots$. Let $\alpha=\left\{a_{k}\right\}_{k}, \alpha^{\prime}=$ $\left\{a_{k}^{\prime}\right\}_{k}, k \geqslant 0$, be two sequences of type ($)$) $c_{k}=a_{k-1}-a_{k}, c_{k}^{\prime}=$ $a_{k-1}^{1}{ }^{-1} \frac{1}{k}, k \geqslant 1$. Let $\alpha^{\prime \prime}=\left\{a_{k}^{\prime \prime}\right\}_{k}, k \geqslant 0$, be 3 sequence of type (**), $c_{i}^{\prime \prime}=a_{k-1}^{\prime \prime}-a_{k}^{\prime}, k \geqslant 1$. Let $I^{\alpha}, \alpha^{\prime \prime}: o(\alpha) \rightarrow O\left(\alpha^{\prime \prime}\right), I^{\alpha}, \alpha^{\prime \prime}(x)=$ $I^{\alpha}, \kappa^{\prime \prime}\left(\sum_{i=1}^{\infty} e_{i}(x) c_{i}\right)=\sum_{i=1}^{\infty} e_{i}(x) c_{i}^{\prime \prime} ; G^{\alpha}, \alpha^{\prime \prime}: C(\alpha) \longrightarrow C\left(\alpha^{\prime \prime}\right), G^{\alpha}, \alpha^{\prime \prime}(x)=$ $G^{\alpha}, \alpha^{\prime \prime}\left(\sum_{i=1}^{\infty} e_{i}(x) c_{i}\right)=\sum_{i=1}^{\infty}\left(e_{2 i-1}(x) c_{21}^{\prime \prime}+e_{2 i}(x) c_{21-1}^{\prime \prime}\right) ; \quad G^{\alpha^{\prime}, \alpha^{\prime \prime}}:$ $O\left(\alpha^{\prime}\right) \rightarrow C\left(\alpha^{\prime \prime}\right), G^{\alpha^{\prime}, \alpha^{\prime \prime}}(x)=G^{\alpha^{\prime}, \alpha^{\prime \prime}}\left(\sum_{i=1}^{\infty} e_{i}(x) c_{i}\right)=\sum_{i=1}^{\infty}\left(\theta_{2 i-1}(x) c_{2 i}^{\prime \prime}+\right.$
$\left.\epsilon_{2 i}(x) c_{2 i-1}^{\prime \prime}\right) ; F_{1}^{\alpha, \alpha "}: C(\alpha) \longrightarrow[0,1), F_{2}^{\alpha, \alpha^{\prime \prime}}: C(\alpha) \rightarrow[0,1), F_{1}^{\alpha, \alpha^{\prime \prime}}(x)$
$=F_{1}^{\alpha}, \alpha^{\prime \prime}\left(\sum_{i=1}^{\infty} e_{i}(x) c_{i}\right)=\sum_{i=1}^{\infty} e_{2 i-1}(x) c_{2 i-1} ; F_{2}^{\alpha}, \alpha "(x)=$
$F_{2}^{\alpha}, \alpha^{\prime \prime}\left(\sum_{i=1}^{\infty} e_{i}(x) c_{i}\right)=\sum_{i=1}^{\infty} e_{2 i}(x) c_{2 i}^{\prime \prime}$. Extending $I^{\alpha,},{ }^{\alpha \prime}, G^{\alpha, \alpha^{\prime \prime}}, F_{i}^{\alpha,}, \alpha^{\prime \prime}$, $\mathrm{F}_{2}^{\alpha, \alpha^{\prime \prime}}$ (resp. $\mathrm{G}^{\alpha^{\prime}}, \alpha^{\prime \prime}$) by linearity on the intervals contiguous to $C(\alpha)$ (resp. $C\left(\alpha^{\prime}\right)$), we bave these functions defined and continuous on $[0,1]$. Clearly $I^{\alpha},^{\alpha}(x)=x$ on $[0,1]$. We have

$$
\begin{equation*}
I^{\alpha, \alpha^{\prime \prime}}(x)=F_{1}^{\alpha}, \alpha^{\prime \prime}(x)+F_{2}^{\alpha,} \alpha^{\prime \prime}(x) ; \tag{1}
\end{equation*}
$$

(2) $\quad G^{\alpha}, \alpha^{\prime \prime}\left(R_{e_{1}} \ldots e_{2 k}(\alpha) \cap c(\alpha)\right)=R_{e_{2} e_{1} \ldots e_{2 k^{e}}{ }_{2 k-1}\left(\alpha^{\prime \prime}\right) \cap c\left(\alpha^{\prime \prime}\right), ~}^{n}$
(3)

$$
G^{\alpha^{\prime}}, \alpha^{\prime \prime} G^{\alpha, \alpha^{\prime}}=I^{\alpha, \alpha^{\prime \prime}} \text { on } C(\alpha) \text {. }
$$

If in addition α is of type ($+*+$) (i.e., $c_{2 i-1}^{\prime \prime}=2 c_{2 i}^{n}$) then
(4) $2 G^{\alpha, \alpha " \prime}(x)=3 F_{1}^{\alpha, \alpha^{\prime \prime}}(x)+I^{\alpha, \alpha^{\prime \prime}}(x)=4 I^{\alpha, \alpha^{\prime \prime}}(x)-3 F_{1}^{\alpha, \alpha^{\prime \prime}}(x)$

$$
=4 F_{2}^{\alpha,}, \alpha^{\prime \prime}(x)+F_{I}^{\alpha}, \alpha^{\prime \prime}(x) .
$$

Remark 1. a) If \propto is of type (*) then \propto is of type (**).
b) If $a \in[0,1)$ then there exists a sequence $\alpha=\left\{a_{i}\right\}_{i}$, $i \geqslant 0$, of type (*) but not of type (***) such that $|C(\alpha)|=a$. Put for example $a_{i}=8 / 2^{i}+(1-a) / 4^{i}$.
c) If $a \in[0,1)$ then there exists a sequence $\alpha=\left\{a_{i}\right\}_{i}, i \geqslant 0$, of type (*) and of type (***) such that $|c(\alpha)|=a$ Put for example:
$a_{2 i-1}=2 / 4^{i}-\left(3 \cdot 2^{i+1}-10\right) a /\left(3 \cdot 8^{i}\right), i=1,2, \ldots, a_{2 i}=1 / 4^{i}-$ $\left(2^{i}-1\right) a /\left(8^{i}\right), i=0,1, \ldots$ Then $c_{2 i}=1 / 4^{i}-\left(3 \cdot 2^{i}-7\right) /\left(3 \cdot 8^{i}\right)$;

$$
c_{2 i-1}=2 / 4^{i}-\left(3 \cdot 2^{i+1}-14\right) \theta /\left(3 \cdot 8^{i}\right)
$$

d) If $\alpha=\left\{1 / 2^{i}\right\}_{i}$, $i \geqslant 0$, then α is of types_(*) and $(* * *)$ but not of type (*) and $C(\alpha)=[0,1]$.
e) If $\alpha=\left\{1 / 3^{i_{1}}\right\}_{i} i \geqslant 0$ and $\alpha^{\prime \prime}=\left\{1 / 2^{i}\right\}_{i}, i \geqslant 0$, then $I^{\alpha, \alpha^{\prime \prime}}=\varphi$, where φ is the Cantor ternary function.

Lemma 4. Let N be a natural number and let $f, b:[0,1] \longrightarrow R$, b - increasing and $A C$. Let E be a closed subset of $[0,1]$. If there exists $\eta>0$ such that for each $c, d \in \mathbb{E}$, with $0<d-c<\eta$, $\lambda_{N}(f([c, d] \cap E))<b(d)-b(c)$ then $f \in \mathbb{A}(N)$ on E. $\left(\lambda_{N}(X)=\right.$ $\inf \left\{\sum_{i=1}^{N}\left|I_{i}\right|:\left\{I_{i}\right\}_{i=1}^{N}\right.$ is a sequence of N open intervals which covers the set X \}, see [11],p.404).

Proof. For $\varepsilon>0$ let δ_{ε} be the δ given by the fact that b is $A C$. Let $\mathcal{C}_{E}^{l}=\min \left\{\mathcal{E}_{\varepsilon}, \eta\right\}$. By the definition it follows that feA(N) on E.

The profs of the following theorems l, 2 and 3 will be deferred until the end of the paper.

Theorem 1. With the above notations we have:
a) $\left|F_{1}^{\alpha, \alpha^{\prime \prime}}(C(\alpha))\right|=\left|F_{2}^{\alpha, \alpha^{\prime \prime}}(C(\alpha))\right|=0$ and $G^{\alpha, \alpha^{\prime \prime}}(C(\alpha))=C\left(\alpha^{\prime \prime}\right)$;
(hence $F_{1}^{\alpha, \alpha^{\prime \prime}}$ and $F_{2}^{\alpha, \alpha^{\prime \prime}}$ belong to $S=N \cap T_{1}$ on $[0,1] ;$)
b) If $|C(\alpha)| \neq 0$ and $\left|C\left(\alpha^{\prime \prime}\right)\right| \neq 0$ then $F_{i}^{\alpha, \alpha^{\prime \prime}}, F_{2}^{\alpha, \alpha^{\prime \prime}}, G^{\alpha, \alpha^{\prime \prime} \text { belong }}$ to $\mathfrak{T}(2)-\$(1)$ and the sets of points of $C(\alpha)$ at which $F_{1}^{\infty}, \propto^{\prime \prime}$, $F_{2}^{\kappa, \alpha^{\prime \prime}}, G^{\infty}, \infty^{\prime \prime}$ are approximately differentiable are null sets. $G^{\alpha, \alpha^{\prime \prime}}$ has finite or infinite derivative at no point of $O(\alpha)$.
c) If $|C(\alpha)| \neq 0$ and $\left|O\left(\alpha^{\prime \prime}\right)\right| \neq 0$ then $F_{1}^{\alpha, \alpha^{\prime \prime}}, F_{2}^{\alpha, \alpha^{n \prime}} \in S$ (hence $\left.F_{1}^{\infty}, \infty^{\prime \prime}, F_{2}^{\infty}, \infty^{\prime \prime} \in\left[G S^{+}\right]\right)$on $[0,1]$, but $G^{\infty}, \infty^{\prime \prime} \notin\left[G S^{\prime \prime}\right]$ on $[0,1]$.
d) If \propto " is of type ((f) then $G^{\alpha, ~} \propto^{\prime \prime}$ is bijective on $C(\alpha)$;
e) If $\alpha^{\prime \prime}$ is of type ($* *$) but not of type (*) then $\|\left(G^{\alpha, \alpha ")}\right)^{-1}(y)$ $\cap c(\alpha) \|=1$ (resp. $\left\|\left(G^{\alpha, \alpha "}\right)^{-1}(y) \cap c(\alpha)\right\|=2$) if y bas an unique representation (resp. twe representations); (\|X\| = the cardinal of the set X .)
f) $G^{\alpha}, \alpha^{\prime \prime}$ is monotcne on no portion of $C(\alpha)$;
g) If there exists $M>0$ such that $c \ddot{2}_{i} / \min \left\{a_{2 i}-2 a_{2 i+1}, a_{2 i+1}-2 a_{2 i+}\right\}$
$<M, i=0,1, \ldots$ then $G^{\infty, \infty "} \in L$. (In particular this bolds when $\left.C(\alpha)=C\left(\alpha^{\prime \prime}\right)=c\right)$.
b) If $|C(\alpha)|=0$ and $\left|C\left(\alpha^{\prime \prime}\right)\right| \neq 0$ tben $G^{\alpha, \alpha "} \in\left(N \cap T_{2}\right)-N$ on $[0,1]$ snd at least one of the functions $F_{1}^{\alpha, \alpha "}$ and $F_{2}^{\alpha, \alpha "}$ does not belong to \mathcal{F} on $[0,1]$.

Remark 2. A continuous, bijective function on C and menctone on $n=$ portion of C was constructeó before in [5]. There exists a function $f: C \longrightarrow C, f \in \ell \cap L$ and bijective sucb tbat f is monotone on no portion of C and $f \circ f(x)=x$ on C. Put for example $C(\alpha)=$ $O\left(\alpha^{\prime}\right)=G\left(\alpha^{\prime \prime}\right)=C$ and $f=G^{\alpha, \alpha^{\prime \prime}}$ (see Theorem 1,d),f),) and (3)). Lemma 5. Let $f: F \rightarrow R, P=\bar{P} \subset[0,7]$ and let $H_{1}=\left\{x: f^{\prime} \mid \bar{F}(x)\right.$ $=0\}$. Then $\left|f\left(H_{1}\right)\right|=0$.

Proof. Let $H=\left\{x \in H_{1}: x\right.$ is a billateral point of accumulation of $P\}$. Then $f_{P}^{\prime}(x)=0$ at each $x \in H$ and $H_{P} H$ is at most denumerable. By Theorem 4.5,p. 271 of [13], it followis that $\left|f_{P}(H)\right|=0$, bence $\left|f\left(H_{1}\right)\right|=0$.

Proposition 1. Let $f: P \rightarrow R, f \in \mathcal{C}, P=\bar{P} \subset[0,1]$ and let $E=$ $\left\{x \in P: f^{\prime}(x)\right.$ does not exist with respect to $\left.P\right\}$. If $|f(\mathbb{E})|=0$ then $f \in T_{1}$ on P.

Proof. Using Lemma 5 instead of Theorem 4.5, p. 271 of [73], the procf is similar to the proof of Theorem $6.2, \mathrm{p} .278,2^{\circ}$ of [13].

3emark 3. The converse of Proposition 1 is true only if $P=$ [0,1]. (See Theorem 1,a),b) and Therrea 6.2,p. 278 of [13] or Theorem $1, \mathrm{p} .130$ of [12].)

Remark 4. For continucus functions dofined on $[0,1]$ we have:
a) $\mathrm{H} \bullet \mathrm{L}=\mathrm{H} \circ \mathrm{AC}=\mathrm{H} \circ \mathrm{S}=\mathrm{H} \circ \mathrm{S}^{\prime}=\mathrm{B}^{\prime}\left(\right.$ see $[7]$); b) $\mathrm{H} \circ \mathrm{VB}=\mathrm{H} \circ \mathrm{T}_{\mathrm{l}}=\mathrm{B}_{2}$ (see [7]); c) $\bar{H} \bullet A C=\bar{H} \circ S=S(s e e[7]) ; ~ d) ~ \bar{H} \circ V B=\bar{H} \circ T_{1}=T_{1}$ (see [7]); e) $\mathrm{L} \circ \mathrm{H}=\mathrm{AO} \circ \mathrm{H}=\mathrm{VB} \circ \mathrm{H}=\mathrm{VB}$ (see [7]); f) SOS = S (see [13], p.289); g) $S^{\prime} \circ S=S^{\prime}\left(\right.$ since by a), $\left.S^{\prime} \circ S=H \circ S \circ S=H \bullet S=S^{\prime}\right)$. Tbis follous also by definitions. Indeed, let $f, g:[0,1] \longrightarrow R$ and let $G=f \circ g$, $f \in S ', E \in S$. Let $\mathbb{E} C[0,1]$ and let J be an interval such that $J C$ $G(\mathbb{E})=f(\mathbb{E}(\mathbb{E}))$. Then there exists $\varepsilon_{1}>0$ such that $|E(\mathbb{E})|>\varepsilon_{1}$. Since $g \in S$ there exists $\varepsilon>0$ such that $|E|>\varepsilon$. b) $T_{1}=$ SoH (since by d), e), c), $T_{1}=\bar{H} \circ V B=\bar{H} \circ A C \cdot H=S \circ H$); i) $T_{1}=S \circ T_{1}$ (since by f), b), SOT $T_{1}=S \circ S \circ H=S \circ H=T_{1}$); j) $B_{2}=S ' \circ H$ (since by b), e), a), $\left.B_{2}=H \circ V B=H \circ A O \circ H=S(\circ H) ; k\right) B_{2}=S^{\prime} \circ T_{1}$ (since by $\left.\left.j\right), b\right), g$), $S^{\prime} \circ T_{1}=S^{\prime} \circ S \circ H=S^{\prime} \circ \mathrm{H}_{\mathrm{H}}=\mathrm{B}_{2}$); 1) $\mathrm{H} \circ \mathrm{B}_{2}=\mathrm{B}_{2}$ (since by b), $\mathrm{H} \circ \mathrm{B}_{2}=$ $\mathrm{H} \cdot \mathrm{H} \circ \mathrm{VB}=\mathrm{H} \circ \mathrm{VB}=\mathrm{B}_{2}$); m) $\mathrm{B}_{2} \bullet \mathrm{H}=\mathrm{B}_{2}$ (since by j), $\mathrm{B}_{2} \circ \mathrm{H}=\mathrm{S}^{\prime} \bullet \mathrm{H} \circ \mathrm{H}=$ $\left.S^{\prime} \bullet H=B_{2}\right)$.

Theorem 2. For continuous functions on $[0,1]$ ue beve:
 from Thecrem 1, b) ;
b) $A C G=[A C G]=[\mathfrak{F}(1)] \underset{f}{f}\left[S^{*}\right]$ and $S £\left[G S^{*}\right]$;
c) $\left[G S^{*}\right]=\left[G T_{1}^{*}\right] \cap N=\left[G T_{1}^{*}\right] \cap M \subseteq\left[G \mathbb{N}_{1}^{*}\right] \cap \mathbb{N}^{\infty}=\left[G T_{1}^{*}\right] \cap \mathbf{K}_{*} ; A C G-B_{2}$ $\neq \varnothing$, bence $\operatorname{ACG}-S^{\prime} \neq \varnothing$;
d) $[G S]=\left[\mathrm{GT}_{1}\right] \cap N \subset\left[\mathrm{GT}_{1}\right] \cap \mathbf{M} \subseteq\left[\mathrm{GT}_{1}\right] \cap N^{\infty}=\left[\mathrm{GT}_{1}\right] \cap \mathbf{M}$;
e) $\mathcal{F}=[\mathcal{F}] \varsubsetneqq[G S] \varsubsetneqq G S C N$ and $\left[G S^{*}\right] \varsubsetneqq[G S]$;
£) $\mathrm{VBG}=[\mathrm{VBG}]=[\mathrm{B}(1)] \risingdotseq\left[\mathrm{GI}_{1}^{*}\right]: B=[B] \varsubsetneqq\left[\mathrm{CT}_{1}\right]\left(\mathrm{T}_{1}-B \neq \varnothing\right)$; $\left[\mathrm{Cr}_{1}^{*}\right] \subsetneq\left[\mathrm{GT}_{1}\right] \subsetneq \mathrm{T}_{2}$.

Remark 5: That ACG - $S^{\prime} \neq \varnothing$ uas shown in [6].
Froposition 2. For functions defined on a bounded real set
ue have: a) $\operatorname{sos}=S$; b) $\left(N \cap T_{1}\right) \circ T_{1}=T_{1}$.
Froof. Lat $g: E \rightarrow K . f: K \rightarrow K$. \quad - fog.
:) Sundcse f.fc S . Let $\varepsilon>0$ and let δ_{ε} be the δ given by the $f=-t$ that $f \in S$. For δ_{ε} let $\eta>0$ be the δ given by the fact tbat $r \in B$. Let $I_{1} \subset \mathbb{E}^{2} .\left|E_{1}\right|<\eta$. Then $\left|G\left(E_{1}\right)\right|<\varepsilon$.
b; sunpose f $\in \mathbb{T}_{1} \cap N . g \in \mathbb{T}_{1}$. Let $A=\left\{y: G^{-1}(y)\right.$ is infinite $\}$ and $A_{1}=$ $\left\{y: f^{-1}(y)\right.$ is infinite $\}$. Then $\left|A_{1}\right|=0$. Let $B_{1}=\left\{z \in K: E^{-1}(z)\right.$ is infinite\}. Then $\left|B_{1}\right|=0$. Since $f \in \mathbb{N} .\left|f\left(B_{1}\right)\right|=0$: he bave $\therefore C_{H_{1}} \cup f\left(B_{1}\right)$. Indead. let $y \in A$ then $G^{-1}(y)=E^{-1}\left(f^{-1}(y)\right)$ is infinite. It follous that $f^{-1}(y)$ is infinite, bence $y \in A_{1}$ cr there exists $z \in f^{-1}(y)$ such that $g^{-1}(z)$ is infinite, bence $z \in B_{1}$. so $y=f(z) \in f\left(B_{1}\right)$. It follows now that $|A|=0$.

Lemma 6. Let $\mathrm{E}:[\mathrm{a}, \mathrm{b}] \longrightarrow[\mathrm{c}, \mathrm{d}], \mathrm{f}:[\mathrm{C}, \mathrm{d}] \longrightarrow \mathrm{B}, \mathrm{F}:[\mathrm{a}, \mathrm{b}] \longrightarrow \mathrm{B}$. $F=f \circ g, f, g \in \mathcal{C}$. Let $P=\bar{P} \subset[a, b]$. Then $F_{P}=\left(f(P){ }^{\circ} g_{P}\right)_{F}$. Moreover, if $\varepsilon \in H$ then $F_{P}=f_{g(P)}{ }^{\circ} g_{P}$.

Proof. The first part of Lemma 6 is evident. We prove the scoond oart. Clearly $F_{P}(x)=f_{g}(P)^{\circ} \mathscr{g}_{P}(x)$ for $x \in P$. Let $I_{n}=\left(3_{n} \cdot b_{n}\right)$. $n \geqslant 1$, be the intervals contiguous to P uitb respect to [inf(F).
 $J_{n}=f\left(I_{n}\right)$. Hence $f_{f(F)}{ }^{\circ} g_{P}$ is linesr on each $\left[a_{n}, b_{n}\right]$. Since $F\left(a_{n}\right)$ $=F_{P}\left(a_{n}\right) \cdot F\left(b_{n}\right)=F_{P}\left(b_{n}\right)$. it follows that $F_{P}=f_{g}(P)^{\circ g_{P}}$
domark 6: That $\mathrm{g} \in \mathrm{H}$ is essential in L :mme 6. Indeed. let $f=g . f:[0,1] \longrightarrow[0,1], f(x)=1 / 3-x . x \in[0,1 / 3] ; f(x)=x$.
$x \in[2 / 3,1], f(x)=2 x-2 / 3, x \in(1 / 3,2 / 3)$. Let $P=[0,1 / 3] U$ $[2 / 3,1]$ and $F=f \circ g$. Then $f_{P}=f$ on $[0,1], F_{P}(x)=x$ on $[0,1]$, but $F(x) \neq x$ on $(1 / 3,2 / 3)$, and $F(1 / 2)=f(1 / 3)=0$. (See also the function f of Remark 2.)

Lemma 2. Let $f:[0,1] \rightarrow R$, be a continuous functicn which is T_{1} (resp. $S ; B_{2}$) on $[0,1]$. If $P=\bar{P} \subset[0,1]$ then f_{P} is T_{1} (resp. S; $\left.B_{2}\right)$ on $[a, b]=[\inf (P), \sup (P)]$.

Proof. Let $\left\{I_{n}\right\}$ be the intervals contiguous to P witb respect to $[a, b]$. Suppose $f \in T_{1}$ on $[0,1]$. We prove that $f_{P} \in T_{1}$ on $[a, b]$. Let $A=\left\{y: f^{-1}(y) \cap[a, b]\right.$ is infinite $\}$. By the definition of T_{1} it follows that $|A|=0$. Let $A^{\prime}=\left\{y: f_{P}^{-1}(y) \cap[a, b]\right.$ is infinite $\}$; $A^{\prime \prime}=\left\{y: f_{P}^{-l}(y) \supset I_{n}\right.$ for some natural number $\left.n\right\}$. We show that $A^{\prime}-A^{\prime \prime} \subset A$. Let $y \in A^{\prime}-A^{\prime \prime}$ sucb that $f_{P}^{-l}(y) \cap P$ is infinite. Ihen $f^{-1}(y) \cap P$ is infinite, bence $y \in A$. Let $y \in A^{\prime-} A^{\prime \prime}$ sucb that $f_{P}{ }^{-1}(y)$ $\cap P$ is finite. It follows that there exists a sequence $\left\{n_{i}(y)\right\}$, $i \geqslant 1$, such that $\left\|f_{P}^{-l}(y) \cap I_{n_{i}}(y)\right\|=1$. Since $f \in \mathcal{C}$ it follows that $\left\|f^{-1}(y) \cap I_{n_{1}(y)}\right\| \geqslant 1, i=1,2, \ldots$, bence $y \in A$. Since $A^{\prime \prime}$ is denumerable, it follows that $\left|A^{\prime}\right|=0$, bence $f_{p} \in T_{1}$ on $[a, b]$. Suppose that f is S on $[0,1]$. We prove that f_{P} is S on $[B, b]$. By Banach's theorem (Theor em 7.4,p. 284 of [13]), $\measuredangle \cap S=\measuredangle \cap T_{1} \cap N$ on $[a, b]$. Since $f \in S=T_{1} \cap N, f_{P} \in N$ on $[a, b]$ and by the first part of this lemma $f_{P} \in T_{1}$ on $[a, b]$ bence $f_{P} \in N \cap T_{1}=S$ on $[a, b]$. Suppose that f is B_{2} on $[0,1]$. We prove that $f_{p} \in B_{2}$ on $[a, b]$. Let $J \subset \operatorname{rnc}\left(f_{p}\right)$ be a nondegenerate interval. (Here rng(f) denoted the rance of the function f_{0}) Clearly $J \subset r \ln (f)$. Let $\Delta_{J}=\{y \in J$: $f^{-1}(y) \cap[a, b]$ is finite $\}$. By the definition of B_{2} it follows that A_{J} is uncountable. Let $A_{J}^{\prime}=\left\{y \in J: f_{P}^{-1}(\bar{J}) \cap[a, b]\right.$ is finite $\}$ and $A_{J}^{U}=\left\{y \in J:\right.$ there exists at least one natural number n_{y} such that
$\left.f_{P}^{-1}(y) \supset I_{n_{y}}\right\}$. To prove that $f_{F} \in B_{2}$ it is sufficient to shor that $A_{J}-A_{J}^{\prime \prime} \subset A_{J}^{j}$ (since $A_{J}^{\prime \prime}$ is countable). Let $y \in A_{J}-A_{J}^{\prime \prime}$ then $f^{-1}(y)$ $\cap P$ is eitber finite or empty, $B_{y}=\left\{n: f^{-l}(y) \cap I_{n} \neq \varnothing\right\}$ is finite and $\left\|P_{P}^{-1}(y) \cap I_{n}\right\|=1$, for each $n \in B_{y}$. Hence $y \in A_{j}$.

Some Open questions. a) Is the converse of Lemma 4 true for continuous functions on $[0,1]$?
b) Let $f:[0,1] \rightarrow R$ and let E be a subset of $[0,1]$. Let N be a natural number. Then f is said to be $L(N)$ on E if there exists $L>0$ sucb that for each $a, b \in E, a<b, \lambda_{N}(f([a, b] \cap E))<L$. If in Definition 6 condition $A(N)$ is replaced by $L\left(N_{n}\right)$ we obtain the classes \mathcal{L} and $\mathcal{L}(N)$. We conjecture that: 1) $\mathcal{L} \circ \mathrm{H}=\mathcal{F} \circ \mathrm{H}=\mathcal{B}$; 2) $\mathcal{L} \bullet \bar{H}=\boldsymbol{F} \circ \vec{H}=\mathcal{F}$; 3) $\mathcal{L}(k) \bullet H=\mathcal{F}(k) \circ H=\boldsymbol{B}(k) ; 4) \mathcal{L}(K) \cdot \vec{H}$ $=\mathcal{F}(k) \circ \bar{H}=\boldsymbol{F}(k), k \geqslant 2 ; 5)\left[G S^{*}\right] \circ H=\left[G T{ }_{1}^{*}\right]$ and $\left[G S^{\prime *}\right] \circ H=\left[G B_{2}^{*}\right]$; 6) $\mathrm{H} \bullet A C G=\left[G S^{\prime *}\right]$ (see question 3 of [7]) and $H \bullet\left[G S^{\prime *}\right]=\left[G S^{\prime *}\right]$. c) How can the following classes of continuous functicns on closed intervals be cbaracterized: $\overline{\mathrm{H}} \bullet \mathcal{F}(\mathrm{k}) ; \overline{\mathrm{H}} \cdot \mathfrak{F} ; \mathrm{H} \circ \mathfrak{F}(\mathrm{k}) ; \mathrm{H} \bullet \mathfrak{Z}$? The same question if \mathcal{F} is replaced by \mathcal{L} and B 。
d) Does Lemma 7 remain true if S is replaced by S^{\prime} ?

$$
\text { Proof of Theorem 1. a) } F_{2}^{\alpha, \alpha^{\prime \prime}}(c(\alpha)) \subset \underbrace{}_{j_{1}, \cdots, j_{n} \in\left\{0,1^{n}\right\}_{i=1}^{[} \sum_{i=1}^{n} j_{i} c_{i i}^{\prime \prime}, ~}
$$ $\left.\sum_{i=1}^{n} j_{i} c_{2 ̈}^{\prime}+\sum_{i=n+1}^{\infty} c_{2 i}^{\prime \prime}\right]$. Clearly $a_{i}^{\prime \prime} \leq l / 2^{i}, i=1,2, \ldots$. It follows that $\sum_{i=1}^{\infty} c_{2 i}<1 / 4^{n}$, bence $\left|F_{2}^{\alpha, \alpha^{\prime \prime}}(c(\alpha))\right| \leqslant \lim _{n \rightarrow \infty} 2^{n}\left(1 / 4^{n}\right)=0$. Similarly $\left|F_{1}^{\alpha, \alpha^{n}}(C(\alpha))\right|=0$. If $k=0$, by (2), $G^{\alpha, \alpha^{\prime \prime}}(C(\alpha))=C\left(\alpha^{\prime \prime}\right)$. T hat $F_{1}^{\alpha, \alpha "}$ and $F_{2}^{\alpha, \alpha^{\prime \prime}}$ belong to $S=N \cap T_{1}$ on [0,1] follows by [13] (Theorem 6.2,p.278) and Theorem A.

b) Let $|C(\alpha)|=a$ and $\left|C\left(\alpha^{\prime \prime}\right)\right|=b$. By bypothesis $a \neq 0$ and $b \neq 0$. First we sball prove that $\left(I^{\alpha}, \alpha^{n}\right){ }^{\prime}(x)=b / a$ a.e. on $C(\alpha)$ and $I^{\alpha, \alpha^{\prime \prime}}$
is $A C$ on $[0,1]$. Let $A=\left\{x \in C(\alpha): I^{\alpha, \alpha " ~ i s ~ d e r i v a b l e ~ a t ~} x\right\}$. Let $x_{c} \in A, x_{0}=\sum_{i=1}^{\infty} e_{i} c_{i}, x_{n}=\sum_{\substack{i=1 \\ i \neq n+1}}^{\infty} e_{i} c_{i}+\left(1-e_{n+1}\right) c_{n+1}$. It follows
that $\left(I^{\alpha}, \alpha^{n}\left(x_{n}\right)-I^{\alpha, \alpha "}\left(x_{0}\right)\right) /\left(x_{n}-x_{0}\right)=\left(a_{n}^{\prime \prime}-a_{n+1}^{\prime \prime}\right) /\left(a_{n}-a_{n+1}\right)=$ $\left(2^{n_{n}^{\prime \prime}}-2^{n_{n}^{\prime \prime}} n_{n+1}\right) /\left(2^{n_{n}} a_{n}-2^{n_{n}} n_{n+1}\right) \rightarrow b / a$, bence $\left(I^{\alpha, \alpha^{\prime \prime}}\right) \prime(x)=b / a$ if $x \in A$. Observing that $I^{\alpha, \alpha^{\prime \prime}}$ is increasing on $[0,1]$, it follows that $|C(\alpha)-A|=0$. Alsc $\int_{0}^{1}\left(I^{\alpha, \alpha^{\prime \prime}}\right)^{\prime}(x) d x=\int_{C(\alpha)}(b / a) d x+$
 prove that $F_{1}^{\alpha, \alpha^{\prime \prime}}, F_{2}^{\alpha, \alpha^{\prime \prime}} \in A(2)$ on $C(\alpha)$. By (1), since $A(1)+A(2)$ $=A(2)$, it is sufficient to prove that $F_{2}^{\alpha, \kappa "} \in A(2)$ on $C(\alpha)$. By [3] it follows that if $u, v \in C(\alpha)$ then there exists J_{1} and J_{2} such that

 We sball prove that the sets of points of $C(\alpha)$ at which $F_{1}^{\alpha, \alpha^{\prime \prime}}$ and $F_{2}^{\alpha} ; \alpha^{\prime \prime}$ are approximately differentiable, are null sets. Let $B=$ $\left\{x \in \Lambda: F_{2}^{\alpha}, \kappa^{\prime \prime}\right.$ is approximately differentiable at $\left.x\right\}$. By (1), $B=$ $\left\{x \in A: F_{1}, \alpha^{n \prime}\right.$ is approximately differentiable at $\left.x\right\}$. By Lemma 3 togetber with $\left|F_{1}^{\alpha, \alpha^{\prime \prime}}(B)\right|=\left|F_{2}^{\alpha, \alpha^{\prime \prime}}(B)\right|=0$, it followis that $\left(F_{1}^{\alpha}, \alpha^{\prime \prime}\right)_{a p}^{\prime}(x)=\left(F_{2}^{\alpha, \alpha^{\prime \prime}}\right)_{a p}^{\prime}(x)=0$ a.e. on B. By (I), since ($\left.I^{\alpha, \alpha^{\prime \prime}}\right)^{\prime}(x)$ $=\mathrm{b} / \mathrm{a}$ on A , it follows that $|B|=0$. By $[13]$ (p.222-223) it follows that $F_{1}^{\alpha, \alpha^{\prime \prime}}, F_{2}^{\alpha, \alpha^{\prime \prime}} \notin B(1)$. If $\alpha^{\prime \prime}$ satisfies condition (μ_{+f}) the assertion for $G^{\alpha, \alpha^{\prime \prime}}$ follows easily by (4). We sball prove witbout condition (***) that $G \propto, \alpha^{\prime \prime} \in A(2)$ on $C(\alpha)$. Iet $0<v-u, u, v \in C(\alpha)$. Let s be the first natural number sucb that $[u, v]$ contains an open interval $0_{e_{1} \ldots e_{s-1}}(\alpha)=\left(u_{1}, v_{1}\right)$, from the step s. Then $[u, \nabla] \subset$
 $G\left(v_{2}\right)=\sup _{x \in\left[v_{1}, v\right] \cap C(\alpha)} G(x), u_{2}=\sum_{i=1}^{s-1} e_{i} c_{i}+\sum_{i=1}^{\infty} e_{i} c_{i}, v_{2}=v_{1}+$ $\sum_{i=5+1}^{\infty} e_{i}^{\prime \prime} c_{i} \cdot \operatorname{Let} b^{\alpha}, \alpha^{\prime \prime}(x)=\sum_{i=1}^{\infty} e_{i}(x) c_{i-1}^{\prime \prime}, x \in C(\alpha), c_{0}^{\prime \prime}=2$. Extending $h^{\alpha, \alpha^{\prime \prime}}$ linearly on each interval contiguous to $C(\alpha)$ we have $b^{\alpha, \alpha^{\prime \prime}}$ defined and continuous on $[0,1], h^{\alpha, \alpha^{\prime \prime}}(0)=0, b^{\alpha, \alpha "}(1)=2$, $\left(h^{\alpha, \alpha^{\prime \prime}}\right)^{\prime}(x)=2 b / a$ a.e. on $C(\alpha)$ (see the proof for $I^{\left.\alpha, \alpha^{\prime \prime}\right), ~} h(C(\alpha)$) $=C\left(\alpha^{\prime \prime}\right)+\left[1+C\left(\alpha^{\prime \prime}\right)\right], b$ is strictly incressing on $\left[0, a_{1}\right] \cup\left[b_{1}, 1\right]$ and constant on $\left[a_{1}, b_{1}\right], b^{\alpha, \alpha "} \in A C$ (see the proof for $I^{\alpha, \alpha^{\prime \prime}}$) on $[c, 1]$. We bave $G^{\alpha, \alpha^{\prime \prime}}\left(u_{1}\right)-G^{\alpha, \alpha^{\prime \prime}}\left(u_{2}\right)=\sum_{2 i-1 \geqslant s}\left(1-e_{2 i-1}^{\prime}\right) c_{2 i}^{\prime \prime}+$ $\sum_{2 i \geqslant s}\left(1-e_{2 i}^{\prime}\right) c_{2 i-1}^{\prime \prime}<\sum_{2 i-1 \geqslant s}\left(1-e_{2 i-1}^{\prime}\right) c_{2 i-2}^{\prime \prime}+\sum_{2 i \geqslant s}\left(1-e_{2 i}^{\prime}\right) c_{2 i-1}^{\prime \prime}$ $=\sum_{j \geqslant s}\left(1-e_{j}^{\prime}\right) c_{j-1}^{\prime \prime}=b^{\alpha, \alpha^{\prime \prime}}\left(u_{1}\right)-b^{\alpha, \kappa^{\prime \prime}}\left(u_{2}\right)$. Analogously, $G^{\alpha, \alpha^{\prime \prime}}\left(v_{2}\right)$ $-G^{\alpha, \alpha^{\prime \prime}}\left(v_{1}\right)<b^{\alpha}, \alpha^{\prime \prime}\left(v_{2}\right)-b^{\alpha, \alpha^{\prime \prime}}\left(v_{1}\right)$. Hence $G^{\alpha, \alpha^{\prime \prime}}([u, \nabla] \cap C(\alpha)) C$ $\left[G^{\alpha \prime \prime}\left(u_{2}\right), G^{* \prime \prime}\left(u_{1}\right)\right] \cup\left[G^{\alpha^{\prime \prime}}\left(v_{1}\right), G^{\alpha^{\prime \prime}}\left(v_{2}\right)\right]$ and $G^{\alpha}, \alpha^{\prime \prime}\left(u_{1}\right)-G^{\alpha, \alpha^{\prime \prime}}\left(u_{2}\right)+G^{\alpha, \alpha^{\prime \prime}}\left(v_{2}\right)$ $-G^{\alpha, \rho^{\prime \prime}}\left(v_{1}\right) \leqslant b^{\alpha, \alpha "}(v)-b^{\alpha, \alpha^{\prime \prime}}(u)$. By Lemma 4 it follows that $G^{\alpha, \alpha "}$ $\epsilon A(2)$ on $C(\alpha)$. We shall prove that $G^{\alpha} \boldsymbol{q}^{\alpha "}$ bas finite or infinite derivative at no point of $C(\alpha)$ and $G^{\alpha}, \alpha^{\prime \prime}$ bas not a finite approximate derivative a.e. on $C(\alpha)$. Let $x_{c}=\sum_{i=1}^{\infty} e_{i} c_{i}$. For each natural number n we bave four situations:
(I) Suppose $e_{2 n-1}=e_{2 n}=0$. Let $x \in R_{e_{1} \ldots e_{2 n-2}}(\alpha)$, $y \in$ ${ }^{R} e_{1} \ldots \theta_{2 n-2} 1000^{(\alpha)} \cdot$ Then $x_{0}<x<y ; G^{\alpha, \alpha^{\prime \prime}}(x)>G^{\alpha, \alpha^{\prime \prime}}\left(x_{0}\right) ; G^{\alpha, \alpha^{\prime \prime}}(y)$ $>G^{\kappa}, \kappa^{\prime \prime}\left(x_{0}\right)$, bence $\left(G^{\alpha, \alpha^{\prime}}(x)-G^{\alpha, \alpha^{\prime \prime}}\left(x_{0}\right)\right) /\left(x-x_{0}\right)-\left(G^{\alpha, \alpha^{\prime \prime}}(y)-\right.$
$\left.G^{\alpha, \alpha^{\prime \prime}}\left(x_{0}\right)\right) /\left(y-x_{0}\right)>\left(G^{\alpha, \alpha "}(x)-G^{\alpha, \alpha "}(y)\right) /\left(y-x_{c}\right)>3 a_{2 n+2}^{\prime \prime} a_{2 n-2}$
$\rightarrow 3 b / 16$. Let $x_{n}=x_{0}+c_{2 n-1}$ then $\left(G^{\alpha, \alpha^{\prime \prime}}\left(x_{n}\right)-G^{\alpha, \alpha "}\left(x_{0}\right)\right) /$ $\left(x_{n}-x_{0}\right)=\left(a_{2 n-1}^{\prime \prime}-a_{2 n}^{\prime \prime}\right) /\left(a_{2 n-2}-a_{2 n-1}\right) \rightarrow b / 2 a$.
(II) Suppose $e_{2 n-1}=0$ and $e_{2 n}=1$. Let $R_{e_{1} \ldots e_{2 n-2}}(\alpha), y \in$ $R_{e_{1}} \ldots \theta_{2 n-2^{10}}^{(\alpha)}$. Then $x<x_{0}<y ; G^{\alpha, \alpha "}(x)<G^{\alpha, \alpha^{\prime \prime}}\left(x_{0}\right) ; G^{\alpha, \alpha "}(y)<$ $G^{\alpha, \alpha^{\prime \prime}}\left(x_{0}\right) ;\left(G^{\alpha, \alpha^{\prime \prime}}\left(x_{0}\right)-G^{\alpha, \alpha^{\prime \prime}}(x)\right) /\left(x_{0}-x\right)>a_{2 n^{n}}^{n} / a_{2 n-1} \rightarrow b / 2 a$ and $\left(G^{\alpha, \alpha^{\prime \prime}}(y)-G^{\alpha, \alpha^{\prime \prime}}\left(x_{0}\right)\right) /\left(y-x_{0}\right)<0$.
(III) Suppose $e_{2 n-1}=1$ and $\theta_{2 n}=0$. Let $x \in R_{\theta_{1} \ldots \theta_{2 n-2}}(\alpha)$, y \in ${ }^{R} e_{1} \ldots e_{2 n-2} l^{(\alpha)}$. Then $x<x_{0}<y ; G^{\alpha, \alpha^{\prime \prime}}(x)>G^{\alpha, \alpha^{\prime \prime}}\left(x_{0}\right) ; G^{\alpha, \alpha^{\prime \prime}}(y)>$ $G^{\alpha, \alpha "}\left(x_{0}\right) ;\left(G^{\alpha, \alpha "}(y)-G^{\alpha, \alpha "}\left(x_{c}\right)\right) /\left(y-x_{0}\right)>a_{21}^{n} / \varepsilon_{2 n-1} \longrightarrow b / 2 a$ and $\left(G^{\alpha}, \alpha^{\prime \prime}(x)-G^{\infty}, \alpha^{\prime \prime}\left(x_{0}\right)\right) /\left(x-x_{c}\right)<0$.
 $\mathrm{R}_{\theta_{1} \ldots e_{2 n-2} 0111}(\alpha)$. Then $y<x<x_{0} ; G^{\alpha, \alpha "}\left(x_{0}\right)>G^{\alpha, \alpha "}(x) \ldots G^{\alpha, \alpha "\left(x_{0}\right)}$ $>G^{\alpha, \alpha^{\prime \prime}}(y) ;\left(G^{\alpha, \alpha^{\prime \prime}}\left(x_{0}\right)-G^{\infty}, \alpha^{\prime \prime}(x)\right) /\left(x_{0}-x\right)-\left(G^{\alpha, \alpha^{\prime \prime}}\left(x_{0}\right)-G^{\alpha, \alpha "}(y)\right) /$ $\left(x_{0}-y\right)>\left(G^{\alpha},^{\alpha \prime}(y)-G^{\alpha},^{\prime \prime \prime}(x)\right) /\left(x_{0}-y\right)>3 a_{2 n+2}^{n} / a_{2 n-2} \rightarrow 3 b / 16 a$. Let $x_{n}=x_{0}-a_{2 n-1}^{\prime \prime} \operatorname{tben}\left(G^{\alpha, \alpha^{\prime \prime}}\left(x_{0}\right)-G^{\alpha, \alpha^{\prime \prime}}\left(x_{n}\right)\right) /\left(x_{0}-x_{n}\right)=$ $a_{2 n} / \theta_{2 n-1} \longrightarrow b / 2 a$. By (I), (II), (III) and (IV) it follows that $G^{\alpha, \alpha "}$ bas finite or infinite derivative at no point of $C(\alpha)$. Also $G^{\alpha, \alpha^{\prime \prime}}$ bas a finite approximative derivative at no point $x_{0} \in C(\alpha), x_{0}$ a point of density of $C(\alpha)$. Clearly $G^{\alpha, \sim " ~} \neq \beta(1)$ (see [13],p.222-223). c) That $F_{1}^{\alpha, \alpha " ~ a n d ~} F_{2}^{\alpha, \alpha^{\prime \prime}}$ belong to S follows by a). Suppose that $G^{\infty}, \alpha^{\prime \prime} \in\left[G S^{*}\right]$ on $[0,1]$ then it follows that there exists (u, v)
sucb tbat $(u, v) \cap c(\alpha) \neq \varnothing$ and $G^{\alpha, \alpha^{\prime \prime}}$ is S^{*} on $(u, v) \cap C(\alpha)$. There exists $R_{e_{1} \ldots \theta_{2 k}}(\alpha) \subset(u, v)$ sucb tbat $G^{\alpha, \alpha "}$ is S, bence T_{1} on $\mathrm{R}_{e_{1} \ldots e_{2 k}}(\alpha)$. By (2), b) and Theorem 6.2,p. 278 of [13], it follows that $G^{\alpha}, \alpha " \notin T_{1}$ on $R_{e_{1}} \ldots e_{2 k}(\alpha)$, a contradiction. d) Since $\alpha^{\prime \prime}$ is of type (*), each $y \in C\left(\alpha^{\prime \prime}\right)$ bas an unique representation $y=\sum_{i=1}^{\infty} e_{i}(y) c_{i}^{\prime \prime}$ and $\left(G^{\alpha, \alpha "}\right)^{-1}(y) \cap c(\alpha)=$ $\left.\left\{\sum_{i=1}^{\infty} e_{2 i-1}(y) c_{2 i}+e_{2 i}(y) c_{2 i-1}\right)\right\}$, bence $G^{\alpha}, \alpha^{\prime \prime}$ is bijective on $C(\alpha)$. e) If $\alpha^{\prime \prime}$ is of type (**), but not of type (*) and $y \in C\left(\alpha^{\prime \prime}\right)$ has two representations, $y=\sum e_{i}(y) c_{i}^{\prime \prime}=\sum e_{i}^{\prime}(y) c_{i}^{\prime \prime}$, then

$$
\begin{aligned}
& \left(G^{\left.\alpha, \alpha^{\prime \prime}\right)^{-1}(y) \cap_{C}(\alpha)=\left\{\sum_{i=1}^{\infty} e_{2 i-1}(y) c_{2 i}+e_{2 i}(y) c_{2 i-1}\right)}\right. \\
& \left.\sum_{i=1}^{\infty}\left(e_{2 i-1}(y) c_{2 i}+e_{2 i}^{\prime}(y) c_{2 i-1}\right)\right\}
\end{aligned}
$$

f) Let $(u, v) \cap c(\alpha)$ be a portion of $c(\alpha)$. Tben there exists a $R_{e_{1} \ldots \theta_{2 k}}(\alpha) \subset(u, v)$. Let $x_{1}=\sum_{i=1}^{2 k} e_{i} c_{i}+a_{2 k+1}, x_{2}=\sum_{i=1}^{2 k} e_{i} c_{i}+$ $c_{2 k+1}, x_{3}=\sum_{i=1}^{2 k} e_{i} c_{i}+a_{2 k}$ then $x_{1}<x_{2}<x_{3}$ belong to $R_{e_{1}} \ldots e_{2 k}(\alpha)$ and $G^{\kappa, \alpha "}\left(x_{1}\right)>G^{\alpha, \alpha^{\prime \prime}}\left(x_{2}\right)<G^{\alpha, \alpha^{\prime \prime}}\left(x_{3}\right)$.
g) Let $\mathrm{x}<\mathrm{y}$ belong to $\mathrm{C}(\alpha)$ and let k be the first natural number such that (x, y) contains an cpen interval $0_{e_{1}} \ldots \theta_{k-1}$ from the step k, with $2 i<k \leqslant 2 i+2$ for some natural number i. Then $[x, y] \subset$ $R_{e_{1} \ldots e_{2 i}}(\alpha)$, hence $y-x>a_{k-1}-2 a_{k}>\min \left\{a_{2 i+1}-2 a_{2 i+2}, a_{2 i}-\right.$ $\left.2 a_{2 i+1}\right\}$ and $\left|G^{\alpha, \alpha^{\prime \prime}}(y)-G^{\alpha, \alpha^{\prime \prime}}(x)\right|<a_{2 i}^{\prime \prime}$. It follows that $G^{\alpha, \alpha^{\prime \prime}}$ satisfies condition L with constant M.
b) By c) and a), clearly $G^{\alpha, \alpha "} \in T_{2}-$ N. We prove that $G^{\alpha, \alpha "} \in M$.

The procf is based on an ideea of J. Foran of [8] (p.85). In order to show that $G^{\infty}, \propto^{\prime \prime}$ satisfies Foran's condition M, by Theorem 1 of [8], it suffices to sbew that if $A C C(\alpha)$ and $G^{\alpha}, \alpha^{\prime \prime}$ is monotone on A then $G{ }^{\alpha, \alpha^{\prime \prime}}$ satisfies Imsin's condition N on A. Suppose that $G^{\alpha}, \alpha^{\prime \prime}$ is increasine on $A \subset O(\alpha)$. Clearly $R_{e_{1}} \ldots \theta_{2 k}\left(\alpha^{\prime \prime}\right)$ are nonoverlapping intervals and $\left|R_{e_{1}} \ldots \theta_{2 k}\left(\alpha^{\prime \prime}\right)\right|=a_{2 k} \leqslant 1 / 4^{k}$. Let $c_{1} X_{2} x_{\ldots} \ldots C_{k}=\left\{\left(\theta_{1}, \ldots, e_{2 k}\right): A \cap R_{e_{1} \ldots \theta_{2 k}}(\alpha) \neq \varnothing\right\}$. By (2) it folloas that $\left\|C_{1} x C_{2} x \ldots x C_{k}\right\| \leqslant 3^{k}$, hence $\left|G^{\kappa, \rho^{\prime \prime}}(A)\right|<(3 / 4)^{k} \rightarrow 0$. Since $\mathfrak{F}+\mathcal{F}=\mathscr{F} \subset N$ and $G^{\alpha} \boldsymbol{\alpha}^{\prime \prime} \notin N$ it follows that at least one of the functicns $F_{1}^{\alpha, \alpha "}$ and $F_{2}^{\alpha, \alpha " ~ d o e s ~ n o t ~ b e l o n g ~ t o ~} \mathcal{F}$ on $[0,1]$.
 If $\left|C\left(\alpha^{\prime \prime}\right)\right|>0$ then $I^{\alpha, \alpha^{\prime \prime}}$ is increasing on $C(\alpha)$ and $I^{\alpha, \kappa^{\prime \prime}} \in \mathbb{E}$: on $O(\alpha)$. Since $M \circ L \supset \mathrm{M}$, by (3) it follows that $\mathrm{M} \circ \mathrm{L} \mathcal{\mathrm { F }}$ 。
j) If $\left|C\left(\alpha^{\prime \prime}\right)\right|>0$ and $\left|C\left(\alpha^{\prime}\right)\right|>0$ then $G^{\alpha^{\prime}} \boldsymbol{\alpha}^{\prime \prime} \in \mathcal{F}(2)$ (see b)). If $|C(\alpha)|=0$ then by $b), G^{\alpha, \alpha^{\prime}} \in\left(I \cap T_{2}\right)-N$, but $I^{\alpha, \alpha "} \notin M$ on

Procf of Theorem 2. a) By Theorem $A, S=N \cap T_{1}=N^{\infty} \cap T_{1}$. Since $\mathbb{H} \subset \mathbb{N} \subset \mathbb{N}^{\infty}=\mathbb{N}_{*}$, by $[4]$ (2emark $1, \theta$), Theorem 6 and Theorem 1 , $\mathrm{g})$), it follows that $\mathrm{S}=\mathrm{N} \cap \mathrm{T}_{1}=\mathbb{N} \cap \mathrm{T}_{1}=\mathrm{N}^{\infty} \cap \mathrm{T}_{1}=\mathrm{M}_{*} \cap \mathrm{~T}_{1}$. b) $\mathfrak{F}(1) \subset\left[G S^{+}\right]$. Indeed, let $f:[0,1] \rightarrow R, f \in A C G \cap b$. It follous that there exist $P_{n}=\bar{P}_{n}$ sucb that $[0,1]=\bigcup_{n} P_{n}$ and $f_{P_{n}} \in A C C S$, bence $f \in\left[G S^{+}\right]$. By Theorem $\left.\left.1, a\right), b\right)$, S - ACG $\neq \varnothing$, hence $A C G \varsubsetneqq\left[G S^{+}\right]$ on $[0,1]$. By $[13](p .279), A O G-S \neq \varnothing$, bence $S \not \subset\left[G S^{*}\right]$ on $[0,1]$. c) By a) and the definitions of $\left[G S^{*}\right]$ and $\left[G T_{1}^{*}\right]$ it follows that $\left[G S^{*}\right] \subset\left[G T_{1}^{*}\right] \cap N \subset\left[G T_{1}^{*}\right] \cap M$. Let $f \in \cup \cap\left[G T_{1}^{*}\right] \cap m$ on $[0,1]$. It follows that there exist $P_{n}=\bar{P}_{n}$ sucb that $f_{P_{n}} \in \ell \cap T_{1} \cap u=6 \cap s$ (see a), bence $f \in\left[G S^{*}\right]$ on $[0,1]$. Then $\left[G S^{*}\right]^{n}=\left[G T_{1}^{*}\right] \cap N=$

fig 1
there exist $P_{n}=\bar{P}_{n}$ and natural numbers N_{n} such that $f \in A\left(N_{n}\right)$ on \mathcal{r}_{n}. By definitions, $f \in S$ on P_{n}, hence $\mathcal{F}=[\mathcal{F}] \subset[G S]$ on $[0,1]$. By Theorem $1, b), c$) it follows that $f-\left[G S^{*}\right] \neq \varnothing$, bence $\left[G S^{*}\right] \not \models[G S]$ on $[0,1]$. By Theorem $1, a), h$) it follows that $S-\mathcal{F} \neq \varnothing$, bence $\mathfrak{F} \varsubsetneqq[G S]$. Clearly $[G S] \subset G S \subset N$. To prove that $[G S] \varsubsetneqq G S$ we sball construct the folloring example. At first we construct a continuous function $g:[0,1] \longrightarrow[0,1]$, using the notations of c). We suppose that $|C(\alpha)|>0$. Let $g(x)=I^{\alpha}(x), x \in C(\alpha) ; g(x)=$ $\underline{g}\left(a_{i}^{s}\right)+\left(i / 2^{s}\right) \cdot I^{\alpha}\left(\left(x-a_{i}^{s}\right) /\left(c_{i}^{S}-z_{i}^{S}\right)\right), x \in\left[a_{i}^{s}, c_{i}^{s}\right] ; g(x)=g\left(c_{i}^{8}\right)-$ $\left(1 / 2^{s-1}\right): I^{\alpha}\left(\left(x-c_{i}^{s}\right) /\left(d_{i}^{s}-c_{i}^{s}\right)\right), x \in\left[c_{i}^{s}, d_{i}^{s}\right] ; g(x)=g\left(d_{i}^{s}\right)+\left(1 / 2^{s}\right)$. $I^{\alpha}\left(\left(x-d_{i}^{s}\right) /\left(b_{i}^{s}-d_{i}^{S}\right)\right), \quad x \in\left[d_{i}^{s}, b_{i}^{s}\right]$. Let $P_{1}=c(\alpha) \cup\left(\bigcup_{s=1}^{\infty} \bigcup_{i=1}^{2^{s-1}}\left\{\left[\left(c_{i}^{s}-a_{i}^{s}\right)\right.\right.\right.$. $\left.\left.\left.C(\alpha)+a_{i}^{s}\right] \cup\left[\left(d_{i}^{s}-c_{i}^{s}\right) \mathcal{C}(\alpha)+c_{i}^{s}\right] \cup\left[\left(b_{i}^{s}-d_{i}^{s}\right) \mathcal{C}(\alpha)+d_{i}^{s}\right]\right\}\right)$. We show that $\varepsilon(0)=0 ; \mathrm{g}(1)=1 ; \mathrm{g}$ is constant on each interval contiguous to $P_{1} ; E$ is ACG on $[0,1] ; G^{-1}(y)$ is infinite for each $y \in[0,1]$. Using the function g, we can construct a continuous function f_{1} : $[0,1] \rightarrow[0,1]$ and a nowbere dense, perfect subset Q_{1} of $[0,1]$ with positive measure, such that $f_{1}(0)=f_{1}(1)=0 ; \inf \left(Q_{1}\right)=0$, $\sup \left(Q_{1}\right)=1 ; f_{1}$ is constant on eacb interval contiguous to Q_{1}; $f_{1} \in$ ACG ; $f^{-1}(y)$ is infinite. Let $\left\{I_{n}^{1}\right\}_{n}=\left\{\left(u_{n}^{1}, v_{n}^{1}\right)\right\}_{n}$ be the intervals contiguous to Q_{1}. Let $Q_{k}=Q_{k-1} U\left(\bigcup_{n=1}^{\infty}\left(u_{n}^{k-1}+\left(v_{n}^{k-1}-u_{n}^{k-1}\right) \cdot Q_{1}\right)\right)$, $k=2,3, \ldots$, where $\left(u_{n}^{k}, v_{n}^{k}\right), n=1,2, \ldots$ are the intervals contiguous to Q_{k}. Let $f_{k+1}(x)=0, x \in Q_{k} ; f_{k+1}(x)=\left(1 / 2^{n+k+1}\right)$. $f_{1}\left(\left(x-a_{n}^{k}\right) /\left(b_{n}^{k}-a_{n}^{k}\right)\right), x \in\left[a_{n}^{k}, b_{n}^{k}\right], k=1,2, \ldots$. Let $F(x)=\sum_{k=1}^{\infty} f_{k}(x)$. Let $H=[0,1]-\bigcup_{m=1}^{\infty} Q_{n} \cdot F \in A C G$ on $U Q_{n}$ and $|F(H)|=0$, bence
$F \in G S \subset N$ ．But $F \&\left[G T_{1}\right]$ because F is not T_{1} on any interval， bence by d） $\mathrm{F} \Phi[\mathrm{GS}]$ ；but clearly $\mathrm{F} \in \mathrm{GS}$ ． f）Since $V B=B(1)$ on a set E it follows that $V B G=B(1)$ ．Let $f:[0,1] \rightarrow R, f \in$ enVBG．Then there exist $P_{n}=\bar{P}_{n}$ such that $f_{P} \in$ VBCT T_{1}（［13］，p．279）．It follows that for continuous functions on $[0,1], V B G=[\mathrm{VBG}]=[\mathfrak{B}(1)] \subset\left[G \mathrm{~T}_{1}\right]$ ．Since $[\mathrm{VBG}] \cap \mathrm{N} \cap \mathrm{C}=[\mathrm{ACG} \cap \mathrm{C}$ （［13］，Theorem 6．8，p．228）and $\left[G T_{1}^{*}\right] \cap N=\left[G S^{*}\right]$（see c）on $[0,1]$ ， by b），it follows that $[B(1)] \subset\left[G T_{1}\right]$ 。By $[9]((i i), p \cdot 360), B=[M]$ 。 By $[9]$（（iv），p．360）and［13］（p．279），it follows that［3］C［GT $]$ ． Each of the functions F_{q} ，defined in the proof of Theorem 2 of［2］， belongs to $T_{1}-[B]$ ，bence $[B] \frac{C}{F}[G T]$ ．Clearly $\left[G T T_{1}^{*}\right] \subset\left[G T_{1}\right] \subset T_{2}$ ． By c ），d ）and e）it follows that $\left[G T_{1}^{*}\right] \xi_{F}\left[G T_{1}\right]$ ．Let F be the function defined in e）．Then $F \in N-[G S]$ ，bence $F \in T_{2}$（see［13］， Theorem $7 \cdot 3, \mathrm{p} .284$ ）．But $\mathrm{F} \notin\left[\mathrm{GT}_{1}\right]$ ，hence $\left[G T_{1}\right] \nsubseteq T_{2}$ ．

Thecrem 3．For continuous functions defined on closed intervels we have：a） $\mathrm{H} \bullet \mathrm{VBG} \subset \mathrm{H} \circ\left[\mathrm{GT}{ }_{1}^{*}\right] \subset \mathrm{H} \circ\left[G \mathrm{~B}_{2}^{*}\right]=\left[\mathrm{GB} \mathrm{B}_{2}^{*}\right]$（see［7］， Question 4）；b） $\bar{H} \bullet A C G \subset$ 苗 $\left.\| G S^{*}\right]=\left[G S^{*}\right]$（see［7］，Question 8）； Moreover $\left[G S^{*}\right] \circ\left[G S^{*}\right]=\left[G S^{*}\right]$ ；c） $\bar{H} \bullet V B G \subset \bar{H} \circ\left[G T_{1}^{*}\right] \subset\left[G S^{+}\right] \circ\left[G T_{1}^{*}\right]$ （see［7］，Question 9）；Nioreover $\left.\left[G S^{*}\right] \circ[G T]=[G T] ; d\right)[G S] \cdot[G S]$ $=[G S]$ and $G S \cdot G S=G S ; \theta)\left[G S^{*}\right] \cdot H \subset\left[G S^{*}\right] \circ\left[G T_{1}^{*}\right]=\left[G T_{1}^{*}\right]$ and $[G S]$ $\circ H \subset[G S] \circ\left[G T_{1}\right]=\left[G T_{1}\right] ;$ f）$\left[G S^{\prime *}\right] \circ H \subset\left[G S^{*}\right] \circ[G T] \subset\left[G B_{2}^{*}\right]=$ $\left.\left[G B_{2}^{*}\right] \circ H ;, E\right) G L \bullet H=A C G \bullet H=V B G \circ H=V B G$ and $G L \bullet \bar{H}=A C G \circ \bar{H}=A C G$ ．

Proof．Let $f:[a, b] \rightarrow R, E:[c, d] \rightarrow R, g([c, d]) \subset[a, b]$ and let $F=f \circ g, f, g \in \mathbb{C}$ 。
a）The two inclusions are evident．We sball prove that $H \circ\left[G B_{2}^{*}\right]=$ $\left[G B_{2}^{*}\right]$ ．It suffices to show that $H \circ\left[G B_{2}^{*}\right] \subset\left[G B_{2}^{*}\right]$ ．Suppose that $f \in H$ ， $\mathrm{E} \in\left[G B_{2}^{*}\right]$ ．Then there exist $\mathrm{E}_{\mathrm{n}}=\bar{E}_{\mathrm{n}}$ such that $[\mathrm{c}, \mathrm{d}]=U \mathrm{E}_{\mathrm{n}}$ and
 Lemma 6 and Lemma 7, $F_{E_{n}} \in B_{2}$ •
b) Clearly $\bar{H} \circ A C G \subset \bar{H} \bullet\left[G S^{*}\right]$. To prove that $\left[G S^{*}\right]=\bar{H} \circ\left[G S^{*}\right]=\left[G S^{*}\right]$ - $\left[G S^{*}\right]$, it suffices to show that $\left[G S^{*}\right] \cdot\left[G S^{*}\right] \subset\left[G S^{*}\right]$. Suppose that $f, g \in\left[G S^{*}\right]$. Then there exist $E_{n}=\bar{E}_{n}$ sucb that $[a, b]=U E_{n}$ and $f_{E_{n}} \in S$. Let $T_{n}=g^{-1}\left(E_{n}\right)$. Tben T_{n} is closed, $[c, d]=U T_{n}$ and there exists a sequence of closed sets $T_{n, k}$ such that $T_{n}=U T_{n, k}$ and $\mathrm{g}_{\mathrm{T}_{\mathrm{n}, \mathrm{k}}} \in \mathrm{S}$. By Proposition 2 or Remark 4,f), it follows that

c) Clearly $\bar{H} \circ V B G \subset \bar{H} \circ\left[G T_{1}^{*}\right] \subset\left[G S^{*}\right] \circ\left[G T_{1}^{*}\right]$. To prove that $\left[G S^{*}\right] \circ\left[G T_{1}^{*}\right]$ $=\left[G T_{1}^{*}\right]$, see the proof of b), Remark 4,i), Lemma 6 and Lemma 7.
d) See the proof of b) and Proposition 2,a).
e) The first part follows by c). To prove that $[G S] \circ\left[G T_{1}\right]=\left[G T_{1}\right]$, see the proof of b) and Remark 4,i).
f) The first inclusion is evident and for the second see the proof of b) and Remark 4,k). To prove that $\left[G B_{2}^{*}\right] \circ H=\left[G B_{2}^{*}\right]$, it suffices to show that $\left[G B_{2}^{*}\right] \circ H \subset\left[G B_{2}^{*}\right]$. Suppose that $f \in\left[G B_{2}^{*}\right]$ and $g \in H$. Then there exist $E_{n}=\bar{E}_{n}$ such that $[a, b]=U E_{n}$ and $f_{E_{n}} \in B_{2}$. Let $T_{n}=g^{-1}\left(E_{n}\right)$. Then $T_{n}=\bar{T}_{n},[c, d]=U T_{n}$ and $E_{T_{n}} \in H$. By Lemma 6 $F_{T_{n}}=f_{E_{n}} \circ \mathrm{E}_{\mathrm{T}_{\mathrm{n}}}$ and by Remark 4,m) it follows that $\mathrm{F}_{\mathrm{T}_{\mathrm{n}}} \in \mathrm{B}_{2}$. g) Since $H \cap N=\bar{H}$ and $V B G \cap N=A C G$ we have to prove only that $G L \circ H=A C G \circ H=V B G \circ H=V B G \cdot C l e a r l y G L \circ H \subset A C G \bullet H \subset V B G \circ H=V B G$, so it remains to prove that $V B G \subset G L \cdot H$. Let $F:[0,1] \rightarrow R, F \in V B G \cap \mathcal{C}$. Then there exist $E_{n}=\bar{E}_{n}$ sucb that $U E_{n}=[0,1]$ and $F_{E_{n}} \cup\{0,1\}$ is ∇B on $[0,1]$. Let $h_{n}(x)=A_{n}(x) / L_{n}, x \in[0,1]$, where $A_{n}(x)$ is the total arc-length of the eraph of $F_{F_{n}} \cup\{0,1\}$ from 0 to x and $L_{n}=$ $A_{n}(1)([1], p, 125)$. Let $b:[0,1] \rightarrow[0,1], b(x)=\sum_{n=1}^{\infty} b_{n}(x) / 2^{n}$. Let
 construct the following example: for $C(\alpha)$ let $J_{i}^{s}(\alpha)=\left(a_{i}^{s}, b_{i}^{s}\right)$, $i=1,2, \ldots, 2^{s-1}$ be the open intervals from the step s, numbered from the left to the riebt. Let $c_{i}^{s}<d_{i}^{s}$ belong to $J_{i}^{s}(\alpha)$. Let $\alpha^{\prime \prime}=$ $\left\{1 / 2^{k}\right\}, k \geqslant 0$. Put $I^{\alpha}, \alpha^{\prime \prime}=I^{\alpha}$. Let $\mathrm{f}:[0,1] \rightarrow[0,1]$ be defined as follows: $f(x)=I^{\alpha}(x), x \in \mathcal{C}(\alpha) ; f\left(c_{i}^{s}\right)=(i-1) / 2^{s-1}, f\left(d_{i}^{\mathbf{s}}\right)=1 / 2^{s-1}$, $i=1,2, \ldots, 2^{s-1}, s=1,2, \ldots$. Extending f linearly on each interval contiguous to $C(\alpha) \cup\left(\bigcup_{s=1}^{\infty} \bigcup_{i=1}^{2^{s-1}}\left\{c_{i}^{s}, d_{i}^{s}\right\}\right)$ we have f defined and continuous on $[0,1]$ (see fig. 1 for the representation of the first three steps in the construction of the graph of f). The continuity follows by the fant that $O\left(f ; R_{e_{1}} \ldots e_{s}(\alpha)\right)=1 / 2^{s}$. Since $f\left(\bigcup_{i=1}^{2^{s-1}} J_{i}^{S}(\alpha)\right)=[0,1]$ and $f^{-1}(y) \cap c(\alpha)$ bas at most two points, it follows that $f^{-1}(y)$ is denumerable for each $y \in[0,1]$. Moreover, the set $f^{-1}(y) \cap R_{e_{1} \ldots e_{s}}(\alpha)$ is infinite for each s. For $x_{0} \in C^{(\alpha)}$ and for each s there exist $\theta_{1}, \ldots \theta_{s}$ such that $x_{0} \in R_{e_{1}} \ldots e_{s}^{(\alpha) . ~ I t ~}$ follows that 0 is a derived number for f at x_{0}. Since $\overline{\lim }_{s \rightarrow \infty} 0\left(f ; R_{\theta_{1} \ldots \theta_{s}}(\alpha)\right) /\left|R_{e_{1}} \ldots \theta_{s}(\alpha)\right| \geqslant 1$, i has a finite or infinite derivative at no point of $\sigma(\alpha)$, bence $f \in \mathbb{N}^{\infty}$. Clearly $f \in\left[G T_{1}^{*}\right]$ - k on $[0,1]$ if $|\mathcal{L}(\alpha)|=0$. If $|\mathcal{L}(\alpha)|>0$ then $f \in A C G-B_{2}$, bence by Remark $4, j$) it follows that $f \in A C G-S '$.
d) By Lemma 2, $[G S]=\left[G T_{1}\right] \cap N$. By Theorem $1, b$) it follous that $\left[G T_{1}\right]-N \neq \varnothing$. Since $\left[\mathrm{GT}_{1}\right] \cap N \subset\left[\mathrm{GT}_{1}\right] \cap \mathrm{M}$, it follows that $\left[G T_{1}\right] \cap N$ $\varsubsetneqq\left[G T_{1}\right] \cap M$. By $\left.c\right),\left(\left[G T_{1}\right] \cap N^{\infty}\right)-M \neq \varnothing$, bence $\left[G T_{1}\right] \cap M \varsubsetneqq\left[G T_{1}\right] \cap N^{\infty}$. e) Clearly $\left[G S^{*}\right] \subset[G S]$. By $[9]((i i), p .360)$, if $f \in \mathcal{F}$ on $[0,1]$ then
$a<b, \quad a, b \in E_{n}$, then $2^{n}[F(b)-F(a)] /\left(n_{n}(b)-b_{n}(a)\right)<2^{n} \cdot I_{n}$. Let $h(a)=c$ and $b(b)=d$. Tben $\left[F \cdot b^{-1}(d)-F \bullet b^{-1}(c)\right] /(d-c)<2^{n} \cdot L_{n}$. T bus $F \bullet b^{-l}$ is a Lipschitz function witb constant $2^{n} I_{n}$.

We are indebted to Professor Solomon Marcus for bis help in preparing this article.

REFERENCES

[1] Bruckner, AM. : Differentiation of Real Functions. Lecture Notes in Mathematics, 659,Springer-Verkag,New York,1978.
[2] Ene, G.: An Extension of the Ordinary Variation. Real Analysis Exchange, 10, (1984-85), 149-154.
[3] Ene,V.: On Foran's conditions $A(N), B(N)$ and (M). Real Analysis Exchance, 9 (1984), 495-501.
[4] Ene,V.: Wonotonicity Theorems. Real Analysis Exchange, 12 (1986-87), 420-454.
[5] Filipczak,F.: Sur les fonctions continues relativement monotones. Fund.Math., LVIII, (1966), 75-87.
[6] Fleissner,R.J. and Foran,J.: Transformation of differentiable functions. Colloq. Nath., XXXIX (1978).
[7] Foran, J.: Continuous Functions. Real Anslysis Exchange, 2, (1977), 85-103.
[8] Foran,J.: A generalization of Absolute Continuity. Real Analysis Exchange, 5, (1979-80), 82-91.
[9] Foran,J.: An extension of the Denjoy integral. Froc.Amer. Math.Soc., 49 (1975), 359-365;
[0] Foran, J.: A Cbain rule for the Approximate Derivative and Chance of Variable for the D-Integral. Real Analysis Exchange, 8, (1982-83), 443-454.
[11] Lee,C.M.: Some Hausdorff variants of absolute continuity, Banach's condition (S) and Lusin's condition (N). Real Analysis Exchance, 13 (1987-88), 391-404.
[12] Saks, S.: Sur certaines classes de fonctions continues. Fund Matb., 17, (1931), 124-151.
[13] Saks,S.: Theory of the integral. 2nd rev.ed. Monografie Matematyczno, PWN, Warsaw (1937).

Recsived 20 June, 1989

