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 The algebra generated by derivatives
 which are continuous almost everywhere

 In 1982 Zbigniew Grande posed several questions concerning algebras gener-
 ated by different classes of functions. One of them was:

 Problem 1. (Problem 9 of [1]). What is the smallest algebra of functions
 containing all almost everywhere continuous derivatives? Is it the family of all
 almost everywhere continuous Baire 1 functions?

 In this paper we answer both parts of this problem in the positive. Our result
 is very closely related to David Preiss's theorem concerning the algebra generated
 by all derivatives. (The only difference is that we have not proved whether our
 function h can be chosen to be Lebesgue or not.)

 Theorem 2. (Theorem of [4]). Whenever u is a function of the first class
 there are derivatives /, g and h such that u = fg + h. Moreover one can find
 such a representation so that g is bounded and h is Lebesgue and in case u is
 bounded, such that / and h are also bounded.

 First we develope notation and state some known results which we use later.
 Then we state our main theorem after a few lemmas used in its proof.

 The real line (- oo, +oo) is denoted by R. The word function means mapping
 from R into R. The words measure, almost everywhere (a.e.), integrable etc.
 refer to Lebesgue measure in R. For each set AcR let intA be its interior, clA
 its closure, Ac its complement, Xa its characteristic function and | A | its outer
 Lebesgue measure: if x € R and A C R, then p(x,A) = inf { ļ y - x |: y € A}
 denotes the distance between x and A ; symbols like /„ / or fAf will always mean
 the corresponding Lebesgue integral. A function / is in the first class of Baire
 (B1) iff it is a pointwise limit of a sequence of continuous functions: it is called a
 derivative iff there is a function F (called a primitive of /) so that F'(x) = f(x) for
 each x 6 R. A point x 6 R is a density point of A C R iff lim/,_o | Ac H (x - h, x +
 h) I /(2h) = 0. A function / is approximately continuous iff for each x0 € R and
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 each e > O x0 is a density point of {¡e € R :| f(x)-f(x o) |< e}. We denote by aV6
 (a Ab) the larger (the smaller) of the real numbers a and b. If / is any function and
 X 6 R, then u>(/,x) = inf{sup{| f(y) - f(z) |:| y - x '< e, ' z - x |< e} : e > 0}
 is called the oscillation of / at x. We let || / || = sup{| f(x) |: x G R} and
 D(f) denotes the set of points of discontinuity of /. We write Yin f ni Un An
 etc. instead of £n€N /n, UngN Ai when there is no possible misunderstanding.
 Finally by T we denote the family of all sets A C R such that | A - int A |= 0.
 (Note that each interval and each set of measure 0 belong to !F.)

 Symbols like Ļ, 2¿ etc. denote the corresponding lemma, theorem or corollary,
 while (1), (2) etc. refer to conditions marked in the text.

 Theorem 3. (Theorem 4.14. of [3]) If H C [0, 1], | 27 |= 0 and u G B1, then
 there is a derivative / so that f(x) = u(x) for x G H.

 Theorem 4. (Lemma 4.4. of [3]) Assume that H C [0, 1] is nowhere dense
 and closed and / is a derivative. Then there is a derivative g so that g is
 continuous in [0, 1] - H and f(x) = g(x) for x G H.

 Corollary 5. Whenever u G B1, H C R is closed and | H |= 0, there is a
 derivative / so that / is continuous in Hc and f(x) = u(x) whenever x G H.

 Theorem 6. (Remark to Theorem 1. of [2]) Let H C [0, 1] be closed, | H |= 0
 and let u G B1 be bounded. Then there is a bounded approximately continuous
 function (p which is continuous in Hc so that <p(x) = u(x) for x G H.

 Remark 7. Combining the proofs of Theorem 3.2 of [3] and of Theorem
 1. of [2], and using that each bounded approximately continuous function is a
 derivative we get easily that if the assumptions of are met, then we can find a
 bounded derivative <p which is continuous in He and moreover Il V II < II « II-

 Lemma 8. Assume that A, 5cR, A is closed and B G T • Then B- A Ç. T .

 Proof.

 I B - A - int(2? -A) I = I B - A - int (B n Ac) |=| B - A - (intß n Ac) '
 = I B n Ac n ((int B)c U A) |=| B D Ae n (int£)c |

 < I B - int£ |= 0.

 Lemma 9. Whenever A G T is an F^-set, there are closed sets A', Ai • • • G T
 so that A = Un An.
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 Proof. Using that each open interval is a countable union of a family of closed
 intervals we get that there axe closed intervals J?i, -B2, " 1 " such that intA = Un -Un-
 certainly Bn € T for n G N.) Since A - intA is an F„- set, there are closed sets
 Ci, C2, • • • such that A - intA = (J «Cn. We have for each n G N | Cn |<
 I A - intA |= 0. Thus Cn G F, which together with the previous observation
 completes the proof.

 Lemma 10. Whenever v G B1 is an almost everywhere continuous function
 and e > 0, there is an almost everywhere continuous function üj G Bx so that
 D{v 1) is closed and || v - vi || < e.

 Proof. Put Bk = {x G R : (k - l)e < v(x) < (k + l)e} for k G Z. Since
 v G B1 and since | D(v) 1= 0, for each k G Z Bk is an F„- set and Bk G T.
 By 2i let Bk = U ¡Bu, where each Bki is closed and Bki G T. Make a sequence
 {Cn : n G N} of all sets Bkh k G Z, IgN. Put Čj = 0, Õn = Ci U • • • U Cn_ 1 for
 n > 1 and let i>i(x) = ke if for some r G N x G C„ - Č„ and Cn C Bk. Note that
 u n(Cn - čn) = u„ Cn = 'Jk Bk = R.) Then

 1) «i G B 1 because for any a G R {x G R : vi(x) > a} is the union of {Cn - Čn :
 Cn C Bk and k > a/e} so it is an F* -set, while {x G R : ui(x) < a} is the
 union of {Cn - Cn : Cn C Bk and k < a/e} so it is also an Fe- set.

 2) D(v 1) is closed since it is equal to {1 G R : > e},

 3) I D{v 0 I < I U n(Cn - Cn - int(C„ - C„)) 1= 0 since by Ł all Cn - Cn G T.

 The statement || v - vi || < e is obvious.

 Lemma 11. Assume that u G B1 is continuous almost everywhere. Then
 there axe almost everywhere continuous functions ui,u2, • • • G B1 so that

 i) D(ui), D(uļ),... are closed,

 ii) K uk I) < 2~k if k > 2,

 iii) U = £* Uk

 Proof. For k = 1,2,... use ÍQ^ with v = u - u t - ••• - Uk-i (v = tí if k = 1)
 and e = 3~fc_1 writing the result as u*. Then i) is met.

 II Uk II < II W - Ui - Uk-i - uk U + II u - Ui

 < 3-*-1 + 3~k < 2~k ( k > 2)

 472



 proves ii) aud

 ||«-5I«fc|| < inf{||u-ui
 k

 + II un+ 2 II + • • • : n € N}

 < inf{3-n_1 + 2~n_1 + 2"n~2 + • • • : n € N} = 0

 completes the proof.

 Lemma 12. Assume that A C R is closed and nowhere dense and u is a

 function so that D(v ) C A. Then there is a closed set B C R so that

 i) each x 6 A is both a left and right limit point of B - A.

 ii) B - A is isolated.

 iii) Bc = Un ćrn, where {<jn : n 6 N} are pairwise disjoint, nonvoid, bounded
 open intervals,

 iv) Cn =|| VXGn II < +0°,

 v) if

 1) fi-, fi-, • • • are summable derivatives,

 2) fn(x) = 0 if x £ Gn (n = 1,2,.. .),
 3) /u/n = 0 (n = l>2, ...),

 4) there is JV € R so that for n = 1,2, . . . || /„ || < N(cn V y/Ķļ), then
 / = En fn is a derivative and £>(/) C A U Un D{fn).

 Proof. Choose within each open interval contiguous to A a sequence of real
 numbers increasing to its right endpoint and another one decreasing to its left
 endpoint. Let E equal the union of all those sequences. Let {(e^i, e«) : k 6 N}
 be components of (A U E)c. Due to the choice of sequences it is clear that
 {en : k e N} = {e*2 : k € N} = E C ( D(v))c . So Mk =|| uX(e*,,eM) || < +oo. Put
 dk - p{ek',A ) A p(eic2i A) for k € N and let

 B = A U E U {eju + ¿<¿|/(1 V Mk) : i < ( tkï - e*i)(l V *» k 6 N}.

 Then conditions i) - iv) axe met. To prove v) examine the function

 FÍX' _ / /-oo fn if X 6 Gn, n = 1,2, . . .
 ļ 0 otherwise.
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 We will prove that F is a primitive of /. Choose any x0 G R. If x0 G Gn for some
 n G N, then for each x close enough to x0

 ^ /n(lo) _ n i
 X - XQ X - XQ

 If x0 € B - A, then there are nx, n2 € N so that x0 € clGn, H clGnj . Then for
 each x close enough to xq

 F(x) - F(x o) = I -, o = /( )
 X - Xq

 ¿^2. ( >> X € Q' n2 ' X-Xo >> n2 ' à

 Finally if xo € A, then for each x

 - x G B implies = 0 = /(x0),

 - if there is n G N such that x 6 Cn, then there is k G N such that x G
 (®fcn So

 F(a) - F(z0) = /, J0.|/.| .. II /„ H I <?. I
 X ™™ Xq X ™" Xo I X ™" Xq | | X ™ XQ |

 JV(M* K V y/M^rÂr v
 < JV(M* K , v kt™L<Ndk

 , I X - Xo I

 ^ JV I X - Xo ļ x-no 0 = /(x o).

 The rest of the proof is easy.

 Lemma 13. Assume that B is closed, A = cl(B - A) - (B - A), B - A is
 isolated and v is any function. Then there is a function ip so that

 i) iļ>(x) = v(x) if * G B - A,

 ii) VKX) = 0 if x G A,

 iii) D(tļ>) C A,

 iv) V is a derivative,
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 v) if E is a closed interval whose endpoints belong to B and if v'e is bounded,
 then ipXE is also bounded and moreover || ipXE II í || vXe ||-

 Proof. Let B - A- {&„ : n G N}. For n € N put cn = dn A (2| v(b2) |vi)> w^ere
 dn = />(&„, B - {bn})/ 3 and Dn = p{bn - dn, .4) A p(bn + dn, A). Put

 0 x G (- oo,- 1] U (l,+oo)
 X :+ 1 x G ( - 1,0]

 e(x) = < - 8x + 1 X G (0, 1/4]
 -1 X 6 (1/4, 1/2]

 2x - 2 x€ (1/2,1].

 Then e is continuous everywhere, || e || = 1 and /R e = 0. Put ipn(x) = v(6n)e((x-
 bn)/cn) (n = 1,2,.. .) and V» = Then i), ii) and iii) axe satisfied. To prove
 iv) examine the function

 . . f f-oo V*n if * € (^n bn -|- Cn), fi = 1,2,...
 tf(x) . . = {

 y 0 otherwise.

 We will prove that Ý is a primitive of tļ>. Choose any xo € R. If xo € (bn -
 c„, bn + cn) for some n G N, then for any x close enough to x<j

 *(x) - *(!„) = O. -+ = ^(io)
 X - Xo X - Xo

 If xo = bn - cn for some n G N, then for each x close enough to xo

 - if x > x0, then

 fl(l) - ł(lo) = ^ ( J = 0 = J
 X - X0 X - x0

 - if x < xo, then = 0 = tļ>(x0).

 Similarly if x0 = bn + cn for some n G N, then

 lìm = «*,).
 X-XO X - Xo

 If xo G A, then for each x G R
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 - if X € (&n - cni 6n + c„) for some n € N, then

 *(«) - *(»») = /-< *</>» = f'.-c *.
 X "" Xq X ~~~~ XQ X ™" XQ

 I X - X0 I I X - Xo I
 2cn 1 u(6w) I ^ D' 2 I v(bn) I
 I X - x0 I - 2 I v(bn) I VI I X - x0 I

 < Dn < ļ X - x0 I 0 = 1>(x0),

 - *o Ć Un(&n - c„, bn + c„) implies = 0 = tļ>(x0).

 Finally xo G int(Unßn - c„, bn + cn])° implies that for each x close enough to
 *« 2i^S£il = 0 = *(*»)•

 Now talee a closed interval E with both endpoints belonging to B such that
 vxe is bounded. Then

 Il 4>Xe II = sup{| tf>(bn) |: bn € E,n € N}

 = sup{| v(bn) |: bn G E,n € IN} < || v'e II,

 which completes the proof.

 Lemma 14. Assume that G = (aj, a2) is an open bounded nonvoid interval,
 functions /o, /, go and ģ are summable over G and w is so that w'g is a bounded
 summable derivative, || w'g || = C. Then there are functions g and h continuous
 everywhere and a summable derivative / so that

 i) «>xg = fg + h,

 ii) /(x) = g(x) = h(x) = 0 whenver x 0 G,

 i") Ir f = fu 9 = /r h = fn( f go) = fR(fģ) = fR(gfo) = f*(gf) = 0,

 iv) II / II < 50(C V y/č), Il ^ II < 1 A y/C, || h ||< 73 C.

 Proof. For i = 1, . . . , 5 put e¿(x) = sin(i'x)x[o,2*] and put

 e(x) - Sa«c« f2îr~ - ' a2 - ai )
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 where ai, c*2, . . . , ct$ are some real numbers. There are ai,a2,...,a5 so that
 /»e2 =1 Sgw I and /Rc = fR(eg0) = fR(eg) = fR(ef0 ) = fR(ef) = 0. Indeed,
 /R e = 0 for any ai, o¡2, . . . , a5 and the following system of equations

 xi Jr ei (27r^r) <7o(®)dx + • • • + x5 / c5 9o(x)dx = 0

 *i /r ei (2îrSr) g{x)dx + • • • + xs f e5 (2tt^l.) g(x)dx = 0

 *i /r ei /o(z)<fc + • • • + x5 / c5 (2ît^E^) /o(*)<fo = 0

 X ! /k ei (27t^j-) /(x)dx + • • • + x5 / e5 (2tt^=äl.) /(s)dx = 0

 is linear, homogeneous and the number of unknowns exceeds the number of
 equations so it has a non-zero solution, say ßi,ß2, • • • , ßs- Since

 f (ßieifen- V - - - ) H J R ' V Q>2 - Oi / V d<¡- CL'/ J

 = ßjfe' (21 V r- - - - Ì J dx H JR V a2 - ūļ J J r ' a2 - ai /

 = ^1(02 - ÛI)/2 -I

 = (ßi "I

 / 2| / u/| ' 1^2
 «i = 7 ßi, ■■•,<** = iß s, where 7 = I (,,-»!)(/%+•••+/%) J satisfy our require-
 ments. For i = 1, 2, . . . , 5 we have

 aļ(a2 -ax)/2 < (a2 + • • • + c^)(a2 - a^/2 = f e2
 J R

 = I / |< (a2 - <h) Il wXg II = (<*2 - ai)C. JG

 So I očí I < y/2C. Hence || e || = || aiei + • • • + a^es || < 5'/2C. Put f(x) =
 òV2(y/C V l)e(x), g(x) = ^ h = wXg ~ Í9- Then i) - iii) axe
 obviously satisfied and the following proves iv) completing the proof:

 H y II = Il e II /{ī>y/2(>/C V 1)) < 5'/2C / (5'/2('/Č V 1)) < 1 A VÕ,

 II / II < òV2(VÕV 1) II e ||< òV2Õ X 5>/2(VČ7 V 1) < 50(C V VČ),

 Il h II = II u>XG - fg ||< c+ II / II II Sf II < C + 50 C < 51 C.
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 Theorem 15. Whenever u € i?1 is continuous almost everywhere there are
 derivatives /, g and h which are continuous almost everywhere so that g is
 bounded and u = fg + h and in case u is bounded so that / and h are also
 bounded.

 Proof. By 11. there axe functions tíj, Uļ, . . . with the properties described
 there. Now we will define inductively (on k) almost everywhere continuous deriva-
 tives ipk,"4>k,fk,9k,fk,9k and fik, sets Ak, Gkn and positive numbers cjt„ and C*n
 (k = 1, 2, . . . ; n = 1, 2, . . .) so that:

 (1) Uk = fk9k + hk + <f>k +

 (2) Il ai II < 1, Il h II < 2"-*/*, II g„ » < 2'-*", H h„ H < 2'-» (It > 2),

 (3) D(fk) C Ak, D(gk) C Ak, D(hk) C Ak,

 (4) /i = <7i = /2 = 02 = 0,

 (5) fk = fk- 1 + fk-i, 9k = 9k- 1 + 9k- 1 (k>Z),

 (6) sets Bk, {Gkn '• n 6 N} and numbers {o^n : n G N} are picked to the set Ak
 and function u* - <pk according to 12..

 (7) Ckn = II (uk -<Pk~ ýk)xakn II (n = 1, 2, . . .),

 (8) fkģk, 9k fk, fi9k and gifk are almost everywhere continuous derivatives.

 First step. Put A' = D{u'). Since | A' |= 0 and since A' is closed, it is
 nowhere dense. According to Ł. there is a derivative <pi so that

 (9) {x 6 R : <Pi(x) = «i(x)} D A' and D(<p i) C A'.

 Hence D(u' - ip') C A'. So we can use 12t with A = A' and v = U' - <pi
 getting a closed set B', a family of open bounded intervals {Gin : n € N}
 and a sequence of real numbers {cln : n 6 N} satisfying 12s. i) - v). By 12¿ i)
 Ai C cl(Bi - Ai)- (B'- Ai) and since B' is closed, cl(B'-Aļ)-(Bļ-Aļ) G Bi -
 (Bļ - Ai) = Ai n Bi = Ai. Hence we can talee A = Ai, B = B' and v = ui - y>i
 in 13¿ and find an almost everywhere continuous derivative V>i satisfying 13¿ i) -
 v). By (9) and 1¿L iii) D(u x - (pi - V>i) C Ai, so by 1JL i) (ttx - - if>i)xaln is
 continuous everywhere. Put C'n = || («i - Vi - *l>i)xGln II (n = 1,2, . . .) and
 note that by the above and Ü. v)

 (10) Ci„ < II ("i - <Pi)XGin II + II V>iXGi„ II < 2ci„ (n = 1,2, . . .).
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 For n = 1,2,... use 1^. with G = XGi„, /0 = / = /1 = 9o = y = §1 = 0 and
 w = Uļ - v?! - V>i getting functions /ln, gļn and hļn satisfying 14¡. i) - iv). (Note
 that C = C'n.) We will use 12¿ v) for each of the sequences {/ln : n 6 N},
 {<7in : n iE N} and {/ii„ : n € N}. We check the assumptions:

 1) fin , gin and hi„ axe continuous everywhere (n = 1,2, . . .),

 2)-3) are included in 14¡. ii) - iii),

 4) by (10) and 14¿ iv) we get

 II fin II < 50(C1b V y/dZ) < 100 (cln V y/cZ),

 II gin II < 1 A y/ČZ < y/2(cin V v/ČIĪT),

 II hln'' < 5lCln < 102(can V Vči;).

 Hence /1 = £n/i„, gi = Hn9in and ^1 = £n hin are derivatives and D(fx) C
 Ai, D(gi) C Ai, D(h') C Ai. Certainly the other requirements axe also met.

 Inductive step. Assume that we have already defined functions V>», fi, fi, g
 ģi, hi , sets A,, Bi, Gtn and numbers c,n and Ctn for t' = 1, 2, . . . , k - 1; n = 1,2,...,

 where k > 2. Put A* = Bk^ļU D(uk). Ak is closed and | Ak |= 0, so it is nowhere
 dense. According to Ł. there is a derivative <pk so that

 (11) {x € R : <fk(x) = wjfe(ar)} D Ak, || <pk || < Il || and D(<pk) C Ak.

 Hence D(uk - ipk) C Ak. So we can use 12^ with A = Ak and v = uk - <pk and
 find a closed set Bk, a family of open bounded intervals {Gkn : n G N} and a
 sequence of real numbers {c*„ : n G N} satisfying I2ł i) - v). By 12i i) we get
 Ak C cl(Bfc -Ak)-{Bk-Ak) and since Bk is closed, cì(Bk-Ak)-(Bk-Ak) C Bk -
 ( Bk-Ak ) = Akf'Bk = Ak. Hence we can take A = Ak, B = Bk and v = uk-<pk in
 13. and find an almost everywhere continuous derivative ipk satisfying Ü. i) - v).
 By (11) and IŁ i") we have D(uk-(pk-ipk) C Ak, so by JjL i) (uk-<pk-rj>k)xGkn
 is continuous everywhere. Put Ckn = || ( uk - <pk - ipk)xGkn II (n = 1» 2, . . .) and
 note that by 1ÍL. v)

 (12) Ckn < I) ( uk ^Af)XGfcn II II ýkXGkn II - 2 ckn (n = 1,2, . . .).

 For n = 1, 2, . . . use 1Ł with G = Gkn, f0 = fi,go = g', f = fk = /2 + • * • + /t-i
 and § = §k = g2 Ą

 functions /*„, <7fcn and hkn which satisfy 14. i') - iv). (Note that C = Ckn.) We will
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 use 12t v) for each of the sequences {/*„ : n € N}, {gkn : n G N}, {hkn ' n G N},
 {fkn9i • n G N}, {flffcn/i : n € N}, {/*„<7* : n 6 N} and {gknfk ■ n G N}. We check
 the assumptions:

 1) for n = 1, 2, . . . functions fkn, gkn, hkn, fkngugknfu fkngk and gknfk
 axe continuous everywhere.

 2)-3) axe implied by 14¿ ii) - iii)

 4) from (12) and 14.ivì we get

 Il An II < 50(Cfcn V yJÕZ) < 100(cjtn V

 II 9kn II < 1 A 'jckn < y/2(ckn V y/ckn),

 Il fkni 11 II < Il fkn II II gì II < 150(cfcn V

 Il gknfl II ^ II 9kn || || /lXGfcn || < || /iXG*„ || >/2(Cfcn V y/Ckn),

 (Note that D(fi ) C A' C Aki so || fiXGkn || < +oo.), and by (2) and (5)

 II fknģk II < (k - 2) II fkn II < 100(fc - 2)(Ckn V

 Il 9knfk II < (fc - 2) II gkn II < (* - 2)V2(Ckn V y/Ck¿).

 Hence fj¡ = Ylnfk ni gk - 5Zn Qkni hk = ^nhk n, fkgk = En(/*n0fc)ł 9kfk -
 En (yjfen/jfe), fkg' = En(/*nffi) and gkf' = Ylnidknfi) axe almost everywhere con-
 tinuous derivatives and

 Il fk II < sup{|| fu II : n € N} < 100(c*n V v fc¡¿)

 = 100(|| Uk - <fk D Vy/'' II)
 < 200(|| uk D V^jfūžTii) < 28~fe'a,

 Il y* II < sup{|| gkn II : n G N} < '/2(c*n V y/ēj^)

 - V^dl u* - Vk II V^/|| - (Pk II)

 < 3(11 II VViT^Tif) < 22"fc/2,
 II hk II < sup{|| hkn Ih I 6 N} < 51 C*„ < 102c*,,

 = 102 D Uk - || < 27~*.
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 Now using the uniform convergence of all the rows below we get

 « = 53 = + hk + <f>k + ýk)
 k k

 = (H /*)(£ 9k) - 5 Z(fk9k ) - ÏÏ9Jk) - fi Ž 9k - f^(fk9i)
 k k k k k=2 k= 2

 k k k

 Put h = Ekhk+Ek^k+Ek^k-Ek(fk9k)-Ek(9kfk)-fiHk=29k-9il2k=2fk, / =
 J2kfk and g = Ek9k- The functions Efc/fc, 12k 9k, E k(fk§k), Zk(9kfk),
 12kL2(fk9i)i Efe hk, HkVk and Efc i>k axe almost everywhere continuous deriva-
 tives (They are limits of uniformly convergent rows of such functions.) so we
 need only show that f' YLV-2 9k is a11 almost everywhere continuous derivative to
 complete the proof. We will use 12¿ v) with A = A', B = Bļy cn = cin for the
 sequence {/ln : n € N}. We check the assumptions:

 1) /in is continuous everywhere and EfcL2 9k is a bounded derivative. So
 finī2V=2 9k is a derivative and | £(/inEfci20fc) 1^1 U£=2 Ak | = 0 (n =
 1,2,...),

 2) if X & Gin, then (/i»E£2 £*)(*) = /i»(*) = °>

 3) for each n G N /„ (/m E£=2 0*) = E*L2 A(/i»0k) = EI&2 E/ /oln(/m»«) =
 0, because for each k > 2 and each / € N we have either Gm C Gļn or
 Gki C G5n. So Jļļ(fin9ki) = 0 either by iii) (the way we have chosen gki)
 or by the previous condition,

 4) II /. » E™=i ft II < II /.» II E&, Il S» II < II /1. II < T00(c„ V JēZ).

 All the assumptions of v) are met. So /1 Ej^=2 9k = En (/in Efc^2 0*) is a
 derivative and |-D(/iEfcL2Í7fc)l < lUj&i ^fc| = 0. Hence /, g and h axe almost
 everywhere continuous derivatives and u = fg + h.
 In case u is bounded we can also take functions u*, <pk, fk,9k and hk to be
 bounded (k = 1,2, . . .). Proceeding in the above way we easily prove that the
 functions /, g and h axe also bounded, just as we claim.
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