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 EXTENSIONS OF DARBOUX FUNCTIONS

 In 1875 in paper [2], the first example of a discontinuous

 Darboux function was given. Since that time, there have appeared

 many papers devoted to the study of the properties of those func-

 tions. It has turned out that the family of Darboux functions con-

 tains many other important classes of functions such as, for in-

 stance, derivatives ([2]), functions being approximate derivatives

 ([4]), and even certain subfamilies of the classes of derivatives

 and approximate derivatives that can take infinite values ([6], [14]).

 The proving of a number of interesting properties for real

 Darboux functions of a real variable accounted for seeking a gene-

 ralization of the notion of a Darboux function to the case of

 transformations defined and taking their values in more abstract

 spaces.

 An essential difficulty in finding a generalization preserv-

 ing the properties of real Darboux functions of a real variable as

 accurately as possible is the fact that those function possesses a. ňurrfoer of in-

 teresting properties of the topological nature as well as many in-
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 teresting properties connected with measure theory (cf. e. g. [15]).

 Analyzing one of better known definitions of the Darboux property,

 saying that a function f : R -► R is a Darboux function if the

 image of each closed segment is connected, it can be noticed with-

 out difficulty that, while generalizing this notion, one should

 use the kind of sets whose topological nature as well as properties

 connected with measure theory are close to the properties of a clo-

 sed segment of the line. Arcs seem to constitute such a family. In

 this context, throughout the paper, we shall adopt the following de-

 finition.

 Definition ([8], [9], [10], [11]). We say that f : X+Y, where

 X, Y are topological spaces, is a Darboux transformation (or pos-

 sesses the Darboux property*) if the image of any arc Ł C x is a

 connected set.

 The main aim of papers [8], [9] and [ 1 1 ] was to show that the

 adoption of such a definition of a Darboux function allows one to

 obtain, for transformations defined and taking their values in more

 general spaces, results analogous to those for a Darboux function

 defined on the line as well as creates new possibilities and prob-

 lems which, many a time, have no analogue in the case of real func-

 tions of a real variable.

 In many mathematical problems a rather essential role is played

 by the possibility of extending a given transformation defined on

 a subset of some space to a function defined on the whole space with

 the preservation of certain properties of the initial function. Many
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 authors considered these problems for the function "approaching"

 Darboux functions (see [l], [12], [13]). The present paper is de-

 voted to the investigation of the possibility of finding extensions

 of Darboux functions defined on some subsets of the plane and tak-
 2

 ing their values in R .

 Throughout the paper, we apply the classical symbols and no-

 tations. However, in order to avoid any ambiguities, we shall now

 present those symbols used in the paper whose meanings are not ex-

 plained in the main text. By the letter R we denote the set of

 real numbers (with the natural topology), whereas R stands for

 the plane. The letters N,Q,I denote, respectively, the set of

 positive integers, the set of rational numbers and the interval

 [0,1]. The symbols (a,b), (a,b], etc... denote open intervals,
 2

 those open at the endpoint a, etc... in the spaces R or R .

 Let f : X Y; then (D^) stands for the set of all po-
 ints of continuity (discontinuity) of the function f. The symbol

 X ' Y
 const ' denotes a constant function mapping X into Y, such that

 °

 the image of X in this transformation is a set (xQ}. The symbols
 f 7 g and V f. stand for combinations of transformations.

 t€T c

 The image and preimage of an open (left-hand open etc...) in-

 terval is denoted by f(a,b), f-1(a,b) (f(a,b], f-1(a,b], etc...),
 and the dispensable double brackets are omitted.

 By IntA(B), FrA(B) we shall denote the interior and boundary
 2 2

 in the subspace A of R . If A = R then we write Int B and

 Fr B, respectively. The closure of a set A we denote by Ā.

 We denote by the symbol *([a,b], [a,c]) an angle between the
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 segments [a,b] and [a,c], positively oriented on the plane.

 Perpendicularity and parallelism are denoted by and II , re-

 spectively. The symbol projL(A) means the projection of the set A
 on the line L.

 2
 By an arc Ł we mean a subset of the plane R which is ho-

 meomorphic (as a subspace) to I. If h : I onto > Ł is a home-
 omorphism, then h(0) and h(l) are called endpoints of the arc Ł.

 The notation L(a,b) is understood as: an arc with endpoints a

 and b. Let LCR2 be an arbitrary arc, h : I on^° > a ho-
 meomorphism, and let c,d € Ł. Then there exists exactly one arc ł'cł

 suchthat ł' = L(c,d). The arc l' will be denoted by LŁ(c,d).

 By p we denote the natural metric in R and pA (or p(x,A))
 denote the distance from the set A.

 Let X C R2 and let f s X - R2 . A function f * s R2 - R2 is

 called an e-extension of the function f (e 2 0) if f is an
 ♦ * 2

 extension of the function f (i.e. fļX = f and, for each a€f (R ),
 there exists 3 € f(X) such that p(a,ß) á e.

 Let W be any family of sets. We shall denote by ) the

 family of all sets being countable unions (intersections) of sets

 from the class V. So, let us define by transfinite induction the

 sequences ^Fa^^a<(i an<^ 0 denoting the smallest
 uncountable ordinal number ) :

 F O?) = ¥ = G OP) ,
 O o
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 ( Li Fc 5 (W)) when a odd, Ka Fc 5 °

 p am = <

 ( U Fc(W))e g 6 when a even, Ē<a g 6

 ( U GpCP))c ° when a odd, g<a s °

 GaCP) = 4

 ( LJ Ge(W))„ when a even.
 |<a Ē °

 Let F denote a family of closed sets. Then we shall write Fa in

 place of Fa(F) (a < Q) . Let G stand for a family of open sets.
 Then we shall write G„ instead of G„ (G) (a < fl) . a a

 Let Ea be the family of all functions f : X ♦ Y where X,Y
 are some topological spaces, such that, for every open set VC Y,

 F in the case of a odd,

 f_1(V) 6 <
 G^ in the case of a even.

 CL

 Then by the Baire class a (a < fl) we mean the family of

 functions s

 5a when a is a finite ordinal number,
 Ba(X,Y) =<

 . . when a is an infinite ordinal number,
 a+i . .
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 Throughout the paper, we assume the continuum hypothesis.

 Before we prove the fundamental theorem of this paper we give

 3 lemmas .

 2
 Let us adopt the following notation: if FC R , then let

 = Fr F and A^ = {x€R^: Pp(x) = a} for a>0.

 2
 LEMMA 1. Let FC R be a closed convex set and let peint F.

 Then, if H denotes a half-line with the initial point p, then,
 P

 for every ■* a ž 0, H n A^ = 0 or H n AF is a singleton. J
 ■* pa pa J

 From this lemma one can easily deduce:

 2
 LEMMA 2 • Let F C R be a closed convex set and let p e Int F;

 let H denote a half-line with the initial point p. Then, if
 P

 F

 there exists a real number aQ ž 0 such that Hp n Aa 7*0» then,
 F

 for any a ž 0, the intersection Hp n Aa is a singleton.

 LEMMA 3, Let F be a closed convex set such that Int F ^ 0

 and let p e Int F; besides, let Ł = L(a,b) be an arc such that

 Ł n F = {a,b}. Finally, let Ma (M^) be a half-line with the
 initial point p, passing through a (b). Then one of the angles

 r, formed by these half-lines, possesses the following property:

 for each element x € r n Fr F and each closed half-line Hx with

 the initial point x, such that Hx n F = {x}, the inequality

 Hxni/0 is satisfied.
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 Proof. Suppose to the contrary that such an angle r does

 not exist. So, denote by and r ^ two angles formed by and

 M^. Then there exist points x^ € fi Fr F (i=l,2) and closed
 half-line H with the initial point x. , such that H nF = {x.}

 X ^ 1 X ^ X
 and Hx fi Ł = 0. Of course, x^Xj Í {a,b}.

 In that case, let (i=l,2) stand for a half- line with the

 initial point xļf lying on a line passing through p, such that

 M. n F = {x.}. Denote M_ = M. i U M0 and let v_ (UÄ) denote an i i o i 2 o o

 open angle between and M2 which contains a (b). Let AQ
 be a closed convex angle between M. and H (if H C m. , we

 X X

 adopt Aq = 0). Note that AQ n F = {Xj^}. Let then

 r

 (V U A ) ' H when H C U ,

 Vo = J 1 1
 v0 ' A0 when Hx C V0,

 U0 ' A0 when H <= u ,
 U° { 1

 (U0UA0)VH when H C V0.
 v 11

 Similarly, let A# be a closed convex angle between M2 and Hx
 (if H C M,, let us adopt A = 0). Note that, analogously as

 2

 above, A# n F = {Xj^}. Let then

 M* = H,x U [x1,p] U [x2,p] U Hx ,
 1 2
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 (Vo U A ) ' H when H C u .
 « j z y v = j z y

 Vo ' AÄ * when H C. V 1 AÄ * when H x2 C. V °
 and

 I Uo N A. when Hx,c ¿ "o'
 u = -ļ ¿

 (u U A_) ' H when H C V .
 o * x2 x2 o

 * #2
 It is easily noticed that M fi Ł = 0 and M cuts R into the

 sets V* and U* between the sets {a} and {b}, which contra-

 dicts the connectedness of Ł.

 2
 THEOREM Let F C R be a closed and convex set and let

 2
 f : F -► R be a Darboux function. Then, for every e > 0, there

 #22
 exists a Darboux function f s R -► R being an e-extension of

 the function f and such that C = C-.
 f r

 REMARK i This theorem would not be true if we demanded that

 the function f be the 0-extension of the function f.

 Proof of theorem 4. Evidently, the theorem is true if F
 2

 is identical with R . So, in the sequel, we shall always assume

 that F f R2.
 Let e > 0.

 Assume now that Int F ^ 0 and F contains no half-plane.

 Then there exist a point p e Int F and lines M1 and such
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 that M1 n Mļ = {p} and either of these lines intersects Fr F at
 f 1

 two distinct points. Besides, let M denote a perpendicular to M

 passing through p.
 1 2

 The line M cuts R into two open half-planes. Let r > 0

 be a number such that K(p,r) c F. Let (mļ, m^} = M1 n Fr K(p,r).

 Denote by the symbol L^ (1=1,2) a half-line with the initial
 point p, passing through mļ. Then either of the intersections
 L± n Fr F is a one-element set and, in consequence, by lemma 2,

 F

 either of the intersections L^ n A^ is a one-element set, too.

 So, let (n*> = L± n A^ (1-1,2).
 Let further XjyXj be elements of the line M , such that
 y» ]C
 p(xk,p) = -71 y» (k=l,2). Then Xj^Xj e Int F* Consequently, let

 be a half-line with the initial point x^, passing through nļ.
 Adopt further notations. Let (i,k=l,2) be a closed half-

 V 1 *
 -line contained in K^, with the initial point n^ and let

 (i=l,2) be an open half-line contained in L^, with the initial
 point nł. Note that

 for each a > 1 and each i,k 6 (1,2), there exist
 ( * )

 points p^ € and p* € H* such that e
 I

 Let now denote a closed convex set determined by the
 2 2 11 1

 half-lines and the segment [n^nj] and, similarly , let
 denote a closed convex set determined by the half-lines and

 II 1 1
 the segment [n^^]. Let further be an open convex angle

 2 l ••

 formed by the half-lines and Hļ , and let be an open
 1 2

 convex angle formed by the half-lines Hj and Hg.
 In view of lemma 2, it is easy to see that
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 Vf ff II p
 p, Vf u Q, c U A*. p
 1 1 a>l a

 *

 Let us arrange all points from In a transfinite sequence

 {yß}p<Q and, similarly, points of the half-line - in a trans-
 finite sequence Let then ^ (i=l,2) be a closed
 half-line with the initial point y^, parallel to H*, and let
 K« 53 Ki o U K-» -, (ß < Q) . In an analogous way we define the sets P -Ł f o P ^ f P

 Hp (3 < 0) for the sequence
 t f

 Denote = F n and Fj = F n Qļt Then F^ and F2 are

 convex sets, thus f(FŁ) and ^(Fj) are connected sets. Adopt

 F.' = U K(x,e) and f' = U K(x,e), and let f' -f' uf' .
 x€f(Fļ) xGf(F2)

 i t i

 Then the sets Fj/F2 an<* F are connecte<^'
 1 p f

 In the family = {Aa n PŁ : a > 1} let us introduce the
 equivalence relation * defined in the following manner:

 (l) (af, rrp') » (AFMnpļ) < - > a' - a" e q.
 a a

 This relation decomposes the family Ou* into disjoint equivalence
 ò i »

 classes. Denote the collection of these classes by Q^. Since F^
 is a set of cardinality continuum, there exists a one-to-one func-

 tion hŁ : 0,1 onto > f1.
 Similarly, in the family CLj = {AF n QŁ s a > 1} let us in-

 troduce the equivalence relation defined by the formula analogous
 ^ 1

 to (l) and let (Xj stand for the collection of the equivalence
 classes of this relation. Then there exists a one-to-one function
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 Ł ni onto ^
 2 ! 2 - ^ > F2-

 Let us now define in the family OL^ = {K^ : ß < 0} the equi-
 valence relation o defined in the following way:

 (i') Kß. ° Kp,,<

 A ļ
 Let CLj denote the collection of all equivalence classes of

 this relation and let hg denote a bijective transformation of the
 A ļ

 collection CI3 onto F .

 Similarly, in the family = (H^ : ß < Q} we define the
 equivalence relation analogously as (l') and assume that- h^ is

 A 1
 a bijective mapping of the collection of all equivalence clas-

 ses of this relation onto F'.

 Il F 2
 Let g. 1 : (J A a ■* R be a function defined by the formula 1 a>l a

 ' h.([AÎ"(x)]) when x e p, n (J A**,
 a>l

 h,([AÎ(x)]) ¿ ¿ when x 6 q' 1 n U A*, a ¿ ¿ 1 a>l a
 9 ļ ( * ) - ^ ļ M

 hg([Ag(x)]) when x 6 Pļ#

 h4([A^(x)]) when x G Qļf
 W

 where, for x 6 U A^, a aJ(x) (i=l,2,3,4) denotes the set of
 x a>l a

 the damily (X^ x to which x belongs, while the symbol [•] denotes
 the equivalence class determined by one of the above relations.

 Suppose that we have already defined the function <3, ,<1?, • • > ,<3
 r' 1

 12 2 1
 and the lines M ,M corresponding to them (M is the
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 line considered in the construction of the function gŁ ) . These
 lines divide the circle Fr K(p,r) into 2n parts, and the plane -
 - into 2n convex angles (with vertices at the point p). If n>l,

 then, for each of those angles, let us draw a line being the bi-
 2n_l+i 2n

 sector of this angle. Denote the lines by M , ...,M Whe-
 2 1 21*

 reas if n=l, then let M = Mj^. The lines M , ...,M divide
 the plane into 2 convex angles (with vertices at the point p) and

 intersect Fr F at the points kļ,k2,...,kg where s ¿ 2n+1.
 About the points k^,...,k we may additionally assume that

 if s ' < s" , then a( [p,^ ] , [p,kg , ] ) C *( [p,^] , [p,kgll ]). So,
 for each t € {l,2,...,s}, let denote a half-line with the

 initial point p, passing through kfc, and let

 {mn+l} = aF1 n Ht * and ímn} = A1 n Ht*
 n+1 ñ

 In view of lemma 2, it is easily noticed that

 P ( k^ , in^ ļ ) í p ( kt , mn ) for t G {1,2,«.., s}«

 In order to simplify the notation in the further part of the

 proof, let us accept the following convention:

 the index 0 is equivalent to the index s,

 the index s+1 is equivalent to the index 1

 (that is, e.g. Hq stands for Hg and Hg+ļ = Hļ and the thing
 is similar when other notations are introduced, for instance, FQ=

 = Fs' Fs+1 - Fl' etc-K
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 It is easy to observe that none of the angles &([p,k^],[ P»ki+1l )
 (for i=l,...,s ) under consideration is flat.

 f ft

 Let further , for every t e {1,2,... ,s}, Ht'Ht denote two

 distinct half-lines with the initial point nijļ+ļ, such that:
 1 ' *

 1. Ht (Hfc ) is contained in a convex angle formed by the

 half-lines Ht and
 V I f

 2. If L is a line containing Hfc or Ht , then
 L n K(p,r ) ï 0.

 3. n = 0 and H^' n h1+1 = 0.

 Let us now adopt some further notations. For any t€{l,...,s},

 let Pt denote a closed convex set determined by the half-lines
 Ml £ t+1 1

 Ht 'Ht+1 an<* se9ment ^mn+l 'P-' '^mn+l ' an(^ ^et Pt denote
 I M

 open convex angles formed by Hfc and . Finally, let Ffc stand
 for a convex set formed by the intersection of the set F; a closed

 half-plane determined by a line passing through the points kfc and

 kt+l' to P does not beong; and a closed angle formed by

 the half-lines Hfc and Ht+i* ®asy to check that
 (t € {l,...,s}) is a connected set. So, let

 F = U K(x, -§t-) n+1 for t € {1, xEf(Ft) n+1
 I I

 Then Ffc (t € {l,...,s}) is also a connected set and card Ffc = Ç
 f f

 and, similarly, F^-i u Ft a connected set of cardinality con-
 tinuum (for t € {l,...,s}).

 Note that
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 pt " Aa * »
 and

 (mn+l'mn] n Aa * 0 for a 6 (ñTÍ'n] and te{l,. . . ,s}f

 and , moreover ,

 (l"n+l'-"nlc (J Aa*
 »ir<-4

 Now, fix some number t G {l,...,s}. Let then YļGL^fīK(p,r)
 t t If!

 (i=l,2) where Lj and I<2 are lines containing Ht and Ht , res-
 1 F

 pectively . Let, for any w € [0, 2n(n+l ) ^ ' *mw* = Ht n A 2n+l
 2n( n+l ) ~w

 In virtue of the continuity of the function pp and lemma 2, it

 is easy to observe that, for each w 6 [0, 2n(n+l ) ^ ' ^w e ^mn+l'

 m£]. So, for any w G (0, 2n(n+l))' let Lt,w (Lt,w) denote a
 half-line with the initial point y^ (y^)/ passing through m^.
 Denote by the symbol a closed convex angle formed by these

 half- lines and let <q¿ > = n AF 2n+1 and (qļ' )-l1' „n
 ínTñ+TT

 F 1

 n A 2n+l * Finally, assume that for each w G (0, 2n(n+l ) ^ '
 2n(n+l ) +w

 *£ - u U (AF2n+l +w +w " Md Ko * <»:>•
 2n(n+l) +w +w

 Note that

 KÍ n K£'Œ 0 if w * w'.

 We shall now show that:
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 for any x G n A^, there exists exactly
 ( ** ) n+l<a<n

 one element w G [0, ¿n(n+i ) ^ such that x e K^.

 Relationship (•*) is, of course, true if x = m^. Consequently,
 At

 in the sequel, we shall always assume that x j* m . So, let x G
 1 F

 e p n a!, F .
 x

 Assume first that ax > 2n( „11 ) • Denote «x « ax - 5^17.
 Consider two cases:

 Io x G . Then, as can easily be seen, x G .
 X X

 2° x Č q£. W Then, let us draw lines T*,T^ X X passing through W X X

 ť t

 the point x and through the points Yļ and Yj' respectively. The
 2 t

 line containing Ht cuts R between {x} and or between
 {x} and {y^}' Without loss of generality, suppose that the first

 ļ A ^ ^
 situation takes place. Then Tx intersects the segment fm0'mn+i-'

 At * r *t i

 at some point m # where w > w x . Note that then x G [g' r #,m w # x t,w w
 and, in consequence, x G K .

 w

 _ , , , 2n+ 1 , , . 2 n+ 1
 So, _ assume that , , , ox s 2n(nłl) and , adopt , . wx = żn;ntl) - V

 Consider the following cases:

 1°° x G H. . Then, as can easily be noticed, x G .
 t . wx

 2°° x Í Bt< In this case, reasoning analogously as in 2°,
 t *

 we shall get that x G K for some w > w .
 " w

 In view of the disjointness of the sets K^, the considerations
 we have carried out allow us to infer that relation (**) is really
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 true.

 a t ■*

 Let, in the sequel, t 6 {l,...,s} and let Pt (Pfc) denote
 I I

 an open convex angle contained in Pfc, formed by the lines and

 Ht (Hfc and Ht). Besides, adopt Aļ=A^npļ, A^' = (1 (Pt UPt),
 i ñ ñ

 and further, for each x € Afc, let denote a measure of a con-
 I

 vex angle contained in Pt formed by the half-line and a half-

 -line with the initial point mn+i' passing through the point x,
 f f

 and, for any x 6 A. , let u'' denote a measure of a convex angle
 L A

 formed by the half-line Ht and a half-line with the initial point
 p, passing through the point x. Let stand for measures

 f *

 of angles between and and and Ht+ļf respectively,
 *

 where Ht+ļ denotes a half-line with the initial point p, passing
 • f

 through the point being the intersection Ht+1 n Then, as can
 w n w be seen:

 I

 for each ae(0,nt), there exists exactly one element
 I f

 x € At such that a = and, for each x € Afc, 0 <

 < n¿ < uļ,
 and

 for each a G (0,711.' ], there exists exactly one element
 If tf

 x G At such that a = and, for each x € Afc , 0 <
 < n" * n».

 So, let 0,ť = {a£ n Pt s < a < ì} (t e {l,...,s}).
 Then, in each of these families, one can define the equivalence re-

 lation • in the following manner:

 (Aai npt) » (Aa,, n Pt) <
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 This relation decomposes each of these families into disjoint

 equivalence classes. The collection of those equivalence classes is
 A t denoted by OL t . Then there exists a one-to-one function

 ht . gt oņto_> y
 ł M

 At present, let us introduce in the set (Afc ), for t 6
 6 {l,...,s}, the relation A defined by the formula

 X A y <=> Tt^ - Tiý G Q (u¿' - Ti^' G Q).

 The collections of equivalence classes determined by these rela-
 A ļ A j J

 tions are denoted by and Q,^ , respectively. Then there
 exist one-to-one functions

 , , A' onto . _ ' , , " n" onto .
 h¿ , , s at

 (t € {1,... ,S}').

 Let, finally, &t = {K^ : 0 á w < 2n(n+l ) * ^ 6
 In each of these families one can define the equivalence relation

 ° in the following way:

 k£ ° Kw- < - > w " w' e Q*
 »

 The collection of equivalence classes of this relation is denoted
 a s

 by (t e {l,...,s}). Let hfc be a bijective mapping of
 I f

 onto Ft-1 u Ft*
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 So' let ?n+l ! . u. A^ ■» be a function defined by the
 - 7T<a<- n+1 -n

 formula

 hfc( [Afc(x) ] ) when x 6 P n II AF for U t ^ s,
 n+1 n

 ( [ At ( x ) ] ) when x 6 n AF for látáš,
 ïffî^ïï

 w*>- ,
 ht( [x] ) when x € At for látáš,

 ht ( [x] ) when x € A^ for látáš,

 f(k. ) when x = mt for látáš,
 t n

 where, for x € II A**, the symbol A^(x) (A. (x)) denotes the
 1 y.1

 n+1 n

 collection of the family ClJ" ( 0^.), to which x belongs, while
 the symbol [ • ] - the equivalence class determined by one of the

 above relations.

 Going on like this, we shall define an infinite family {9n}^ssi
 of functions. Since the domains of transformations belonging to

 this family and the function f are disjoint, the functions f,gj,

 g2,... are compatible. Put

 oo

 f* = f v ^ gn s R2 - R2.

 We shall demonstrate that f satisfies all conditions oc-

 cur ing in the assertion of the theorem.
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 It can. be noticed without difficulty that f is an e-exten-

 sion of the function f.

 We shall now prove that f* is a Darboux function. For the

 purpose, it should be shown that:

 » 2
 (2) f (Ł) is a connected set for any arc LCR.

 We shall first demonstrate that:

 ♦ 2
 (3) f (Ł) is a connected set for any arc LCR ' F.

 II U p It is easy to see that if ŁC U A , then
 a>l

 {h.([AF n P* ] ) } when ŁCAFnp for sane a > 1,
 lai ai

 {h2 ( [AF n ] ) } vdien ŁC aF n q1 for some a > 1 ,

 {hs ( Ek^] ) } when ŁCK^ for same ß < ß,

 (h^([Hp])} when ŁCHp for sane ß < ß,

 F. when ŁCP. n U aF, and
 f#(Ł)=gi(Ł) =' 1 1 o>l a

 - f 1

 Ł (£. Aa n PŁ for any a > 1 ,

 F2 when ŁC Q. fi U a and o>l a
 . p •

 Ł ^ Aa n Pļ for any a > 1 ,
 »

 F otherwise,
 v.

 and, thus, f (Ł) is then a connected sôt.
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 It can be proved that if Ł C M (n=l,2,...),
 1 1

 n+T^ n

 then f (Ł) = 9n+1(Ł) is a one-element set or a union of some num-
 ber of sets with successive indices, thus it is a connected

 set, too.

 -ļ

 So, let Ł be any arc contained in R ' F, such that, for

 any positive integer n, Ł . U. and (if ŁCaJ,
 H?r<as5

 then Ł c F and, thereby, f*(Ł) = f(Ł)).

 Let M denote any half-line with the initial point p, non-

 -dis joint from Ł. Then, for any real number cp, let (M^)
 denote a half-line with the initial point p, such that the measure

 of the angle between the lines M and (M^) is equal to <p
 and this angle, when M is its initial side, has a positive (ne-

 gative) orientation. Let us adopt:

 <PŁ = sup (cpo G [0,2n] ! h" n Ł j' ļ( for any cp á cpQ} ,

 c?2 = sup {cp0 G [0,2n] s n Ł ^ 0 for any <p á <P0}«

 cf>i
 Evidently, M fiL^ļĪ^M n Ł. The closed angle between M and

 ^2
 <t>l +

 M (which is positively oriented) will be denoted by M , whereas

 that between M and M (negatively oriented) - by M . Besides,
 2

 let us adopt M = M+ u m". Let F* = Fr F n M . It is not diffi-
 O o

 cult to notice that each half-line with the initial point p, con-

 tained in Mq, is non-dis joint from Ł.
 In view of the connectedness of Ł, it can easily be deduced
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 that ŁC M .
 o

 *

 At present, we shall show that F is a point or an arcwise

 connected set.

 Indeed, let 0* = Mq n Fr K(p,r). Define mapping iļi*s0* onto > p*
 in the following ways let 4»*(x) be a point forminga set H* n Fr F

 X

 where H stands for a half-line with the initial point p, passing

 through x. Since, for any x € 0*, Hx G MQ, therefore (by lem-
 ma 2) this function is well-defined. Of course, v|i is a homeo-

 *

 morphism, thus F is an arcwise connected set, which allows us to

 conclude that:

 (4) f (F ) is a connected set.

 We shall now prove that:

 if M' is a half-line with the initial point p,
 *

 contained in M , and k € M' n F and c 6
 (5) o o o
 GM' (IŁ, then f(kQ) belongs to that ccmponent
 C of the set f (Ł) which contains f (c ).

 O

 Indeed, if c e F*, then, 'j. by lemma 1, ■' c = k and this O 'j. ■' o o
 4fr

 fact is self-evident. So, assume that cQ £ F . Let aQ > 0 be
 F

 a number such that cÄ e A . Consider the following cases:
 o a0

 1. There exists a positive integer nQ such that ^ < aQ<
 i ®

 < - or aQ > 1. In this part of our reasoning, let us adopt the
 o

 notations used when constructing the function 9n+ļ ~ our conside-
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 rations will be restricted only to the case when aQ < 1 (when
 a > 1, the proof is analogous). Then there exists a positive in-

 teger t such that k G F. . Thus c G P. or c 6 p' or o o t . o t o t
 o o o

 cq G pļ +ļ. Since, in accordance with the assumption adopted,
 o

 Ł flf II AF, therefore:
 i y i a

 ¡TTT<a<-
 O o

 I A
 If c G P I , then, for each equivalent class Cl G Ol» ,

 o
 o o

 there exists a set A G & such that Ł n A ^ 0.
 f A
 If cQ G Pfc f +ļ, then, for each equivalnet class Cl G &t +ļ,
 o o

 there exists a set A G Cl such that Ł n A ¿ 0.

 If c G P , there may occur two cases:
 o

 -Ł n P C A^ . Then Ł n Pt ¿ 0 or Ł fl Pt +1 f 0.
 o o o A o

 Then, however, for each equivalence class (X € Q/ t , there exists
 _ o

 a set A G Q, such that Ł n A j* 0 or, for each equivalence class
 A

 0» g Q/ , there exists a set A G a such that Ł n A ^ 0.
 zo

 -Ł n p. (t ~ A^ . t ~ a
 o o

 * t

 Then, for each equivalence class &G Ct °, there exists a set
 a g a such that Ł D A ¿ 0.

 In each of the situations described above, relationship (5)

 really takes place (because the component C of the set f (Ł),
 # I

 f (c ), always contains F. , as well).
 ° ^o
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 2. There exists a positive integer n such that a = - .
 o o n

 O

 Similarly as in case 1, as shall apply the notations used when con-

 structing the function 9n+ļ» understanding that they concern the

 function gn +ļ. Similar notations with symbol © will concern
 the function gn (for example, denotes the set con-

 o o o

 struced for the function gR ) . There exists a positive integer tQ
 o i i

 such that k € F. . Then c € P. or c e P. or c 6 P. , , o t o t o t o t_+i ,
 o o o o

 Then:

 t t +1

 If c = ni (ni ), then k = k. (k. , , ) and relation- o n n o t t+ , 1
 o o o o

 ship (5) is true.
 i» i

 If c e A (as k e F. , therefore c é A. ), let us
 ° zo o o

 consider the following cases:

 I •

 - there exist a,b E Ł such that L.(a,b)c A. ; then, for
 a » °

 each equivalence class [x] 6 , Ł n [x] ^ 0;
 o

 »

 - there exist a,b € Ł such that LŁ(a,b)C Afc +ļ; then, for
 A t o

 each equivalence class [x] € +1, Ł n [x] 0;
 o

 - for any neighbourhood V of the point cQ, Ł n V n

 U Ia A^ ¿ 0; then, for each equivalence class Ole (X A £ A^ ¿ 0; then, for each equivalence class Ole (X °,
 i Ia

 H7+r<a<n"
 o o

 there exists a set A e a such that Ł n A ^ 0 or, for each
 A

 equivalence class Cle Q,. , there exists a set A e Ol such that
 o A

 Ł n A ¿ 0 or, for each equivalence class (X»€ (X/. +1 there exists
 V1 +1

 a set A e a such that Ł n A ^ 0;
 t

 - for any neighbourhood V of the point cQ, Ł fi V n
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 n M A^ J* 0 . Then, for each equivalence class e °
 T i
 a>%
 / © / (t' is an index such that H.V^ = H. or H. is contained in
 o t' t

 © and ©, there ° exists a set © the angle between H. , and there exists a set €
 o o

 € a© such that n Ł ¿ 0 (then Ffc, ' C f*(Ł)).
 I

 If cQ 6 At +ļ, the reasoning runs analogously as above,
 o

 It is easily observed that, in each of the situations consi-

 dered, relationship (5) is reali true (of course, c
 o o

 III I

 since always if cQ € Afc U Afc +ļ, then f(kQ), f(cQ) e Ft an(*
 O O o

 f' c f*(Ł).
 o

 By (5), in view of (4), we may infer that, also in this case, re-

 lationship (3) is true and, moreover, that

 (6) f(F#) C f*(Ł) for any arc Ł C ' F.

 In order to show the varacity of statement (2) definitely assume

 that Ł is an arc such that Ł n Int F ¿ 0 i Ł ' F. Let h be

 a homeomorphism mapping [0,1] onto Ł . Let further

 AŁ = {x G [0,1] s h(x) € F} and = [0,1] ' A^.

 Then Bł is an open set in LO , 1] , thus it possesses open compo-
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 nents. Suppose that r is such a component. Then r = (a,b) (Oá

 ś a < b á 1), r=[0,b) or r=(afl]. Assume first that r =

 = (a,b). Then the arc LŁ(h(a) ,h(b) ) possesses the property that
 LŁ(h(a),h(b) ) n F = <h(a),h(b)}. Let Ma (M^ be a half-line
 with the initial point p, passing through the point h(a) (h(b)).

 Denote by the Symbol Mp a closed angle between Ma and with

 the property that, for any x € Mj, ft Fr F and any closed half-line
 H with the initial point x, such that H H F = { x } , we have
 A A

 H n L_ (h(a ) ,h(b ) ) ^ 0 (such an angle exists in virtue of lenma 3).
 X du

 Since h(a) ^ h(b), therefore Fr F (i Mp is an arc.
 Let hp : [a,b] -► Fr F n Mp be a homeomorphism such that

 hp(a) = h(a) and hp(b) = h(b).

 Now, consider the situation when r = [0,b). Let Ma (M^) be
 a half-line with the initial point p, passing through h(0) (h(b)).

 In the case when M& # M^, let Mp denote a closed angle between

 M& and M^ with the property that, for any x 6 Mp n Fr F and for

 any half-line Hx with the initial point p, passing through x,
 H n L_ (h(0 ) ,h(b) ) ^ 0 (the proof of the existence of such arc is
 X xj

 analogous to that of lemma 3). It is easy to check that Fr F n Mp

 is an arc. So, let hp s [0,b] ♦ Fr F n Mp be a hemecmorphism such

 that hp(b) = h(b). In the case when Ma = M^, adopt Mp= {h(b)>.
 Let then

 . _ [ 0 ,b ] , R2
 . hp _ - const h(b)

 In a similar way one constructs the function hp when r=(a,l].
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 Let g = hIÄ 7 V hr: 1 [0,1] onto > (F n Ł)uU(Fr F n M.) 1 iał r 1 r 1
 wh'ere the combination of functions and the union of sets are con-

 sidered over all components of the set B, .
 li

 We shall demonstrate that g is a continuous function. Let

 xQ € [0,1] and let e' > 0. If xq is an element of any compo-
 nent r of the set B Ł, then, of course, xQ € and, similarly,

 if xQ G Int Ä£. Consequently, assume that xQ 6 A^ 0 B^ .
 Let us first assume that, for some component r of the set B, ,

 ±J

 the equality r = (xQ,b) (where xQ < b) takes place. Then there
 exists 6 > 0 such that xQ + 6 < b and g[xQ,xo+ô) = hp[xQ,xo+6)c
 C K(g(x ),e'). A similar argumentation can, of course, be carried

 out when r = (a,x ) where a < x . So, assume that x_ is not
 o o o

 an (without loss of generality - left-hand) endpoint of any compo-

 nent of the set BT , and that x^ / 1. Then there exists a sequ- li O

 enee °f components of the set BŁ, such that lim rR = {xQ}
 n-°°

 and r > xQ for n=l , 2 , . . . . We then have

 (7) h( [xo-6,xQ+6] n [0,1]) C K(h(xQ),e') for some 6 > 0.

 It can be assumed here that if the component r of the set B^ is
 not non-dis joint J from [x -ô,x +6] and r > x, then rc [x .x +6] J O O o o

 and 6 < p(x .1). It is easily noticed that g([x .x +6] n A_ ) c O O O Ł

 C K(g(xQ) ,e* ) . We shall now show that

 (8) g([xQ,xo+ô] n bł) <z k ( g ( xq ) , e ' ) .
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 Let r = (a,b) be any component of the set B^, such that r c
 C tx0'x0+6] and let c G r. Then g(c) = hp(c) G Fr F n Mp. Let
 N stand for a half-line with the initial point g(xQ), passing
 through g(c). There may occur two cases:

 1* [g(xQ),g(c)] n Int F ^ 0. Then the closed half-line N*c N
 with the initial point g(c) possesses, by lemma 2, the property

 that N* n Fr F = (g(c)}.

 2* [g(xQ),g(c)] n Int F = 0. Then [g(xQ) ,g(c) ] C Fr F. So,
 let N denote a closed half-line with the initial point g(c),

 perpendicular to N and such that N D F = {g(c)}.

 Continuing our reasoning identically for both the cases, we

 note that, in virtue of lemma 3, N* fl L_ (h(a) ,h(b) ) ^ 0. Let £ 6
 Xi

 € N* n LŁ(h(a) ,h(b) ) . By (7), g G K(g(xQ) ,e' ) ,■ which means that

 g(c) G K ( g ( xQ ) , e ' ) .

 A similar argumentation can be carried out when xQ is not

 a right endpoint of any component of the set BŁ and xQ ^ 0.
 The above considerations enable us to deduce that g is re-

 ally a continuous function. This allows us to find that F# = (Ff"lŁ)u

 U U (Fr F n M_) is an arcwise connected set, thus f(F ) is a
 r 1 •

 connected set.

 Note that f*(Ł) = f*(h(A,)) Ł u U f*(h(r)). Note also that,

 for any component r, h(r) = LŁ(h(a) ,h(b) ) because r =[a,b],that

 is, h(D is an arc such that h(D Çt U Aa ^or an^ n? ^e-
 ¡¿r<a4

 refore, in view of (6),
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 (9) f*(Ł) = f (F ) U U f*(h(r) ) .
 r

 On the ground of (3), we may infer that, for any component r

 of the set BT , f (h(r)) is a connected set, whereas, in virtue
 XI

 of (6), we may additionally observe that f*(h(r)) n f(F#) ¿ 0,

 which, in view of the connectedness of the set f(F#) shown befo-

 re , proves ( 2 ) by ( 9 ) .

 At present, we shall prove that

 (10) C = Cf. 1 f 1

 We shall adopt the notations used when constructing the func-

 tion g . . , with that the encircled index denotes an index of the
 n+i . s~'

 mi) s~'
 function a given object has relation to (for instance, stands

 for the half- line corresponding to the function gn ) .

 It can easily be noticed that D^C D Int F n C^C C # and
 2

 R ' FC D , and so, in order to pròve equality (10), it is suf-
 fi

 ficient to show that

 (11) Fr F n C.CC
 r f*

 Let xQ e Fr F H Cj and let e* > 0. Then there exists 6 >0
 such that f*(K(x ,6) fl F)C K(f*(x ), ^-¡r) . Let T stand for a

 O u m

 half-line with the initial point p, passing through xQ. It is

 not difficult to verify that xQ is the endpoint of the arcs Ł ^

 i
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 and Łj contained in Fr F and lying on different sides of the
 A

 line containing T. Consequently, there exist arcs LļC and
 A A A

 1*2 c Ł2 ^avin9 their endpoints at xQ and such that ,L^lK{xo,à)
 So, let nŁ be a positive integer such that, among the hal-

 ©
 -lines occuring in the construction of the function gn ,

 there are four - denote them by J H , H*,H?,H° * - such that H fiŁ.ji J o , o * o 1

 / )í / H* n Łj, H° n Ł2 ^ (í / H° n Ł2 and the open convex angle rQ

 formed by the half-lines HQ and H° contains the open convex
 angle r° formed by H* and H°, and besides, T ' {p> C r°.

 *

 Let nQ ¿ nŁ be a positive integer such that ^ •
 o

 Adopt VQ = K ( xq , 6 ) n r n ( (J a£ U F). Evidently, VQ is an
 0Sa<-

 n
 o

 open set containg xq. We shall demonstrate that

 (12) f*(V0) C K(f*(xQ),e*).
 *

 Indeed, let x G VQ. If x G F, then f*(x) G K(f*(xQ), • So,
 assume that x £ F. Since n ž n. , therefore the half-lines H ,

 Ol o

 H*,H° * and H° are included in all decompositions made when con- O *
 A

 structing g ,g Denote F = r n Fr F. Then FC K(x .6) . n n +1 o o
 o o

 Let x G A5* . Then 0 < cl, < -, so. let - - < a á - Then
 ax x no n +1 x n

 f*(x) G U Ki f (y ) , e ) C KC f (x ) , e* ) . By (12), in view
 yGFflK(xo,6) n +1

 of the free choice of xQ, we may infer that inclusion (11) is true,
 which ends the proof of the theorem in the case when Int F ^ 0
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 and F contains no half-plane.

 Consequently, let us now assume that Int F ï 0 and F con-

 tains some half-plane. Then there exists a closed half-plane ti ^ c.
 C. Int F with edge S, such that t^ = r2 ' Int F« Then F*=
 = F n TĪ2 is a closed convex set with non-empty interior and F*
 contains no half-plane. In virtue of the fact proved above, there

 2 2
 exists a Darboux function f# : R ■» R being an e-extension of

 the function f, , such that C_ = C-, . Let us then adopt
 «F» , t,F*

 r

 f_(x) when x € n0,
 »

 f (x) = -

 f (x) when x G ti. .
 i 1

 It is easily noticed that f* satisfies all conditions of the as-
 sertion of our theorem.

 So, consider the situation when F is a closed and convex

 boundary set. Then F is a point, a closed segment, a closed half-
 2

 -line or a line. Let S stand for a line containing F. Let f#:S -R

 be the ^-extension of the function f, such that C # = C^. The
 2 ^

 line S cuts R into two half-planes U and V. Define a func-
 A - 2 A / ,

 tion f s U R in the following manners f(x) = f# (projg(x)). / ,
 Then f is a Darboux function and one can easily observe that

 x £ CA <=-=> projg(x) e Cj <=> projg(x) 6 C^.

 In accordance with the part of the theorem we have already
 e ~ 2 2

 proved, there exists a Darboux ^--extension f t R -» R of the
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 A - -

 function f, such that C_ = CA . Let Se 5 s U -► V be a symmetry f f 5

 with respect to the line S. Then Sg is a continuous function.
 #22

 Define f : R -*• R as follows:

 f(x) when x € V,

 f * ( x ) = -

 f(Se(x)) when x € Ū.
 V k>

 *

 It is easy to see that f is a Darboux function being an e-exten-

 sion of the function f. Besides, note that C = C-, which ccro-
 f 1

 pletes the proof of the theorem.

 Now, the following question may arise: is in the above theorem

 the assumption of the convexity of the set F essential, or is it

 sufficient to assume about F that it is a closed and connected

 set or a continuum (for simplicity, we shall assume that all the sets

 under consideration are contained in the cube [0,1] x [0,1])? In

 1922 B. Knaster in paper [5] showed an example of a non-one-ele-

 ment continuum whose no subcontinuum is decomposable (i.e. it can-

 not be represented in the form of the union of two subcontinua dif-

 ferent from K). It is easy to define on this continuum a Darboux

 function which does not possess the 1-extension to another Darboux

 function. It turns out that such a situation is not incidental since

 on the basis of the Mazurkiewicz theorem proved in [7], it can be

 observed that:

 PROPOSITION 5, m the space composed of continua contained in
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 the square [0,1] x [0,1] with the Hausdorff metric of the expo-

 nential space, the set F of continua for which there exists a
 2

 Darboux function f : F - R not possessing the 1-extension to

 another Darboux function is a dense set.

 Consequently, there may be raised a further question: for what
 2

 sets F C R do the Darboux function f defined on F possess

 (ordinary) extensions to the Darboux function f* in such a way

 that C- = C ? A partial answer to the above question is give
 1 f

 by the succesive two propositions being, in substance, corollaries

 from theorem 4.

 2
 PROPOSITION 6, Let FC R be a set such that there exists

 2 2
 a homeomorphism h t R ■» R such that h(F) is a closed convex

 2
 set. Then, if f s F ■* R is a Darboux function, then there exists

 * 2 2
 a Darboux function f : R ■* R being an extension of the func-

 tion f, such that C- = C .
 r f*

 _ 1 2

 Proof. Adopt g = f o hj^(F) s h(F) ■» R . It is easy to
 notice that g is a Darboux function. Consequently, by theorem 4,

 #22
 there exists a Darboux function g : R - R being an extension

 of the function g, such that C ^ = C .
 ^ * y Q g * y Q

 Put f* = g* o h : R^ -► R^. It is easily noted that f* is
 a Darboux function. Moreover, we have f*(x) = g*(h(x)) =f(x) for

 each x € F. And note that C = h(C-); so, indeed C = C-.
 g r £* r

 PROPOSITION 7. Let F = F^ U F2 C I2 where FX,F2 are
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 2
 closed convex sets such that n F 2 = 0. Then, if f : F -► R
 is a Darboux function, then there exists a Darboux function f*:l^-»R2

 being an extension of the function f, such that C = C-.
 f 1

 Proof. Adopt Ui = {x : pF (x) G [ 0 r^PiFļ ,F2 ) ) > for i=

 =1,2, Then UŁ and U2 are open sets such that F^ c F2CU2

 and Ūļ n §2 = (J. Besides, adopt V = R2 ' (UŁ U ij^). Then V is
 a 2

 also a non-empty open set. Define a function fQ s V - R in the

 following way: Let 0,= {Ar = {x s p(x, Ū^UŪj) = r} s r>0}. Then
 one can define the equivalence relation * in the family OO :

 A * A < > r, i - r, £ G Q. 1 2 i £

 A

 Let Ol be the collection of all equivalence classes of this rela-
 A

 tion. It can easily be verified that, for any class Q,' 6 Q, >

 there exists a real number r such that Ar 6 Ol! and Ar ý 0 . Let

 then h: > r2 be a bijection. Put fQ(x) = h([Ar J) where

 A denotes the set {x' s p(x' ,U. 12 U ū.) = p(x,Ū. 12 U Ū0)}, while rx 12 12

 tAr ] stands for the equivalence class determined by this set.
 x

 Note that flc, (i=l,2) is a Darboux function. Consequently,
 i

 * 2 2

 in virtue of theorem 4, there exist Darboux functions f ^ s R ■* R

 which are extensions of the function f|F and such that C #=Cf|F
 A ' *

 (i=l,2). Then the functions f^ = f^(y (i-1,2) are Darboux
 # A 2 2

 functions, too. Adopt f = ^ f^ : R -» R . It is easy to notice
 i=l
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 # -

 that f is a Darboux function and V « D , and thus, indeed,
 f

 c *= cf r f r

 In the succesive theorem we shall present the possibility of

 the O-extension of a Darboux function with the preservation of a sui-

 table class of Baire. To simplify the notation, the fact that f

 belongs to the Baire class a will be written downs f € Ba (0 £
 á a < Q) .

 THEOREM 8 1 Let F be a closed and convex subset of the plane
 2

 and let f : F •» R be a Darboux function such that f e B for
 (X

 * 2 2
 some 0 ¿ a < Q. Then there exists a Darboux function f : R ■» R

 *

 being the O-extension of the function f, such that f e B^.

 Proof. In the case when F is a singleton, it suffices
 2 2

 R R
 to adopt f = const Consequently, assume that F is not a

 r IXq J

 one-element set. Adopt then the following notations:

 If Int F # 0, let p denote a fixed point belonging to IntF.

 Then, for any p G Fr F, let H denote a closed half- line with
 po

 the initial point pQ, such that the line L, containing H , con-
 o

 tains the point p , and H fi F = { pÄ } .
 Po °

 Whereas if Int F = 0, let S stand for a line containing F.

 Then, if p € Int_ F, let H denote a line perpendicular to S
 ° & P0

 passing through p_, and if p 6 F ' Intc F, let H denote
 o o o p0

 a closed half-plane with the edge being a perpendicular to S such

 544



 that H_ n F = {p *o >. It is not hard to notice that: Po *o

 2
 for each x € R ' Int F, there exists exactly

 one point p E Fr F such that x € H
 x px

 2
 Define a function f # : R * F in the following manners f#(x)*

 = x when x 6 F; if x £ F, let f#(x) = px where px is an
 element of the set Fr F such that x € H .

 px
 We shall prove that:

 (1) f# is a continuous function.

 This fact is evident when Inf F =0 (f# can be represented

 as a superposition of two continuous functions).

 So, assume that Int F f 0. Of course, Int FCC.. Consequently,
 *

 let xÄ i Int F and let z ;■ 0. Adopt f^(x * ) = p G Fr F. Let O * O X
 o

 K be a closed rectangle with vertices a,b,c,d such that:

 Io px e IntKC KC K(px ,e) ,
 O o

 2o [a,b] 1 H J_ [d,c] and [a,d] M H li [b,c],
 Px px
 O o

 3° [a,b] C F and [c,d] C R2 ' F.

 c d
 Let H ,H denote half-lines with the initial point p, pass-

 ing through the points c and d, respectively. Let r stand for

 an open convex angle formed by these half-lines. It is easy to

 observe that then r ' (F ' K(p ,€)) is a neighbourhood of the
 xo
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 point X O and, moreover, f*(r ' (F ' K(p X ,e))) C K(p X ,e) n F, O X X
 o o

 which proves (1) definitively.
 #22 »

 Adopt f = f°f#:R •* R . Then, as can easily to seen f

 is a Darboux function being the O-extension of the function f and,
 *

 of course, f € Ba.

 2
 COROLLARY 9. F C R be a set such that there exists

 2 2
 a homeomorphism h : R ■* R such that h(F) is a closed and con-

 2
 vex set. Then, if f : F -► R is a Darboux function such that f€

 * 2 2
 G Ba (0 á a < Q) , there exists a Darboux function f : R - R

 being an extension of the function f, such that f* € Ba.
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