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 1. INTRODUCTION

 Even for well-behaved self-maps of an interval, u»-limit sets (attractors)

 can exhibit rather interesting (and, for the uninitiated, somewhat bizarre)

 behaviour. Such a set can be finite, or a countable closed set, or a Cantor

 set, or an interval, or certain combinations of these. A number of papers,

 some dating back to the Sixties, indicated some of the possibilities as well

 as some of the limitations ļsee, for example £s^J , [Sg] » and ^HOLE j j . Much
 of the work on the subject involves a good deal of technical machinery that

 might be difficult for nonspeclalists. And there are some troublesome errors
 V

 In the literature. For example, Sarkovskii seems to say in [S^] that If an
 infinite w-limit set has an Isolated point, then it has infinitely many

 isolated points; see Example 1 below.

 Our main purpose is to characterize the closed sets which can be oi-limit

 sets for continuous functions.

 We begin with an elementary example which illustrates how various nowhere

 dense closed sets can be realized as. o)- limit sets of continuous functions. We

 do this via one rather simple function mapping [0,1] Into Itself. This

 function actually illustrates a rudimentary form of our theorem that every
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 compact, nowhere dense set H Is an <j- limit set for some continuous

 function. More precisely, we show that for every such set M there is a

 homeomorphic copy of M contained in ^3 » 9J suc^ that for some x,

 u)(x,f) n = Mq; that is, a copy of M is that part of the w-limit set

 of f which lies in [3 » 9J •
 Our proof that every nowhere dense closed set is an w-limit set proceeds

 in stages. Our main tool is Theorem 1, which provides a condition for a

 sequence {2n} °f numbers to be the orbit of some point under a continuous
 function. We handle separately three types of closed, nowhere dense sets,

 each requiring its own treatment. First, we deal with the case where the

 set is uncountable and intersects some interval in a Cantor set. We then

 address the countable case. Here we find it convenient to deal first with a

 certain specialized type of countable set and then invoke results (Lemmas 5

 and 6) which show that this type of set suffices for the general countable

 case. Finally, we treat the case in which the set of Isolated points is dense

 in the entire set.

 The results of these three parts are labeled "Propositions". Each depends

 on some technical lemmas and on a concept involving extension of a homeo-

 morphism from a closed nowhere dense set C to a set whose interior has C

 in its closure.

 NOTATION AND TERMINOLOGY

 The symbol I will denote the unit Interval [0,1]. For f : I *» I and

 x e I we define f®(x> = x; and fn+*(x) = f(fn(x>) for each natural number

 n. By the orbit of x under f we mean the set y(x,f) = {fn(x) : n e
 where is the set of natural numbers. If A is a set, then cl A or A

 denotes the closure of A, and A' denotes the set of limit points of A.
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 The expression I Al represents the diameter of A; hi A is the

 restriction of the function h to A; and d(x,A) is the distance from x

 to A. The notation {xn}n-o denotes the sequence as a function whereas

 {xn : n e is the range of the function. The cluster set of {xn}n-o

 is the set of subsequential limit points of {xn}n=o*
 Let f be a continuous function. The a)- limit set (some authors use the

 term "attractor set") <i>(x,f) is defined to be the cluster set of {fn(x)}n_g.
 In the sequel, whenever we write o>(x,f), it is understood that f : I -> I is

 a continuous function and x e I.

 AN EXAMPLE

 We begin with a simple example which illustrates how various, possibly

 complicated nowhere dense closed sets can arise as u-limit sets.

 It will be convenient to work with base 3 arithmetic. If the ternary

 expansion of x is .xxx..., then 1 - x = .x?x*x?..., where
 1 Z J 1 Z o

 x? = 2 - x . If A = a. a_a_
 i i i z o n

 a. e (0,1,2} for each 1, then we define A* by A* = a* a* a*... a*.
 a i z J n

 We denote the length of A by p(A). We will describe ternary represen-

 tations in terms of blocks. For example, .1A.1A_...1A ... is the number 12 n

 •la. .a._. . .a. la0. a__ . . . a_ 1... . This will be abbreviated .1A. .
 il iz ln^ zi zz zn£ 1

 Additionally, a ternary number of the form . aa...aa .a . will be denoted
 n+l n+Z

 by *^a^nan+ian+2* " Note that the effect of multiplying a ternary number
 by 3n is to move the ternary point n places to the right if n > 0 and

 n places to the left if n < 0.

 Let T be the ordinary Cantor set in I. Let K = ^T + ^ and put

 *0 = ß'3 ]* Note that K c V Deflne f on I by
 f (x > = 1 - 3d (x , K) .
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 Then in particular, f<x) = 3x on [o,^J and f(x) = 3(l-x) on [f»*]-
 Parenthetically, if we had defined f to be identically 1 on we

 would have arrived at a function having simpler dynamics. It is easily

 verified that in this case all points not in T, as well as those points in

 T which admit a ternary representation containing a 1, would have orbits

 which eventually arrive at the fixed point 0. On the remainder of T, which

 we label TA, the dynamical structure resembles that of the "hat function" h

 which is defined by h(x) = 2x for 0 < x < and h<x) = 2(l-x) for
 1

 2 < X < 1 (cf. [B]) . Evidently, the orbits of all points in T~ remain in
 TÄ. In particular, it is easy to identify in TÄ periodic points of

 arbitrary period and other points whose orbits are dense in T. There is also

 a countable, dense subset of T whose orbits eventually land on the fixed

 3
 point -. The perturbing effect of the spikes appearing on the graph of f

 in the interval makes it possible to exhibit a greater variety of

 iterative behaviours.

 We now examine the various possibilities.

 When X € K, fn(x) = 0 for all n > 2. However, when x e IQ - K we
 obtain more interesting orbits. For instance, let x e - K be of the form

 X = .1A^1A2

 where each A^ is a finite block of O's and 2's. The nearest point of K

 to x is either .1A110 or .1A120 depending on whether A^ begins with a
 0 or a 2, respectively. It is easily checked that

 f(x) = .[2]kA5ĪĀ* or f(x) = .[2]kA2ĪĀ^
 depending on whether A begins with a 0 or a 2, and where

 £»

 k = p(a4) + 1. Moreover,
 f2(x) = .[0] A„ĪĀT or f2(x) = .[0] A*ĪĀ*

 m z i m z i

 depending on whether begins with a 0 or a 2, and where m = p(a^).
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 Further calculations yield

 fM(x) = -A2ĪĀ^ or fM(x) = -A*ĪĀ»

 depending on whether begins with a 0 or a 2; here, M = p(a.J + 2.

 And, when H = P^) + p(a2) +2, we have
 fN(x) = .1A-ĪĀ7 or fN(x) = . 1AĪĪĀ*.

 J 1 Ol

 ļļ
 The form of f (x) is determined as follows. Let a be the number of pairs

 of different consecutive integers in Then f (x) has the first form if

 and only if A begins with a 0 and a is even, or A begins with a 2
 Z z

 and a is odd.

 Thus, fN(x) will be the first iterate after x itself to appear in

 Iq. Mote that the number of iterates necessary to return to 1^ depends on

 the lengths of both A^ and A^, while the nearness of x to K depends

 primarily on the length of A^. We shall exploit these facts below. By
 controlling the lengths of the blocks, we can control the location of the

 repeated returns of the orbit of x to 1^.

 Example 1. Let Q© = g T + ^ and = 3 n Qg for n > 1. Then
 [0,1} U fu* v rtQ ) is an o-limit set for f. v n=o tij

 Proof. Note that . Any point x in can be written as

 x = .10a a ... . If x e Q , then each a e {0,2}. Let À consist of
 O 4 U ļ

 all non-empty finite blocks of O's and 2' s which begin with 0. Enumerate

 à in such a way that each set A^ consists of a single 0. Write each

 A2k-1 43 °Y Let

 x = ,1A^1A2... = .1Aa

 = .lA^OlAg... = .lAļ101A2ļ_ļ
 = . 10B . 101 0B_ . . . = . 10B1010B .

 12 . . . . li
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 Then x e [|,|] and
 f(x) = .[2] 212BM212B?

 1' ù 1

 where k = p(a^) + 1, and

 f2(x) = • tO]ķ010B21010Bļ

 where k = p(a^]. Moreover,
 fN(x) = .10B

 when N = p(a^) + 3 since A ^ consists of a single 0. From this it follows
 that orbit points are of the following types for some j and m:

 . [0] .10B 1010B. where j < pÍB v J + 2, j m i v m-1'

 or

 . [2] .12B*1212BJ i where J = pÍB J lv + 3. j m i ra- lv

 Hence it is not difficult to see that u>(x,f ) c {0,1} U •

 Now let S = {b1 : i e It is clear that for each k,

 {(3"k)(.10B) : B e iļ Is dense in Q^. Since it is clear that

 {0,1} c w(x,f) it will suffice to show that for each k e <a^ and B e S
 there exists z e y(x, f) such that d(z,3 k(.10B)) is arbitrarily small. Let

 k e Wq and B e S and suppose n > 1. Then we can find m and j such that

 k < pfB^J + 2, n < j, and B^ = B[0]j. Then z = s'^.IOB^IOIObJ e r(x,f)
 and d(z,3 ^(.10B)) < 3 n. Since n was arbitrary the proof is complete.

 Since {0} U (u*_QQn) is a Cantor set, Example 1 shows that a Cantor set
 plus an isolated point is an or-limit set for f.

 What other sets can be obtained as (ar-limit sets via the function f?

 Our next example shows that we can "replace" the set Qq of Example 1 by any
 nowhere dense compact set.

 Example 2. Let M be any closed, nowhere dense set. Then there exists an

 Mq c Iq stich that H is homeomorphic to Mq and {0,1} U (u*_q3 "Mq) is
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 an w-limit set for f.

 Proof. Let be a homeomorphlc copy of M inside Q^. Let SB be the
 set of all finite blocks of O's and 2' s as in Example 1. Choose % c S

 such that cl {.10B : B e = MA. Enumerate % as {c } n and put 0 T)J n=U n

 Xq = . ÌOC^IOIOC^. Now, repeating the argument of Example 1 with some slight
 modifications we obtain the result.

 By virtue of Example 2 the w-limit sets of the function f include all

 homeomorphs of closed nowhere dense sets in the sense that

 o)(xQ,f] fi Iq = Mq. We have been unable to determine whether there exists a
 single continuous function g for which each closed nowhere dense set is

 homeomorphic to some w-limit set for g.

 Now we digress to consider some other useful properties of the function f.

 ri 2'
 The nature of f makes it easy to specify points in Ì3 » 3J having preassigned
 period. For example,

 1 -

 2 = .1111 - = .11 has period 2;

 ^ = .110110... = .110 has period 3; and
 ^ = .11001100... = .1100 has period 4.

 In general, let N > 1 be a positive integer. If we choose to be empty

 and to be N - 2 zeros , and put A2k-1 = A1 ' A2k = A2 ^or k = 2 ' 3 ' ' ' '

 we have N = p(a^) + p(A2) + 2 and fIi(.lAļ) = .lA^ Since f^.lA ) is
 the first iterate to reappear in Iq the point .lA^ has period N.

 It is also easy to obtain points which are eventually periodic or

 asymptotically periodic.

 A set V is said to be scrambled with respect to a function f if for

 each x and y in V, lim inf lfn(x) - fn(y)l = 0 and
 n-*»
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 lim sup lfn(x) - fn<y) I > 0. In [LY] it is shown that a function yields an
 n-*»

 uncountable scrambled set whenever it has a point of period 3. From this

 follows the existence of c pairwise disjoint scrambled sets each bilaterally

 c-dense-in-itself . However, for our function f such scrambled sets can be

 described explicitly. For example, suppose A and B are fixed, distinct

 blocks of O's and 2' s having the same length. Consider the set T of all

 points of the form .lOA^lO, where e {A,B} such that there are arbi-
 trarily long strings of consecutive A's, and likewise for B's. If

 X = .lOAjlO is an element of T and A < B when A and B are viewed as

 ternary numbers, then inf {a>(x,f) fi 1^} = .10A10 and

 sup {u>(x,f) fi IQ} = .10B10. If X and y are distinct points in T having
 arbitrarily long strings of consecutive A's in matching positions and x

 has arbitrarily long strings of consecutive A's which match strings of B's

 in y, then lim inf lfn(x) - fn(y)l = 0 and

 lim sup lfn(x) - fn(y) I = I.10B10 - .10A10I > 0 . So {x,y} is scrambled.

 Using pairs of such blocks we can, employing arguments identical to those

 in [BH], find an uncountable, bilaterally c-dense-in-itself scrambled set

 S(A,B). Moreover, S(A,B) and S(C,D) are disjoint when (A,B) * (C,D).

 A similar argument shows that if S is any collection (of at least two

 elements) of blocks of O's and 2' s and T(8) consists of all points

 .lOAjlO where A^ e 8, and such that there are arbitrarily long strings of
 consecutive A's for each A e S, then we can construct a bilaterally

 c-dense-in-itself scrambled subset S (8) of T(8). Moreover, s(®^) and

 3(82) are disjoint when 8^ * S2. Since there are c possible collections
 8 we see that f has c pairwise disjoint scrambled sets, each bilaterally

 c-dense In Itself.
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 GENERAL RESULTS

 In this section we obtain a number of general results concerning the

 structure of (o-limit sets of continuous functions. In Proposition 1, below,

 we further exploit the function f of Example 1 by showing that the set

 can be augmented by a countable closed set. We begin by obtaining a simple

 but powerful tool for constructing functions whose <j-limit sets are

 prescribed. It will allow us to pick a sequence which does what we want and

 in addition is the orbit of some continuous function. In essence, the

 requirement is that for an isolated sequence (zn^n=0 maPP*n8
 z -» z . has removable discontinuities on the closure of the set
 n n+i .

 {zn : n e Wq}. We state this theorem in the form in which it is used.

 Theorem 1. Let M be a closed nowhere dense set. Suppose {zn} *s a
 sequence of distinct points not in H but whose set of subsequentlal limit

 points is M. Then there exists a continuous function f and

 Zq e dom f such that w(zQ,f] = M provided the following condition is
 fulfilled:

 for all numbers a and ß, and X € M and subsequences and ,

 a = ß whenever lim z fz . . i = (',a) and lim z ,z .. I = (X,ß).
 k-x» I ' . . *»• v ®k V .. 1

 Proof. Define r = cl {(zn»zn+ļ) : n 6 Then dom r = M U {zn : n e

 and by hypothesis each z^ is an isolated point of dom r. The condition
 implies that r is a function. Since r is closed it is continuous. Define

 f to be r on dom T; when (a,b) is a component of I - dom r define

 f (0a+(l-0)b) = er(a) + (l-e)r(b) for 9 6 (0,1); if [0,d) (or similarly

 (d,l] is a component of I - dom r define f to have the constant value

 r(d) on that component. Then f has the desired properties.
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 Lemma 1. Let M be a closed, nowhere dense w-limit set, M = «(y^.f), and
 let W be an open set such that M £ W. Then there exists x e I and a

 continuous function g : I ■+ I such that u(x,g) = M and y(x, g) c W.

 Moreover, the set of fixed points of f and g coincide.

 Proof. Let r(y0,f) = {yn}"=0* Plck e0 so that yQ + belongs to W.
 Having picked eA,e. ,...,€ , choose e as follows: the set

 0 1 m m+1

 U = W - {y^ + Ej : j < is dense in the open set W. So we may select
 Vi e U SUCh that ,ym+i " Vi1 < diym+l'M) + ^1^1- Now Put
 em+l ~ %+l ym+l'

 Define = yn + and apply Theorem 1 to get the desired function g.

 If h is a homeomorphism between two topological spaces X and Y and

 f : X -* Y then g = h°f®h * is said to be conjugate to f, and g exhibits

 topological dynamics identical to those of f. If on the other hand X and Y

 are homeomorphic subsets of the same space it is not immediately clear that if

 X is an «delimit set for some f, then Y Is an w-limit set for some g.

 The difficulty is that the homeomorphism between subsets of X and Y of

 [0,11 might not be extendable to a homeomorphism of [0,1] onto Itself, and

 the orbits that cluster on, say, X need not be contained in X, although

 they are "near" X. This suggests that something less than a homeomorphism

 between X and Y which can be extended to all of I is needed. We shall

 see that the type of extension which suffices is available at least In the case

 where X is nowhere dense and closed.

 A homeomorphism h between two closed, nowhere dense sets E and F is

 called a W-homeomorphism If there exists an open set W such that E c W
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 and h can be extended so that h is a homeomorphism on W. Clearly a

 W-homeomorphism can be extended to a continuous function on I. For example,

 if and are Cantor sets and h is any increasing continuous function

 from K onto K , then h is a W-homeomorphism.
 -L Ł*

 We shall make frequent use of the following lemma.

 Lemma 2. Suppose h is a W-homeomorphism between closed, nowhere dense sets

 E and F. If E is an (ď-limit set, o(x,f), then F is also an «-limit

 set <i)(y,g). Moreover, if f (X) = X for all X e E' , then g(X) = X whenever

 X e F' and h(X) = X.

 Proof. Extend h so that it is a continuous function on I. Let W be open

 with E s W, and hlW a homeomorphism. By Lemma 1 we may assume that

 r(x,f) e W. Since W is compact, h(W) is closed. Define g = hfh * on

 h(W) and extend g to the components of I - h(W) by linearity. Evidently

 g is continuous.

 We have h<x) e h(W) so that gh<x) = hfh *h(x) = hf(x) e h(W). Then

 gSiťx) = hfh-1gh(x) = hfh_1hf (x) = hf2<x>, and hf2(x) e h(W). By Induction

 it follows that g'Hitx) = hfn(x) and g^tx) e h(W) for all n.

 Next we show that F = o(h(x),g). Suppose X e F. Then h *<X) e E and

 W® such that f nk (x) ■+ h -1 such that f (x) ■+ h (X). Hence

 hf k<x) -»X by continuity of h. It follows that g k(h(x>) ■+ X, so that

 X e o)(h(x),g). Therefore, F £ o(h(x),g).

 Mow suppose g k (h(x)) -> X for some subsequence Then
 nu

 hf (x) -> X and X e h(W) £ h(W) . Hence, since Y(x,f) £ W,

 h^hf^íx) = fnk(x) -> h~ 1 ( X > ; and h-1(X) e E. Therefore, X e h(E) = F,

 and <i>(h(x),g) e F.
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 Finally, if X e F' and h"1^) = X, then h_1(X) e E'. So fh_1(X) = X

 and g(X) = hfh_1(X) = X.

 Note. As a consequence of Theorem 3 it will turn out that Lemma 2 can be

 strengthened so that if any two sets are homeomorphic and one of them is an

 (u-limit set, then so is the other.

 Referring back to Example 1, choose a sequence {wn}n

 disjoint relatively open intervals in I such that Qn c for n > 0 and

 1 e W -1 . and choose x. so that rixrt,fl y 0' J t U* W , Note that if fmix ) e W -1 . 0 y 0' J n=-ln , 0 n

 then fm+*[xQ) e and if fm(xg) € W_^ then fm+*(xQ) e for some k.

 The sequence {wn}*=_ļ will be used in Lemma 3.

 Lemma 3 Suppose is a nonempty closed subset of Qq such that each

 isolated point of is a one-sided limit point of Q^. Suppose further

 that if G is a component of either G fi = <(> or (Gd Q^) '
 contains exactly one endpoint of G. Then {0,1} U (u^ljQn) U is an
 o-limit set.

 Proof From Example 1 there is an x such that w(x,f) = {0,1} U (u^Ļ0Qn) •

 Enumerate the family 3 of components of - MQ as {^n}n=ļ • (Without loss

 of generality we may assume that 3 is infinite.) If G^ il * 4> let an

 be the endpolnt of G^ such that an e (Gn H Q^) ' . For each such n let

 {^nk^k-0 ^ a seilxience in Gn ~ Y(x,f) - Qq converging to an. Then

 Gn n r(x,f) = {x^ s k e for some subsequence {hn(k>}k=Q. Here
 x = fm(x).

 m
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 Define g on r(x,f) fi by

 X , if y ' = X. .. . . . , nk , y ' h (k) .. .
 g(y) . . = , ' n

 y otherwise.

 Define {z } . as follows:
 <xJ <x=U

 if X e W , where m * 0, put K z = x ; am , K a a

 if xa€W0, put za = g(xj.
 Since g is one-to-one, z * z for a * ß. The set of subsequential limit

 » a
 points of {za}a-o » readily seen to be (0,1} U (Uļ^_ļQn) U

 To complete the proof it will suffice to show that the condition of

 Theorem 1 is satisfied. Note z 4 {0,1} U řu<° . Q ) U L since z e y(a,F) a *• n=l . u' 0 a

 or z«"Vnkl,O0-

 So suppose (z^, zvi) ■> (X,ß). If ^
 not eventually in some W then X = 0; hence ß = 0.

 Íx z 'Jk=0 f m Íx z f lies in W . If m > 2 then ß = f(X). If m = 1 'Jk=0 f m
 then z = x -» X and x .. -» f(X). Now consider the sequence

 ■v % v1 ..
 I '" ix in W-. If f(X) e G for some n, then ix I V1^0 0 n

 z +. = 8|xn +i an so & ~ an" 6 Mq - U 3, then each k +. Ik' +i

 x š. e G for some m, and mi, K -» ». Since z e G and nk+l š. m^ m, K n^+1 mk
 IG I •* 0 and G •* f(X), it follows that z .. ■» f(X) and ß = f(X).
 "k *k v1 ..

 Finally, in case z^ e for each k, then n^ ■* ® and
 k

 z = x -» 1. So ß = 1.
 V1 V1

 In each case, ß is uniquely determined, as required.
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 Proposition 1 Let D be a countable set such that D £ and U D

 is closed. Then {0,1} U D U fuWAQ v 1 is an <ił-limit set. v n=0 ny

 Proof. It suffices by Lemma 2 to show that the set £0.1} UDU fu^JJ 1 is

 W-homeomorphic to some set £0,1} U U (u^lļQn) » where satisfies the
 hypothesis of Lemma 3.

 Let {d V } A be the isolated points of D. Choose intervals i , V n'n=0 A
 d , e I/ which are disjoint J and miss Q. U D. Let H be a Cantor set
 1 1 n , nJjn-o J On
 such that inf H = d and sup ^ H = ^ id + e ļ . The set n n ^ n 2 n n'

 B = Qq U D U (u^Lo^n) is a Cantor set, so there exists an increasing

 continuous function g from this set onto Q^. This function is a

 W-homeomorphism from B onto Q^. Moreover, U D is W-homeomorphic to

 "o = s(Q0 u d) and Mo satisfies the hypothesis of Lemma 3.

 If we define h(x) = x on (0,13 U (Ü* v .Q ) and h(x) = g(x) on v n=l n'

 Q0 U D, then h will be a W-homeomorphism from {0,1} UDU (u*_gQn) onto

 t0,U U B0 U (u*=1Qn) .

 For a Cantor set K let 9<K), or 9 where no confusion arises, denote

 the set of components of [inf K, sup K] - K. We will say that a subfamily

 X of 9 is dense in K iff each nonempty open set which hits K contains a

 member of X. This Is of course equivalent to saying that the set of endpoints

 of members of X is dense in K.

 The next result is a more general version of Proposition 1.

 Proposition 1' Let K be any Cantor set. Let M be any closed nowhere

 dense set such that for each 6 e 9 (9 as above) the set M D G is

 countable. If [G e 9 : M fi G ♦ is not dense, then KUH is an
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 oj- limit set.

 Proof. Case Is H - K * $. If X={GeG:HflG*$3 is not dense there

 exist members <a,b), (c,d) of 9 such that S = [b,c] fi K misses M.

 Let r = {0,13 U be the set of Example 1. Let z be an isolated

 point of M and suppose z e (d, sup K) . Let (a,ß) be a component of I - T

 where (a,ß) c (§»§)•
 We may pick homeomorphlsms h , h , and h such that

 1 ¿ o

 h^ ([ Inf K,a]j = |,«], ^([inf K,a] fi k) = [|,a] fi T

 h2(Cb'c]) = [°»á]' M[b'c] n K) = [°4] n r

 h3([d, sup K]) = [ß»§]» h3 (Cd, sup K] fi k) = [ß,|] fi r.
 Define h on KUH as follows s

 ht<x) if X e [inf K, a] fi (K U M)
 h_(x) if X e [b,c] fi K

 h(x) = j 2
 hg(x) if X e [d, sup K] fi (KUM- {z))

 .1 if X = z

 Put D = h(M-K) - (1). Then D is closed and h is a U-homeomorphism from

 K U D onto r U D. By Proposition 1 r U D is an far-limit set; by Lemma

 2, KUH is an far-limit set.

 Case 2s H - K = +. Then K U H - K Is a Cantor set. It is well known that

 every Cantor set is an or-limlt set.

 The Countable Case

 This completes the first of the three stages in our program; that is, we

 have shown that an uncountable nowhere dense closed set whose intersection

 with some interval Is a Cantor set, is an o>-limit set. He turn now to the
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 second stage In which ve establish that every non-empty countable closed set

 is an (delimit set. The crucial argument is contained in Lemma 6, which deals

 with a special type of closed set. Lemmas 4 and 5 reveal that this special

 case suffices.

 Lemma 4. A homeomorphism between closed nowhere dense sets E and F is a

 W-homeomorphism if E - E' is dense in E.

 Proof. If E is finite, the result is obvious so we may assume E - E' is

 infinite. If h is such a homeomorphism then under the stated hypothesis

 h (E') = F' and h(E-E') = F - F'. Moreover, E - E' and F - F' are

 countable. Let (c ' be an enumeration of E - E'. Then
 v n; n=o

 F - - {"(<=„)}„= 0-

 We may choose two sequences {sn}n_0 and {^n^n-0 °Pen intervals with
 the following properties:

 cn and h(cn] are the midpoints of Sn and T^, respectively;
 S n S = 6 whenever m * n;
 m n

 TOT = 6 whenever m * n;
 m n

 IS I ■+ 0 and IT I ** 0 as n •* •; and
 n n

 S fi E' = * and T fi F' = ♦ for all n.
 n n

 Let Ln be a linear mapping of Sj, onto Tr.
 Define

 hļ = U {Ln J n « wQ} U flE'.

 Let W = U {s : n e o)A>; then W = U {s : n e wAř U E' and dom h. = W. n O' n 0' 1

 Clearly h^ is one-to-one and continuous on W. How extend h^ linearly to

 a function continuous on all of I. Since h^lW is a homeomorphism and

 h^(E) = F, the proof is complete.
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 Let F be a set . We say that x e F is isolated from the left if

 X fc. ([0,x) tlF)'.

 Lemma S. Any countable closed set not containing 0 is homeomorphic to a

 countable closed set having no limit points isolated from the left.

 Proof. Let D be a countable closed set and let L be the set of left-

 isolated limit points of D; assume without loss of generality that L is

 infinite. Enumerate L as {rķ}ķ-o* ^et J = D ~ D'- By induction we may

 pick for each k a sequence {r(k,n)}n_g in J such that lr(k,n) - r^l <
 2 n for each n and r(k,n) * r(j,m) whenever (k,n) * (j,m). Let

 E = {r(k,2n) : k e (iiç, ne

 Also by induction we may pick for each k a sequence {Pkn}n=o in * ~ ®

 such that 0 < r, - p. < 2 n for each n and p. * p. whenever (k,n) * k p. *Kn p. Kkn *jm
 (j,m) .

 Put P = {pķn : k e <i)q, n e <i> and let C = D U P - E. It is clear that
 C is closed and count ably infinite. Moreover, D' = C' and C has no left-

 isolated limit points.

 Define a function h : D -» C as follows:

 Íp^n x if if x x e = D r(k,2n) - E. for some k,n x if x e D - E.

 Then h is a homeomorphism from D onto C.

 Lemma_6. If F is a nonempty, closed nowhere dense set having no limit

 points Isolated from the left, then F Is an w-llmit set, <i>(x,f), and
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 f(X) = X whenever X e F'.

 Proof. Let a = inf F and b = sup F. Our hypotheses inply that a is

 isolated. Let 3 be the family of components of [afb] - F. For each n > 1

 let = {g € 3 : 2 n < IGl}. In view of Lemma 2 we may assume without loss

 of generality that 3^ consists of exactly one interval having a as its
 left endpoint.

 Each 3 consists of a finite number of intervals which we enumerate as
 n

 G .,G _, - ,G . . with G . to the left of G . if i > j. J Observe that ni n2 _, - na(n) . . ni . nj . J
 each G e 9 belongs to each f°r sufficiently large k. We will obtain a

 sequence {zj}ļ_ļ which intuitively "travels" throughout each î>n "from right

 to left" and then moves into the beginning of sn+ļ» reminiscent of a type-
 writer with finitely many words on each line and infinitely many lines. Our

 assumption that is the leftmost member of will guarantee that

 the "typewriter" does not go to the line ^n+ļ before coming to the last word
 of the line 3 .

 n

 For each n and k let a^ be the left endpoint of Since

 {a(n)}n_^ n~ is an increasing sequence, each positive integer j > 1 can be
 n~ r-n

 uniquely expressed as j = (k-1) + ) a(l) for some n > 1 and some k
 i=l

 such that 1 < k ( a(n+l). To each J > 1 we associate the pair (n,k) and

 put

 z. = a . + IG .1 i'3.
 j nk . nk

 Note that z^ * z^ when i * J.

 We will show that the sequence {zn}n-i satisfies the requirements of
 Theorem 1 with respect to F, from which the desired result will follow.

 First of all, z k F for all n and it is clear that the cluster set of

 (z v n'n=l V* is F. v n'n=l
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 Now suppose for some subsequence we ^ave ļzj »zj +ļj »
 where ' e F. We will show that ß is uniquely determined. There will be

 two cases, depending upon whether X is isolated or not.

 Case 1: X is isolated in F. If X * a, then there exist p and Ç such

 that (X,Ç) e 9 and (y,X) e 9. For sufficiently large k, z e (X,0 and
 k

 z e (p,X). Thus z -> p. In case X = a, one sees similarly that
 Jk 1 Jk 1
 z -» b.
 V1

 Case 2: X is a limit point of F. First, assuming X * b, we show that for

 each e > 0 there exists a kÄ such that ' - e < z, ^<zJ <X + e
 0 V1 Jr

 whenever k > kQ. To see this, observe that X is by hypothesis a left limit
 point of F so there is a G e 9, say G = (c,d), such that X - e < c <

 d < X. Since z^ ■* X we may choose k^ such that for k > k^, k

 z e (d,X+e) and the member of 9 which contains z. has length less than
 Jk 3k
 d - c. From the definition of z. we must have c<z.J.<z.. It

 V1 V1 jk
 follows that X - e < z. .. <z. <X + e whenever k > k.. Since e was

 V1 .. Jk 0
 arbitrary we see that z +. ■* X and ß = X. In case X = b a similar

 3k
 analysis shows that z •* b.

 3k 1
 Now apply Theorem 1 to get F = o>(x,f) and note from case 2 that

 f(X) = X whenever X e F'.

 Remark. Our hypothesis that F has no limit points isolated from the left

 was used in only one place, namely in case 2. Without that assumption the

 construction of the sequence {zn}n-l not have met the hypothesis of
 Theorem 1 in the case where X is a right endpoint of an interval contiguous

 to F.
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 Proposition 2. Any nonempty countable closed set C is an tj-limit set

 <i)(x,f) with f(X) = X for all X e C'.

 Proof. If 0 te C then we see from Lemma 5 that C is homeomorphic to a

 countable closed set with no limit points isolated from the left. By Lemma 4

 the homeomorphism is a W-homeomorphism since the set of isolated points of C

 is dense in C. The result now follows from Lemma 2 and Lemma 6.

 If on the other hand 0 is a element of C we first map C onto ļ^.lj
 1

 by a nonconstant linear function L with L(0) = ~. Since 0 te. L(C) there

 exists a continuous function f such that L(C) = u)(x,f) for some x. By

 Lemma 1 we may assume that r(x,f) c Thus C = <o(l *<x),L *fL) .

 This completes stage 2 of our program.

 The Dense Case

 The final stage is devoted to showing that an uncountable nowhere dense

 closed set whose isolated points form a dense subset, is an u>-limit set.

 Lemma 7. Let K be any Cantor set. Suppose D is a countable, nowhěre-

 dense subset of U 9. If K U D is closed and no limit point of K U D

 except inf K is isolated from the left, then K U D is an far-limit set

 w(z,g) such that g(X) = X whenever X e K U D'.

 Proof. Let us first consider the case where 0 te. K. Let a = inf K. Choose

 w: .g to be a sequence in D converging to a and choose ^gJm-o *"°

 a sequence in [0,a) converging to a. Put D^ = D - {dR : n e and
 E = {e^ : m e U D^. Then K U E is W-homeomorphic to K U D via the
 following function f:
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 fíe v ì = d , v m' m' ,

 f(') = X if X € KU Dļ.
 By Lemma 6, K U E is an u»- limit set. By Lemma 2, K U D is an oi-limit

 set w(y,g) and g(X) = X whenever X e K = K U D' .

 To finish the proof consider the case where 0 e K. Then there is a

 linear mapping L : I -» I sending K into [2'*]' Then L(K U D) is an
 <i)-limit set fa>(z,g) by the above argument. By Lemma 1 we can assume that

 r(z,g) c (|,l). Then K U D = u)(l-1(z) ,L_1gL) . Clearly L_1gL(X) = X
 if X e D.

 Lemma 8. Let K be any Cantor set. Suppose C is a countable subset of

 U 9 such that COG is finite for each G e If X = CG e 9 : C fi G *

 is dense in K, then KUC is an «-limit set <d(z,h) where h(X) = X

 for each X e K U C' (= K = C').

 Proof. Enumerate 9 as Íg ) » and Dut r G = ib .e 1. Let ® g be a one-to-

 one function from oìq onto Uq x ü)q. We will define a sequence {^n}n-o in
 X as follows. If g(0) = (m,k), select to be a member of X in

 (e ,e + 2 ^ "1. Having chosen H. for each 1 < n, if g(n) = (m,k) pick
 v m in J j

 Hn to be any aeaber of H - 'H, j < n} Included In the Interval
 m' m '

 For each m let X^ = g(n) = (m,k) for some k}. Then
 X^ fl Xj = 4 whenever m * j. Moreover, each X^ consists of a sequence
 converging downward to em* Ul Let X' = X if G e X and X' = X U 'G ^ } Ul mm m m m m ^ w

 if G fc X . Enumerate X' as ļG v . ř, _A. Then we have the following: mm m v mK' k-u _A.
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 G , il G = $ whenever (mfk) * <n,1),
 mk , nj

 X = (Gmk' m e V k 6 wo)'
 lx - e I < 2 m + IG I if X e G . .

 m m mk .

 Now choose D to be any countable subset of U 9 such that for each G e 9,

 D fi G consists of a sequence converging to the right-hand endpoint of G. By

 Lemma 7 K U D is an w-limit set o>(z,g) where g(') = X for all

 X e K U D' . We will complete the proof by showing that KUC is W-

 homeomorphic to K U D, with C mapping into D. Then we invoke Lemmas 2

 and 4.

 For each m let. kXo be an enumeration of D fi G^; evidently
 d . e . For each m and k let C fi G . be written as
 mk . m . mk .

 {cmkl'cmk2"-"cmka<m,k>}- For each m let f map the set

 {°mll ' * * * ,cmla<m,l)'cm21' * * ' ,cm2a(m,2) ' * * * ,cmkl' * * * ,cmka(m,k)' * * onto the

 set

 f(X) = X. Then dom f = K U C and f(C) = D. Moreover, f is one-to-one.

 We need only show that f is continuous; then it will be clear that f is

 a W-homeomorphism from C onto D.

 Let {xa}a-o ^ a sequence with x^ -* x. Then x e K, and we consider
 two cases.

 Case Is x e K for all a. Then fix 1 = x and fix 1 •* x. But f(x) = x
 a ^ <v a 1

 when x € K. Hence, ^(xa) *
 Case 2: x te. K for all a. Then for each a there exist m and k for
 a a a

 which x e G . . Since COG, is finite, If there exists an m such a . . in k
 a a a a

 that 'a v : hi = mf J is infinite, then x = e . Hence, there exists at most v a J m

 one m for which {a : m^ = m} is infinite. There are then two subcases.
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 Subcase 1: m •* ®. Since lx - e I < 2 + IG I we have x_ - e -> 0.
 a a in in a ra

 aa a

 By ' definition fix ì e G . Since IG I ■* 0 we must have fix v ì - e ■* 0. ' a> in . u, v a' ni a a a

 Hence f(xa) ~ xa * Of so that f(xa) "* x = f<x>-

 Subcase 2: there exists m such that A = {a : ma = m} is infinite. In

 this event, x = e . If - A is finite then eventually x e G , and m . 0 a mk ,
 <x

 k -» ®; thus it is clear from the definition of f that fix 1 ■* e . Hence
 a * <xJ m

 f(xa) •* f(x) = x = e . So let us suppose that u>q - A is infinite. Then if

 {nß}n_0 enumerates u>Q - A we must have mn -* ®. Then by the argument in
 ß

 Case 1, fix Ì •* f(x) = x = e . Now if lt_V. V _ is an enumeration of A, I ry m . V ĶJĶ=0 _
 we have x. eG. with k. ■* ®. It follows that fix. I ■* e . Since

 tĘ .k with k. tę ■* ®. It follows that I tç) ■* e m

 x = we have f ļxt J -> f<x). Therefore, ^(xa) "* f •

 Proposition 3. Let K be any Cantor set. Suppose C is a countable,

 nowhere-dense subset of U íř such that KUC is closed. If

 X = {G e Ï : C n G * ł) is dense, then KUC is an w-limit set o>(z,h)

 where h(') = X for all X e K U C'.

 Proof. Choose C^ to consist of exactly one isolated point from each member

 of X. Now carry out the proof of Lemma 8 relative to C^ Instead of C
 with the only change being that D is chosen to miss C. Let f be the W-

 homeomorphism from K U C^ onto K U D. Extend f to the identity on
 C - C . Then f is a VMiomeomorphism from KUC onto K U where
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 Dt = D U ļc - cj. Then for each Ge!), (d^g)' * *.
 Nov, using the argument in Lemma 5, for each G e 9 we can find a set

 E_ £ G such that (1) E_ is W-homeomorphic to D, il G, (2) E has no limit
 G G lb

 points isolated from the left, and (3) E_ is closed in G. Then, taking the
 G

 union of these W-homeomorphisms and the identity on K ve obtain a W-

 homeomorphism g from K U onto K U E, vhere E = U {e^ : Ge s}.
 Hovever, K U E has no limit points isolated from the left except for inf K.

 Hence, by Lemma 7, K U E is an u>-limlt set. Then g®f is a W-

 homeomorphism from KUC onto K U E. Therefore, by Lemma 2, KUC is an

 delimit set <«>(z,h).

 By Lemmas 5 and 8, f°g(X) = X vhen X e K U C'. By Lemma 2,

 h (X) = X vhenever X e KUC'.

 Theorem 2. Any nonempty, closed, novhere-dense set is an ui-limit set.

 Proof. Let F be any closed, nonempty, novhere dense subset of I. Then F

 can be decomposed as KUC, vhere C is a countable set and K is either

 empty or it is a Cantor set. If K = +, then F is an or-limit set by

 Proposition 2.

 So let us suppose that K * 4> and [a,b] = [inf K, sup K]. If

 C fi [(0,a) U (b,l)] = ve are finished by Propositions l' and 3. Suppose

 nov that C fi ([0,a) U (b,l]) * Assume that C meets only (b,l]; the

 proof of the more general case vili require an obvious extension of the

 argument. Let = C il (b,l]. We vili have tvo cases.

 In case d(c^,K], the distance betveen C^ and K, Is positive, let D
 be some homeomorphic copy of in some member of 9, the family of

 components of [a,b] - K. Then it is clear that KUC is U-homeomorphic to
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 K U (C-Cj) U D. By Propositions l' and 3 the latter set is an w-limit set.
 By Lemma 2, KUC is also an u^limit set.

 In case d(c^,K) = 0 choose a sequence {^n}n-o °Pen intervals in
 [b,i] converging to b such that C. c U {w : n e u> ř and W fi W = <ļ> l^n o' n m

 whenever n * m. Next choose a sequence {®n}n-o in ^ converging to b.
 For each n choose an open interval V such that V c G - C. Let D

 n n n n

 be some homeomorphic copy of fi inside V^. Then it is easily seen that

 K U (C-Cj U (u {dr : n e «,„)) is W-homeomorphlc to KU (C-C^) U = K U C.
 By Propositions l' and 3 the former set is an w^limit set and Lemma 2 is

 clearly applicable so that KUC is also an ur-limit set.

 There is an interesting and Important contrast between Propositions l' and

 3. In the "dense" case (Proposition 3> the continuous function may be chosen

 so that all the limit points of the w-limit set are fixed points, whereas in

 the non-dense case (Proposition l') there is no guarantee that there are any

 fixed points. If we translate this Into the context of Theorem 2 we can say

 that a given nonempty, closed, nowhere dense set F can be realized as an

 w-limit set u>(x,f) so that all the limit points of F are fixed points for

 f whenever F has the property that the family (G e ï (P) s G il F * ł) Is

 dense. Here, P denotes the perfect part of F.

 In [B] the problem of characterizing the countable o>-limlt sets was

 raised. Our Theorem 2 solves that problem since each closed countable set is

 nowhere dense. It is now an easy matter to characterize all <d-llmit sets of
 V

 continuous functions. Lemma 9 below and a remark of Sarkovskll [S. ]
 1

 accomplishes this. Although we imagine Lemma 9 is known, we have not found a

 proof so we provide one.
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 Lemma 9. If F is a union of finitely many nondegenerate closed intervals,

 then F is an far-limit set.

 Proof. We will carry out the proof when F = ļo,|j U From this it
 will be clear how to deal with the general case.

 Let h be a function defined on ^tx) = 2x if 0 < x <

 h(x) = 2^ - x) if g < X < Let 8 consist of all finite blocks of O's
 and l's; we shall work in binary arithmetic. Using this form of

 representation, C.OOB : B e 8} is dense in [o»^]-
 Suppose a"? enumeration of S and is an^

 Increasing sequence of positive integers. Consider

 X = •00B1I0]k1B2[0]k25¡t0í^ . .OOB^.
 Let t be the length ° of B plus twice the number of l's in B . Then n ° n n

 hN<2)(x) = .00B2t0]k BļtO]R
 2

 where N(2) = t _ + k. . In general we have
 1 1

 hN(»'(x) = .OOBm[0]k BJÕ]-
 m-1 m i

 where N(m) = >~ (t k ).
 i=l

 Now select a particular enumeration of S such that each B of 9 Is

 repeated infinitely often and B = B for each k > 1. Then we may pick
 ZK ZK"*1

 a particular increasing sequence {^n}n=ļ such that N(m) is odd if and only
 if m Is odd.

 Then, clearly, for each B e S there exists a sequence {sn}n=ļ 0<*d

 positive integers and an increasing sequence {an}n=i suc^ that .00B[0]a
 s n

 is an Initial block of h (x). Since there also exists a similar sequence

 of odd Integers, we see that both {hn(x) : n even} and {hn(x) : n odd} are
 dense in
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 Define f as follows:

 h(x) , 0 < x < ^
 , 3 3 1 . 3

 f(x) - , 2x- 8 , 4 < . X < 4

 . h(x * 4) + 4 ' 4 * x < 1*
 Define g as follows:

 x + | . 0 < * < 4
 g (x ) = ' -2x + I . 4 < * < 4

 , X - 4 , I < X < 1.
 The three functions f, g, and g«f are all continuous from I onto I. It

 is easily verified that n (x^) = hn(xQ) if n is even, and
 (gofļHļjCg) = hn(x0) + ^ if n is odd. However, {^"(xq) ' n even} is dense

 in [0*4]' an(* (hn(x0) + 4 : n odd} is dense in [4»*]* Therefore,

 <4vgof) = u [i1]-

 Theorem 3. Let F be a nonempty closed set. Then F is an or-limit set if

 and only if either F is nowhere dense, or it is a union of finitely many

 nondegenerate closed intervals.

 V

 Proof. Sarkovskii [S^] showed that if an oj- limit set has a nonvoid
 interior then it must consist of finitely many nondegenerate closed intervals.

 Now apply Lemma 9 and Theorem 2 to finish the proof.

 It would be interesting to know to what extent our results carry over to .

 more general compact spaces; for example, to continuous functions mapping the

 closed unit disk into itself. In this connection we note that since each

 countable planar set is homeomorphic via some projection onto a line to some

 countable linear set, it follows that each closed countable set in the unit
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 disk Is an or-linit set for some continuous function mapping the disk into

 Itself. But, in general, for a two-dimensional space there are considerable

 difficulties in applying our techniques to an arbitrary uncountable nowhere

 dense compact set, since our proofs depend heavily on linearity.

 In a subsequent paper we will investigate the structure of u-llmit sets

 for more general kinds of functions from I to I; for Instance, Darboux

 functions In the first class of Baire.
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