Real Analysis Exchange Vol 15 (1989-90)

Vasile Ene, Institute of Mathematics, str. Academiei 14, 70109 Bucharest, Romania

Finite Representation of Continuous Functions, Nina Bary's Wrinkled Functions and Foran's Condition M.

In [1](pp. 222;229;237;611), Nina Bary shows the following chain of inclusions: quasi-derivable \subseteq S + S \subseteq C = S + S + S , for continuous functions on [0,1].

It can be shown that above, Banach's condition S can be replaced by $GE(1) \cap T_1 \subsetneq S$, where GE(1) is defined using condition E(1) of [6].

In our paper we define conditions $GAC_*D_1^* \subsetneq GAC_*D_1 \subset GE(1) \cap T_1$ for continuous functions on [0,1], with which we improve the above results. (Following Nina Bary's proof of [1],p.222, conditions $GAC_*D_1^*$ and GAC_*D_1 are very natural.)

To prove that $S + S \neq G$, Nina Bary introduced the wrinkled functions W (she called them "fonctions ridées", [1],p.236) and showed that $W \neq \emptyset$ (see the example of [1],pp.241-248; see also [5] or [3]) and $W \cap (N + \text{quasi-derivable}) = \emptyset$ (see [1],p.237), hence $W \cap (N + N) = \emptyset$, for continuous functions on [0,1].

In our paper we give characterizations of the wrinkled functions which show that between Foran's condition M (introduced in 1979 in [8]) and these functions there is a very close relationship. So we improve Nina Bary's results on wrinkled functions. Finally we construct a wrinkled function which is approximately derivable at no point of [0,1] and for which each level set is perfect.

Let $\mathcal{C} = \{F : F \text{ is continuous}\}$. Banach's conditions T_1, T_2, S , Lusin's condition N and conditions VB, VB, AC, AC, VBG, VBG, ACG, ACG are defined in [13]; E(N) and \mathcal{C} in [6].

Definition 1.([1],p.236). Let Q be a measurable real set and let $f:Q \to R$. f is a wrinkled function, $f \in W$, if for every measurable subset $A \subset Q$, |A| > 0, f is monotone on some $B \subset A$, where |B| = 0, f(B) is measurable and |f(B)| > 0. (Without loss of generality A may be supposed to be perfect, since a measurable set is the union of a F_{q} -set and a null set.)

Definition 2.([1],p.178). A continuous function $f:[0,1] \longrightarrow \mathbb{R}$ is quasi-derivable if on each interval f'(x) exists and is finite at every point x of a set which has positive measure.

Definition 3. ([8]). A continuous function fulfils Foran's condition M if it is AC on any set on which it is VB.

Definition 4.([12],p.406). A function f is D_1 (resp. D_1^*) on a set E if for every $\varepsilon > 0$ there exists a sequence $\{I_i\}$ of nonoverlapping closed (resp. of open) intervals which covers E and $\sum_i O(f; E \cap I_i) < \varepsilon$ (resp. $\sum_i O(f; I_i) < \varepsilon$).

A function f is $E_1(1,1)$ on E if $f \in D_1$ on Z, whenever $Z \subset E$, [Z] = 0.

Remark 1. a) In [12], Lee calls condition D_1 , $D_1(1)$ and he shows that $E_1(1,1)$ and E(1) (see [6]) are equivalent (see [12], Remark 14,p.416). Another condition which is equivalent with E(1) is given by Iseki (see [12],pp.415-416). b) Clearly $D_1^* \subset D_1$.

<u>Definition 5.</u>([12],p.416). For a function property P (resp. for function properties P_1 and P_2) on sets we say that a function

f is generalized P (resp. generalized P_1P_2) on E, writing $f \in GP$ (resp. $f \in GP_1P_2$) on E, if E can be written as the union of countably many sets on each of which f is P (resp. f is P_1 or f is P_2). Thus we have properties like GD_1^* ; GD_1 ; $GAC_*D_1^*$; GE(1).

Remark 2. a) $GD_1^* = D_1^*$ on a set.

- b) If $f \in D_1$ on a set E then |f(E)| = 0 and $f \in E(1)$ on E. Hence, if $f \in GD_1$ on E then |f(E)| = 0 and $f \in GE(1)$ on E.
- c) If f is a Darboux function and $f \in GD_1$ on an interval then f is a constant.
- d) Let f be a nonconstant continuous function on [0,1]. If A is a countable dense subset of [0,1] then $f \notin D_1^{\sharp}$ on [0,1] and $f \in D_1^{\sharp}$ on (e) $\mathcal{C} \cap GAC_*D_1 \subset T_1$ on an interval (see [13], Theorem 7.2,p.230, Theorem 6.2,p.278 and Remark 2,b)).

Remark 3. For continuous functions on [0,1], we have: $\mathcal{E} \stackrel{(1)}{\rightleftharpoons} \mathbb{N} \stackrel{(2)}{\rightleftharpoons} \mathbb{M} \stackrel{(3)}{\rightleftharpoons} \text{ quasi-derivable} \stackrel{(4)}{\rightleftharpoons} S+S \stackrel{(5)}{\rightleftharpoons} \text{ quasi-derivable}$ + quasi-derivable = $\mathcal{E} = S+S+S$.

Proof. For (1) see [6],p.208; for (2) see [8],p.84; for (3)
see [8],p.87; for (4) see [1],p.222,p.229; for (6) see [1],p.599,
hence (5) follows by (6) and [1],p.237; for (7) see [1],p.611.

Proposition 1. For continuous functions on [0,1] we have:

GAC, $D_1^* \subseteq GAC$, $D_1 \subseteq GE(1) \cap T_1 \subseteq \mathcal{E} \cap T_1 \subseteq S$.

<u>Proof.</u> For (3), see the definitions and for (4) see [6],p. 208. Clearly GAC, $D_1 \subset GAC$, $D_1 \subset GE(1) \cap T_1$ (see Remark 2,e)). It remains to show that (1) is strict. Let C be the Centor ternary set and let $\mathcal P$ be the Cantor ternary function. Let $\{I_n^k\}$, $n=1,2,\ldots,2^{k-1}$ be the open intervals excluded at the step k in the

Cantor ternary process. Let c_n^k be the middle point of I_n^k . Let $f: [0,1] \longrightarrow \mathbb{R}$, f(x) = 0, $x \in C$; $f(c_n^k) = 1/2^k$. Extending f linearly, we have f defined and continuous on [0,1]. Clearly $f \in GAC_*D_1$ on [0,1] and $f \in ACG_{\bullet}$ on [0,1] - C. Suppose that $f \in GAC_{\bullet}D_1^*$ on C. Then there exists a sequence of sets $\{E_n\}$ such that $C = \bigcup E_n$ and either $f \in AC_{+}$ on E_{n} or $f \in D_{1}^{*}$ on E_{n} . Let p be a natural number such that f is AC, on E_p . Since $f \in C$ it follows that f is AC, on \overline{E}_p . We prove that $f \in D_1^*$ on \overline{E}_p . Let $\varepsilon > 0$ and let ε be given by the fact that $f \in AC_{+}$ on \overline{E}_{p} . Since $f \in G$ and $|\overline{E}_{p}| = 0$ we can cover E_{p} with a sequence of nonoverlapping intervals $\{I_n\}$ such that $\sum |I_n| < S$ and $\sum O(f;I_n) < \mathcal{E}$. Hence $f \in D_1^*$ on \overline{E}_p . It follows that $f \in GD_1^*$ on C, hence $f \in D_1^{\#}$ on C. We show that $f \notin D_1^{\#}$ on C. Let $C \subset \bigcup_{i=1}^{n} (a_i, b_i)$. For each i let J_i be the greatest excluded open interval (in the Cantor ternary process) contained in [ai,bi] , where ai = $\inf((a_i,b_i)\cap C)$ and $b_i' = \sup((a_i,b_i)\cap C)$. Suppose that J_i is excluded at the step k. Then

$$\begin{split} J_{1} &= (\sum_{i=1}^{k-1} c_{i}/3^{i} + \sum_{i=k+1}^{\infty} 2/3^{i} , \sum_{i=1}^{k-1} c_{i}/3^{i} + 2/3^{k}). \text{ Let} \\ J_{1}^{i} &= \left[\sum_{i=1}^{k-1} c_{i}/3^{i} , \sum_{i=1}^{k-1} c_{i}/3^{i} + \sum_{i=k}^{\infty} 2/3^{i}\right]. \text{ Then } \left[a_{1}^{i}, b_{1}^{i}\right] \subset J_{1}^{i} , \\ \text{hence } C \subset \bigcup J_{1}^{i}. \text{ We have } O(f; J_{1}^{i}) = O(f; J_{1}^{i}) = |\Psi(J_{1}^{i})| = 1/2^{k} , \\ \left[0, 1\right] &= \Psi(C) \subset \bigcup \Psi(J_{1}^{i}), \text{ hence } \sum_{i=1}^{\infty} O(f; (a_{1}^{i}b_{1}^{i})) \geqslant \sum_{i=1}^{\infty} O(f; J_{1}^{i}) = \sum_{i=1}^{\infty} |\Psi(J_{1}^{i})| \geqslant 1 \text{ and } f \notin D_{1}^{\#} \text{ on } C. \end{split}$$

Theorem 1. Let $F: [0,1] \longrightarrow \mathbb{R}$, $F \in \mathcal{C} \cap \text{quasi-derivable}$. Let a > 0, $\emptyset \subseteq P \subset [0,1]$ be a perfect nowhere dense set and let $D = \{x \in [0,1] - P : F \text{ is derivable at } x\}$. Then there exist a set Q of

 F_r -type, QCD, |Q| = |D| and two continuous functions f_1 and f_2 such that: a) $F(x) = f_1(x) + f_2(x)$ on [0,1]; b) $f_1, f_2 \in D_1^{\sharp}$ on Q^c = [0,1] - Q; c) $f_1, f_2 \in ACG$, on Q; d) $|f_2(x)| < 3a$ on [0,1] and $f_2(0) = f_2(1) = 0$.

<u>Proof.</u> Let P_1 be a perfect nowhere dense subset of D, $|P_1| > 0$. We shall construct a strictly increasing sequence $\{P_k\}$, k = 2,3,...of nowhere dense perfect subsets of D such that $P_k - P_{k-1}$ is a nowhere dense subset of positive measure in each \overline{I}_n^{k-1} and |Q| =|D|, where I_n^k are the intervals contiguous to P_k , k = 2,3,... and $Q = \bigcup_{k=1}^{\infty} P_k$. Let $g_1: [0,1] \longrightarrow \mathbb{R}$ be a continuous function such that: $g_1(x) = F(x)$ on P_1 ; g_1 is a bounded derived number on each I_n^1 ; g_1 is constant on each I_n^2 ; $|h_1(x)| < a/2^{n+1}$ on each I_n^1 , where $h_1(x)$ = $F(x) - g_1(x)$. The existence of g_1 follows by [1],pp.222-224. Since $h_1 = 0$ on P, by [13] (Theorem 8.5,p.232), it follows that h_1 $\in AC_1$ on P_1 . By [13] (Theorem 10.5,p.235), $F \in ACG_2$ on P_2 . Clearly $g_1 \in AC_2$ on each I_n^1 . Since $g_1 = F - h_1$ it follows that $g_1 \in AC_2$ on P_1 , hence $g_1 \in ACG_2$ on [0,1]. Since $F \in ACG_2$ on P_2 it follows that $h_1 \in ACG_2$ ACG_{\star} on P_2 . Since $h_1 - F$ is constant on each I_n^2 , it follows that h₁ is derivable on D-P₂. Replacing F by h₁ we construct a continuous function g_2 , analogously to the construction of g_1 , such that $g_2 = h_1$ on P_2 , g_2 is ACG_2 on [0,1], g_2 is constant on each interval I_n^3 and $|h_2(x)| < a/2^{n+2}$ on each I_n^2 , where $h_2(x) = h_1(x)$ - $g_2(x)$. Then $h_2(x) = 0$ on F_2 ; h_2 is ACG_2 on P_3 ; h_2 is derivable on D-P₃; $|h_2(x)| < a/2^2$ on [0,1]. Continuing in this way we obtain two sequences of continuous functions $\{g_i\}$, $\{h_i\}$, i = 2,3,...such that:

A. $g_i = b_{i-1}$ on P_i ; $g_i \in ACG_i$ on [0,1]; g_i is constant on each

$$I_n^{i+1}$$
;

B. $h_i = 0$ on P_i ; $|h_i(x)| < a/2^{n+i}$ on I_n^i ; $h_i \in ACG_*$ on P_{i+1} ; $h_i = h_{i-1} - g_i$ is derivable on $D - P_{i+1}$.

Clearly

(1)
$$|h_i(x)| < a/2^i \text{ on } [0,1].$$

Then we have $F(x) = g_1(x) + \cdots + g_m(x) + h_m(x)$, for each natural number m and by (1), $\sum_{i=1}^{\infty} g_i(x)$ converges uniformly to F(x). Let

$$F_1(x) = \sum_{i=1}^{\infty} g_{2i-1}(x) ; F_2(x) = \sum_{i=1}^{\infty} g_{2i}(x) ; R_m(x) = \sum_{i=m}^{\infty} (h_i(x) - h_i(x))$$

 $h_{i+1}(x)$). Then $F_1, F_2 \in \mathcal{C}$ on [0,1] and $F(x) = F_1(x) + F_2(x)$.

We bave

(2)
$$F_1(x) = \sum_{i=1}^k g_{2i-1}(x) + R_{2k}(x)$$
;

(3)
$$F_2(x) = \sum_{i=1}^{k} g_{2i}(x) + R_{2k+1}(x)$$
;

(4)
$$R_i(x) = 0 \text{ on } P_i$$
;

(5)
$$\sum_{n=1}^{\infty} O(R_i; I_n^i) < a/2^{i-2}$$
.

By (4), (5) and [13] (Theorem 8.5,p.232) it follows that

(6)
$$R_i(x)$$
 is AC_i on P_i .

Since $\sum_{i=1}^{k} g_{2i-1}(x)$ is constant on each I_n^{2k} , it follows that

(7)
$$O(F_1; I_n^{2k}) = O(R_{2k}; I_n^{2k}).$$

By A., (2) and (6), it follows that F_1 is ACG_* on P_{2k} . Hence F_1 is ACG_* on $Q = \bigcup_{i=1}^{\infty} P_i$. Analogously F_2 is ACG_* on Q. Moreover,

(8)
$$|\mathbf{F}_{2}(\mathbf{x})| = |\mathbf{R}_{1}(\mathbf{x})| < \sum_{i=1}^{\infty} |\mathbf{h}_{i}(\mathbf{x})| < \mathbf{a}.$$

Let $\epsilon > 0$ and let k be a natural number such that $a/2^{2k} < \epsilon$. Then $\epsilon^c \subset \bigcup_{n=1}^\infty I_n^{2k+2}$ and by (5) and (7) it follows that $\sum_{n=1}^\infty C(F_1;I_n^{2k+2}) < a/2^{2k} < \epsilon \text{ , hence } F_1 \text{ is } D_1^* \text{ on } Q^c \text{ . Analogously,}$ $F_2 \text{ is } D_1^* \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2$ are $D_1^* \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2$ are $D_1^* \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2$ are $D_1^* \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2$ are $D_1^* \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2$ are $D_1^* \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2 \text{ are } D_1^* \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2 \text{ are } D_1^* \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2 \text{ are } D_1^* \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2 \text{ are } D_1^* \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2 \text{ are } D_1^* \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2 \text{ are } D_1^* \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2 \text{ are } D_1^* \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2 \text{ are } D_1^* \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2 \text{ on } D_1^* \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2 \text{ on } D_1^* \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2 \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2 \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } [0,1]; F_1, F_2 \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on } Q^c \text{ . Therefore we obtain: } F = F_1 + F_2 \text{ on }$

Corollary 1. Let a>0 and let P be a perfect nowhere dense subset of [0,1]. Let $F:[0,1] \longrightarrow \mathbb{R}$, $F \in \mathcal{C}$. Then there exist two continuous functions F_1,F_2 on [0,1] such that: a) $F = F_1 + F_2$ on [0,1]; b) $F_2 \in D_1^*$ on P and $F_1 \in D_1$ on P; c) $F_2(0) = F_2(1) = 0$; d) $|F_2(x)| < \alpha$ on [0,1].

<u>Proof.</u> Let $f:[0,1] \longrightarrow \mathbb{R}$ be a continuous function defined as follows: f(x) = F(x), $x \in P \cup \{0,1\}$; f is linear on the closure of each interval contiguous to $P \subset [0,1]$. By Theorem 1, $f = f_1 + f_2$ on [0,1]; $f_1,f_2 \in \mathcal{C}$ on [0,1]; $f_1,f_2 \in D_1^{\sharp}$ on P; $f_2(0) = f_2(1) = 0$; $|f_2(x)| < a$ on [0,1]. Let $F_2 = f_2$ and $F_1 = F - f_2$. Then $F_1 = f_1$ on P, hence $F_1 \in D_1$ on P.

Corollary 2. Let a > 0 and let P be a perfect nowhere dense subset of [0,1]. Let $F: [0,1] \longrightarrow \mathbb{R}$, $F \in \mathcal{C}$. Then there exists a perfect nowhere dense set $Q \supset P$ such that $Q \cap P$ is a perfect nowhere dense set of positive measure in each interval continuous to P and there exist two continuous functions F_1, F_2 on [0,1] such

that: a) $F = F_1 + F_2$ on [0,1]; b) $F_1, F_2 \in D_1$ on P; F_1 is an each interval contiguous to P; F_1 is constant on each interval contiguous to P; F_2 (0) = F_2 (1) = 0; d) $|F_2(x)| < a$ on [0,1].

Proof. By Corollary 1, for a/2, there exist two continuous functions f_1, f_2 on [0,1] such that: a') $F = f_1 + f_2$ on [0,1]; b') $f_2 \in \mathbb{D}_1^r$ on P and $f_1 \in \mathbb{D}_1$ on P; c') $f_2(0) = f_2(1) = 0$; d') $|f_2(x)| < a/2$ on [0,1]. Let $\{I_n\}$ be the intervals contiguous to P with respect to [0,1]. For each natural number n there exists a perfect nowhere dense subset \mathbb{Q}_n of \overline{I}_n , $|\mathbb{Q}_n| > 0$ and a continuous function F_1 on [0,1] such that: $F_1(x) = f_1(x)$ on P; $F_1(0) = F(0)$; $F_1(1) = F(1)$; $F_1 \in AC$ on each I_n ; F_1 is constant on each interval contiguous to \mathbb{Q}_n with respect to \overline{I}_n ; $|F_2(x)| < a$ on [0,1], where $F_2(x) = F(x) = F_1(x)$. These follow by [1], p.609-611 (if we put $I_n = \S_n$; $f_1 = \overline{\Psi}$; $f_2 = \overline{\Psi}$; $F_1 = \Psi$; $F_2 = \Psi$; $a/2 = \overline{E}/2$). By a') and c') it follows that $F_1(x) = f_1(x)$ on $P \cup \{0,1\}$, hence $F_2(x) = f_2(x)$ on $P \cup \{0,1\}$. It follows that $F_2(0) = F_2(1) = 0$ and by b'), $F_1, F_2 \in \mathbb{D}_1$ on P.

Remark 4. a) Theorem 1 extends Nina Bary's theorem of [1], p.222 and Corollary 1 extends Nina Bary's theorem of [1], p.603 (instead of condition " $|F_1(P)| = |F_2(P)| = 0$ " we put condition b) Corollary 2 is an extension of Nina Bary's Corollary of [1], p.609.

Remark 5. For continuous functions on [0,1] we have: quasi-derivable $\subseteq GAC_*D_1^* + GAC_*D_1^* \subseteq GAC_*D_1 + GAC_*D_1 \subseteq S + S$ (see Theorem 1 and Proposition 1). We don't know if the inclusions are strict.

Proposition 2. For continuous functions on [0,1] we have: quasi-derivable $\subseteq GAC_*D_1 + GAC_*D_1$.

Proof. The inclusion follows by Remark 5. To prove that the inclusion is strict we shall construct two continuous functions $f,g:[0,1] \longrightarrow [0,1]$ such that $f,g \in GAC_*D_1$ and f+g is not derivable a.e. on [0,1]. Then f+g is not quasi-derivable on [0,1]. Let P_1 be a perfect nowhere dense subset of [0,1], symmetrical with respect to 1/2 such that $0,1 \in P_1$ and $|P_1| = 1/2$. We shall construct a strictly increasing sequence of subsets of [0,1], P_k , $k \ge 2$. Let $I_n^k = (a_n^k, b_n^k)$ be the intervals contiguous to P_k with respect to [0,1] . Suppose that P_1,\ldots,P_k have been defined and let's define P_{k+1} . Let P_n^k be a perfect nowhere dense subset of \overline{I}_n^k such that $a_n^k, b_n^k \in P_n^k$, $|P_n^k| = |I_n^k|/2$ and P_n^k is symmetrical with respect to $c_n^k = (a_n^k + b_n^k)/2$. Then $P_{k+1} = P_k \cup (\bigcup_{n=1}^{\infty} P_n^k) = P_k \cup S^{k+1}$. By [1], pp. 229-230 (for $\mathcal{E} = I_n^k$, $Q = P_n^k$ and $\mathcal{E} = 1/2^{n+k}$), there exists a continuous function $f_k:[0,1] \longrightarrow [0, 1/2^k]$ with the following properties: $f_k(x) = 0$ on P_k ; f_k is ACG on each I_n^k ; $|f_k(x)| < 1/2^{n+k}$ on I_n^k ; $f_k(x) = 0$ on P_n^k ; f_k is AC on I_n^{k+1} ; f_k is constant on each I_n^{k+2} ; f_k is not derivable on P_n^k . Let $A = P_1 \cup (\bigcup_{i=1}^{\infty} S^{2i+1})$; B = $\bigcup_{i=1}^{\infty} s^{2i}$; E = [0,1] - (AUB) = [0,1] - ($\bigcup_{i=1}^{\infty} P_i$). Then |AUB| = 1. Let $f(x) = \sum_{i=1}^{\infty} f_{2i-1}(x)$ and $g(x) = \sum_{i=1}^{\infty} f_{2i}(x)$. Clearly f, g and f+g are continuous on [0,1]. It follows that: a) f is ACG, on A and f is not derivable a.e. on B; b) g is ACG, on B and g is not derivable a.e. on A; c) $f \in GD_1$ on B; $f \in D_1^*$ on B; $g \in GD_1$ on A; $g \in GD_1$ D_1^* on K. By a) and b), f+g is not derivable a.e. en [0,1]. By a) and c), $f \in GAC_1D_1$ on [0,1] and by b) and c), $g \in GAC_1D_1$ on [0,1]. We prove only the part with f. Let $R_{2k+1}(x) = \sum_{i=k}^{\infty} f_{2i+1}(x)$. Then

$$f(x) = \sum_{i=1}^{k} f_{2i-1}(x) + R_{2k+1}(x)$$
. We have

(9)
$$R_{2k+1}(x) = 0 \text{ on } P_{2k+1}$$
 and

(10)
$$\sum_{n=1}^{\infty} o(R_{2k+1}; I_n^{2k+1}) < 1/2^{2k-1}$$
,

hence, by [13] (Theorem 8.5,p.232),

(11) R_{2k+1} is AC_* on P_{2k+1} .

Since $\sum_{i=1}^{k} f_{2i-1}(x)$ is constant on each I_n^{2k+1} , it follows that

(12)
$$O(f; I_n^{2k+1}) = O(R_{2k+1}; I_n^{2k+1}).$$

By (9), it follows that

(13)
$$f(x) = \sum_{i=1}^{k} f_{2i-1}(x) \text{ on } P_{2k+1}$$

a) Since $f(x) = R_1(x)$ on [0,1], $f \in AC_*$ on P_1 . Since $f_1, f_2, \ldots, f_{2k-1}$ are AC_* on each I_n^{2k} , it follows that $\sum_{i=1}^k f_{2i-1}(x)$ is AC_* on each

 P_n^{2k} . By (11), f is AC, on each P_n^{2k} . Therefore f is ACG, on S^{2k+1} .

Since $\sum_{i=1}^{k-1} f_{2i-1}(x)$ is constant on each I_n^{2k-1} , f_{2k-1} is not

derivable on P_n^{2k-1} and R_{2k+1} is derivable a.e. on P_{2k+1} . It

follows that f is not derivable a.e. on s^{2k} .

c) Let $\varepsilon > 0$ and let k be a natural number such that $1/2^{2k-1} \gtrsim \varepsilon$.

Since EC $\bigcup_{n=1}^{\infty} I_n^{2k+1}$, by (10) and (12), it follows that

 $\sum_{n=1}^{\infty} O(f; I_n^{2k+1}) < \epsilon \text{ , hence } f \in D_1^{+} \text{ on } E. \text{ Since } \sum_{i=1}^{k-1} f_{2i-1}(x) \text{ is }$

constant on each I_n^{2k+1} and $f_{2k-1}(x) = 0$ on each P_n^{2k-1} , it follows that f is constant on each P_n^{2k-1} , hence $f \in D_1$ on S^{2k} . Thus $f \in GD_1$ on B.

Using Corollary 2 instead of Nina Bary's Corollary [1],p. 609, the following theorem can be proved:

Theorem 2. (An extension of the theorem of [1],p.611). $C = GAC_D_1 + GAC_D_1 + GAC_D_1 \text{ for continuous functions on } [0,1].$

Remark 6. We don't know if Theorem 2 remains true if $GAC_{\downarrow}D_{\downarrow}$ is replaced by $GAC_{\downarrow}D_{\downarrow}^{\#}$.

Theorem 3. (An extension of the theorem of [1],p.237). Let P be a perfect set, $P \subset [0,1]$, |P| > 0 and let $F:P \longrightarrow [0,1]$. If $F \in W \cap C$ then F cannot be written as the sum of two continuous functions F_1 and F_2 such that $F_1 \in W$ and F_2 is approximately differentiable on a set of positive measure. Hence $W \cap (W + W) = \emptyset$ for continuous functions on [0,1] (see Remark 3).

<u>Proof.</u> Suppose that there exists a set $E \subset F$ of positive measure such that F_2 is approximately differentiable on E. By [13] (Theorem 10.14,p.239) F_2 is ACG on E. Since $F \in W$ there exists $F_1 \subset F$, $|F_1| = 0$ such that $F(E_1)$ is measurable, $|F(E_1)| > 0$ and F is monotone on F_1 . Then $F_1 = F - F_2$ is VEG on F_1 . Since $F_1 \in K$, $F_1 \in ACG$ on F_1 . Hence $F_1 + F_2$ is ACG on F_1 and $|F(F_1)| = 0$, a contradiction.

Remark 7. If P is a perfect nowhere dense set of positive measure, $P \subseteq [0,1]$ then there exists a continuous function in D_1^* on P which is approximately differentiable on no set of positive measure (see Theorem 1 and Theorem 3).

Corollary 3. Let $F:P \subseteq [0,1] \longrightarrow [0,1]$, where $F \in W \cap G$ and P is a measurable set of positive measure. Then F is approximately differentiable on no set of positive measure.

Theorem 4. a) Let $F: [0,1] \longrightarrow \mathbb{R}$, $F \in \mathcal{C}$ and let $P \subseteq [0,1]$ be a measurable set, |P| > 0. Then $F \in W$ on P if and only if $F \in M$ on no closed subset Q of P, |Q| > 0.

b) Let $f:S \to R$, $f \in \mathcal{C}$, where $S \subset [0,1]$ is a measurable set. Then $f \in W$ if and only if for every subset $A \subset S$ of positive measure, f is strictly monotone on some perfect subset $B \subset A$ such that |f(B)| > 0 and |B| = 0.

Proof. a) " \Longrightarrow " Let \mathbb{Q} be a closed subset of positive measure of P. Since $F \in W$ on P it follows that there exists $\mathbb{Q}_1 \subset \mathbb{Q}$, $|\mathbb{Q}_1| = 0$ such that F is monotone on \mathbb{Q}_1 , $F(\mathbb{Q}_1)$ is measurable and $|F(\mathbb{Q}_1)| > 0$, hence $F \notin M$ on \mathbb{Q} .

" \Leftarrow " Let A be a perfect subset of P of positive measure. Since $F \notin M$ on A, by Theorem 1 of [8](p.83), it follows that there exists $B \subset A$ such that F is monotone on B and $F \notin AC$ on B. Since $F \in C$, F is monotone on \overline{B} . We prove that $|\overline{B}| = C$, hence $F(\overline{B})$ is measurable and $|F(\overline{B})| > 0$. Suppose that $|F(\overline{B})| = 0$ then $F \in C \cap VB \cap N$ on \overline{B} and by Theorem 6.7 of [13](p.227), $F \in AC$ on \overline{B} , hence $F \in AC$ on B, a contradiction. Suppose that $|\overline{B}| > 0$ then F is approximately differentiable on a measurable set $E \subset B$, $|E| = |\overline{B}|$, hence $F \in ACG$ on \overline{E} . It follows that there exists a closed set \mathbb{Q} , $\mathbb{Q} \subset \overline{E}$, $|\mathbb{Q}| > 0$ such that $F \in ACG \subset M$ on \mathbb{Q} , a contradiction.

b) " \Longrightarrow " is evident.

"\(= " Let A be a perfect subset of S, \A| > 0. Since $f \in W$, there exists $B_1 \subset A$, $|B_1| = 0$, $f_{|B_1|}$ is monotone, $f(B_1)$ is measurable and $|f(B_1)| > 0$. We prove that $|\overline{B}_1| = 0$. Suppose that $|\overline{B}_1| > 0$. Since $f \in \mathcal{C}$, $f_{|\overline{B}_1|}$ is monotone. Hence f is approximately derivable a.e. on \overline{B}_1 , a contradiction (see Corollary 3). Let $C = \{y \in f(\overline{B}_1) : f^{-1}(y) \cap \overline{B}_1 \text{ contains more than one point} \}$. Then C is countable.

Suppose $C = \{y_1, y_2, \dots\}$. Let $\mathcal{E} < (|f(B_1)|)/4$, $a_n = \inf(\overline{B}_1 \cap f^{-1}(y_n))$, $b_n = \sup(\overline{B}_1 \cap f^{-1}(y_n))$. Since $f \in \mathcal{E}$ it follows that there exist $\mathcal{E}_n > 0$ such that $f(\overline{B}_1 \cap (a_n - \mathcal{E}_n, b_n + \mathcal{E}_n)) \subset (y_n - \mathcal{E}/2^{n+1}, y_n + \mathcal{E}/2^{n+1})$. Let $G = \bigcup_n (a_n - \mathcal{E}_n, b_n + \mathcal{E}_n)$. Hence $|f(\overline{B}_1 \cap G)| < \mathcal{E}$. Let B be the set of points of accumulation of the closed set \overline{B}_1 —G. Then B is a perfect subset of A, |B| = 0, $f|_B$ is strictly monotone, f(B) is a compact set (since $f \in \mathcal{E}$) and $|f(B)| > (3/4)|f(B_1)| > 0$.

Lemma 1. Let A be a perfect subset of [0,1], |A| > 0 and let $f:A \longrightarrow R$, $f \in \mathcal{C}$. Let $E = \{x \in A : f \text{ is approximately}\}$ differentiable at x and $f'_{ap}(x) > 0$. If E has positive measure then there exists a perfect subset B of E, |B| = 0, such that $f_{|B|}$ is strictly increasing.

Proof. That E is measurable follows by [13],p.299. Let $E_n = \{x \in E : 0 < h < 1/n \text{ implies} | \{t : 1/n \le (f(t)-f(x))/(t-x) , 0 < |t-x| < h\} | > (3/4) \cdot 2h\}$. Let $E_{in} = E_n \cap [i/n, (i+1)/n]$ for each natural number i. Then $E = \bigcup \bigcup E_{in}$. Let p,j such that $|E_{pj}| > 0$. If x < y, $x,y \in E_{pj}$ then f(y)-f(x) > (1/p)(y-x). Since $f \in \mathcal{E}$ it follows that f(y)-f(x) > (1/p)(y-x), for x < y, $x,y \in E_{pj}$. Let B be a perfect subset of positive measure of E_{pj} . Then f is strictly increasing on B.

Theorem 5. Let P be a perfect subset of [0,1], |P| > 0. Let $F:P \longrightarrow [0,1]$, $F \in W \cap C$; $g:P \longrightarrow Q$, g(P) = Q; $g \in C$; $f:Q \longrightarrow [0,1]$ and $D_{ap} = \{x \in Q : f \text{ is approximately differentiable at } x\}$. If $F = f \circ g$, $f \in C$ and $|f(Q - D_{ap})| = 0$ then $g \in W$.

Proof. The proof is similar with that of [1] (Theorem of p. 238), using Lemma 1 instead of the lemma of [1], p.239.

Let A be a perfect subset of P, |A| > 0. Since $F \in W$, by Theorem 4,b), there exists a perfect subset B of A, |B| = 0, such that $F|_B$ is strictly monotone and |F(B)| > 0. Let B' = g(B). By [13] (Theorem 10.14,p.239), it follows that $f \in ACG$ on D_{ap} . Since $|f(C - D_{ap})| = 0$ it follows that $f \in N$ on Q, hence |B'| > 0. Indeed, if |B'| = 0 then |F(B)| = |f(B')| = 0, a contradiction. Let $D_0 = \{x \in \mathbb{Q} : f_{ap}^i(x) = 0\}$. By [13] (Lemma 9.2,p.290), it follows that $|f(D_0)| = 0$, hence |F(B)| = 0, a contradiction). It follows that $|f(D_0)| = 0$, then |F(B)| = 0, a contradiction). It follows that B' contains a subset |F(B)| = 0, a contradiction). It follows that B' contains a subset |F(B)| = 0, a contradiction). It follows that B' Lemma 1 there exists a perfect subset C' of F, |G'| > 0, such that |G(C)| = |G

Remark 8. Theorem 5 is an extension of the theorem of [1], p.238 (there, $f \in AC$).

Theorem 6. Let $P \subseteq [0,1]$ be a perfect set, |P| > 0. Let $F:P \longrightarrow [0,1]$; $g:P \longrightarrow Q \subset [0,1]$, Q = g(P); |Q| > 0; $f:Q \longrightarrow [0,1]$ and let $D_{ap} = \{x \in P : g \text{ is approximately differentiable at } x\}$. If $F = f \circ g$, $F, g, f \in G$, $F \in W$ and $|g(P - D_{ap})| = 0$ then $f \in W$.

<u>Proof.</u> Let A be a perfect subset of Q, |A| > 0. Let $A_1 = g^{-1}(A)$, then A_1 is a closed subset of P. But g is ACG on P, hence g satisfies Lusin's condition N on P. It follows that $|A_1| > 0$. Since |A| > 0, $D_0 = \{x \in P : g_{ap}^i(x) = 0\}$, $|g(D_0)| = 0$ and $|g(P-D_{ap})| = 0$, it follows that $A_1 \cap D_{ap}$ contains a subset E of positive measure where f_{ap}^i doesn't change the sign. Suppose that $f_{ap}^i(x) > 0$ for all $x \in E$. By Lemma 1 it follows that there exists a perfect

subset C of E, |C| > 0 such that $g_{|C|}$ is strictly increasing. $F \in W$ implies that there exists a perfect subset B of C such that |B| = 0, $F_{|B|}$ is strictly monotone and |F(B)| > 0. Let $B_1 = g(B) \subset A$. Since g is ACG on D_{ap} it follows that $|B_1| = 0$. Since $g_{|B|}$ is strictly increasing and $F_{|B|}$ is strictly monotone it follows that $|f_{|B|}$ is strictly monotone and $|f(B_1)| = |f(g(B))| = |F(B)| > 0$, hence $f \in W$ on Q.

Definition 6. Let $F:[0,1] \longrightarrow \mathbb{R}$, $F \in \mathcal{C}$. F is said to be W if for every subinterval I of [0,1], there exists a perfect subset P of I, |P| = 0, $F_{|P|}$ - monotone, such that |F(P)| > 0. Clearly WCW.

Remark 9. By Corollary 2 of [2](p.213), a typical continuous function $f:[0,1] \longrightarrow \mathbb{R}$ does not have finite or infinite derivative at any point. By [8](Theorem 3,p.87), if f is a continuous function on $I \subset [0,1]$ and if $\{x \in I : f'(x) \text{ exists}\}$ has measure 0 then there is a perfect set P, |P| = 0 such that f is increasing on P and |f(P)| > 0. Hence a typical continuous function is W. Is W typical for continuous functions on [0,1]?

Remark 10. There exists a function $g \in W' - W$. By [10] (Example 2,p.41), there exists a continuous function g defined on [0,1] whose graph has V - finite Hausdorff length and such that g is nowhere differentiable but has approximate derivative 0 almost everywhere (g will satisfy condition T_1). Since the set $E = \{x : g'(x) = +\infty\}$ has measure 0 (see [13], Theorem 4.4,p.270), by [8] (Theorem 3,p.87), it follows that $g \in W'$. By Corollary 3, $g \notin W$.

Lemma 2. There exist a continuous function $F:[0,1] \rightarrow [0,1]$ and a symmetric perfect nowhere dense subset Q of [0,1], $0,1 \in \mathbb{Q}$, $|\mathbb{Q}| = 1/2$, such that: a) $F \in \mathbb{W}$ on P; b) For each $y \in [0,1]$, $\mathbb{Q} \cap \mathbb{R}^{-1}(y)$ is a nonempty perfect subset of \mathbb{Q} ; c) $\mathbb{F}_{|\mathbb{Q}|}$ has finite or

infinite derivative at no point $x \in \mathbb{Q}$; d) $F_{|\mathbb{Q}|}$ has finite approximate derivative at no point $x \in \mathbb{Q}$; e) F is linear and strictly decreasing on each interval contiguous to \mathbb{Q} .

Proof. We shall define the set \mathbb{Q} . Let $\mathbf{a}_{2i} = (1 - \sum_{k=2}^{i+1} 1/2^k)/4^i$ = $1/(2 \cdot 4^i) + 1/(2 \cdot 8^i)$, i > 0; $\mathbf{a}_{2i-1} = 2 \cdot \mathbf{a}_{2i}$, i > 1, $\mathbf{e}_1 = \mathbf{a}_{1-1} - \mathbf{a}_i$, i > 1. Then $\mathbf{a}_{2i} = \mathbf{c}_{2i} = \sum_{k=2i+1}^{\infty} \mathbf{c}_k$, $\mathbf{c}_{2i-1} = 1/4^i + 3/8^i$, i > 1, $\mathbf{a}_{2i-1} = \sum_{k=2i}^{\infty} \mathbf{c}_k$. Let $\mathbb{Q} = \{\mathbf{x} : \text{There exists } \mathbf{e}_i(\mathbf{x}) \text{ taking on 0 or 1}$ and $\mathbf{x} = \sum_{k=2i}^{\infty} \mathbf{c}_k$. The open intervals deleted in the s-step of the construction of \mathbb{Q} are $\mathbf{C}_{\mathbf{e}_1 \cdots \mathbf{e}_{s-1}} = (\sum_{i=1}^{s-1} \mathbf{e}_i \mathbf{c}_i + \mathbf{a}_s, \sum_{i=1}^{s-1} \mathbf{e}_i \mathbf{c}_i + \mathbf{c}_s)$, $(\mathbf{e}_1, \cdots, \mathbf{e}_{s-1}) \in \{0, 1\}^{s-1}$. $0_{\mathbf{e}_1 \cdots \mathbf{e}_{s-1}} \neq \emptyset$ iff s = 2p-1, p > 1 and in this case $[0_{\mathbf{e}_1 \cdots \mathbf{e}_{2p-2}}] = 2/8^p$. The remaining intervals of the s-step are $\mathbf{R}_{\mathbf{e}_1 \cdots \mathbf{e}_s} = [\sum_{i=1}^{s} \mathbf{e}_i \mathbf{c}_i + \sum_{i=1}^{s} \mathbf{e}_i \mathbf{c}_i + \mathbf{a}_s]$, where $(\mathbf{e}_1, \cdots, \mathbf{e}_s) \in \{0, 1\}^s$. Then $\mathbb{Q} = \lim_{s \to \infty} 2^s \mathbf{e}_s = 1/2$. Let $\mathbb{F}(\mathbf{x}) = \sum_{i=1}^{\infty} \mathbf{e}_{2i}(\mathbf{x})/2^i$, $\mathbf{x} \in \mathbb{Q}$. Extending \mathbb{F} linearly on each interval contiguous to \mathbb{Q} we have \mathbb{F}

(14) $F(R_{e_1...e_{2s}}) = F(Q \cap R_{e_1...e_{2s}}) = \left[\sum_{i=1}^{s} e_{2i}/2^i, \sum_{i=1}^{s} e_{2i}/2^i + \sum_{i=1}^{s} e_{2i}/2^i\right]$

defined and continuous on [0,1]. We have:

1/2^s].

(See fig.1 for the representation of the first two steps in the construction of the graph of F.)

a) Let $a_i' = 1/2^{i+1} + 1/4^{i+1}$, $i \ge 0$, $c_i' = a_{i-1}' - a_i'$, $i \ge 1$, hence $c_i' = 1/2^{i+1} + 3/4^{i+1}$. Let $P = \{x : There exists <math>e_i(x)$ taking on 0

or 1 and $x = \sum e_i(x)c_i$ Clearly P is a symmetric perfect nowhere dense subset of [0, 3/4]. The open intervals deleted in the sstep of the construction of P are $0_{e_1 cdots e_{s-1}}^! = (\sum_{i=1}^{s-1} e_i c_i^! + a_s^!)$ $\sum_{i=1}^{s-1} e_i c_i' + c_s', (e_1, \dots, e_{s-1}) \in \{0,1\}^{s-1} \text{ and the remaining intervals}$ cf the s-step are $R_{e_1 cdots e_s}^i = \left[\sum_{i=1}^{S} e_i c_i^i, \sum_{i=1}^{S} e_i c_i^i + e_s^i\right]$, where $(e_1, \dots, e_s) \in \{0, 1\}^s$, $|P| = \lim_{s \to \infty} 2^s s' = 1/2$. Let $F_1(x) = 1$ $\sum_{i=1}^{\infty} e_{2i}(x)/2^{i} \text{ if } x \in P. \text{ Extending } F_{1} \text{ linearly on each interval}$ contiguous to P, we have F_1 defined and continuous on [0, 3/4](see [5]). If s is odd (resp. even) then F_1 is linear and strictly decreasing (resp. constant) on each $O_{e_1 \dots e_n}^1$. Let $h: P \longrightarrow Q$, h(x)= $h(\sum_{i=1}^{\infty} e_i(x)c_i) = \sum_{i=1}^{\infty} e_i(x)c_i$. Extending h linearly on each interval contiguous to P we have h defined, continuous and increasing on [0, 3/4], h(0) = 0, h(3/4) = 1; h = constant on each $0_{e_1 \cdots e_{s-1}}$ if s is even; $b(P \cap R'_{e_1 \cdots e_s}) = Q \cap R_{e_1 \cdots e_s}$; $h(R_{e_1 \dots e_s}^i) = R_{e_1 \dots e_s}$ we prove that $h \in AC$ on [0, 3/4]. Since h is increasing it suffices to show that $\int_{0}^{2/4} h'(x)dx = 1, \text{ bence}$ $\int_{P} h'(x)dx = |Q|. \text{ The function h is derivable a.e. on P. Let } x_0 \in P.$ be a point at which h is derivable. Then $h'(x_0) = \lim_{n \to \infty} R_{e_1 \dots e_n} / R_{e_1 \dots e_n}$ $|R_{e_1 \dots e_n}'| = 1$, hence $\int_{D} h'(x) dx = |Q|$. Since $F_1(x) = F(h(x))$ and $F_1 \in W$ on P (see Lemma 3 of [5]), by Theorem 6, $F \in W$ on Q. b) Let $y \in [0,1]$. If y is uniquely represented in base 2, y =

 $\sum y_i/2^i$, then $A_y = \{x \in Q : F(x) = y\} = \{x \in Q : e_{2i}(x) = y_i\}$ is a nowhere perfect subset of C. If y has two representations in base 2, $y = \sum y_i/2^i = \sum y_i^i/2^i$ then $A_y = \{x \in Q : F(x) = y\} = \{x \in Q : e_{2i}(x) = y_i\} \cup \{x \in Q : e_{2i}(x) = y_i\}$ is a nonempty perfect subset of Q.

c) By b) it follows that 0 is a derived number for $F_{|Q}$ at $x \in Q$. Let $x_0 \in Q$. Then for each $s \ge 1$ there exist e_1, \dots, e_{2s} such that $x_0 \in Q$. Represent the solution of $e_1 \cdot e_{2s} = 1/2^s$ and $(1/2^s)/a_{2s} \longrightarrow \infty$,

s $\rightarrow \infty$ it follows that $F_{|Q}$ has finite or infinite derivative at no point $\mathbf{x}_0 \in Q$.

d) Let $x_0 \in Q$, and for each $s \ge 1$, let e_1, \dots, e_{2s} such that $x_0 \in Q$

$$\mathbb{R}_{e_1 \cdots e_{2s}}$$
. Then either (i) $\mathbb{F}(\mathbf{x}_0) \in \left[\sum_{i=1}^{s} e_{2i}(\mathbf{x})/2^i, \sum_{i=1}^{s} e_{2i}(\mathbf{x})/2^i + \cdots + \sum_{i=1}^{s} e_{2i}(\mathbf{x})/2^i\right]$

$$1/2^{s+1}$$
] or (ii) $F(x_0)$ [$\sum_{i=1}^{s} e_{2i}(x)/2^{i} + 1/2^{s+1}$, $\sum_{i=1}^{s} e_{2i}(x)/2^{i} + 1/2^{s}$].

Suppose for example (i). Let $\mathbf{E}_{e_1 \dots e_{2s}} = \mathbf{Q} \cap (\mathbf{R}_{e_1 \dots e_{2s}} \cap \mathbf{C})$

$$|R_{e_1...e_{2s}}| \longrightarrow 1/4$$
 and if $y_s \in E_{e_1...e_{2s}}$ then $|F(y_s)-F(x_o)|/a_{2s} > 1/4$

 $(1/2^{S+2})/a_{2S} \longrightarrow \infty$, hence F has a finite approximate derivative at no point $x \in Q$.

e) Let s = 2p-1, $p \ge 1$, then

(15)
$$F(\sum_{i=1}^{s-1} e_i c_i + a_s) - F(\sum_{i=1}^{s-1} e_i c_i + c_s) = F(a_{2p-1}) - F(c_{2p-1})$$
$$= F(\sum_{k=2p}^{s-2} c_k) = 1/2^{p-1}.$$

Theorem 7. There exists a continuous function $f:[0,1] \rightarrow [0,1]$ with the following properties: a) $f \in W$; b) For each $y \in [0,1]$,

 $f^{-1}(y)$ is a nonempty perfect set; c) For each $x \in [0,1]$, f'(x) does not exist (finite or infinite); d) f is approximately derivable at no point $x \in [0,1]$.

Proof. In what follows we use the notations introduced in the proof of Lemma 2. Let $I = [a,b] \subset [0,1]$ and let $b_I : [0,1] \longrightarrow [a,b]$, $b_I(x) = (b-a)x + a$. Let $Q_I = b_I(Q) = a + (b-a)\cdot Q$. It follows that $|Q_I| = (1/2)\cdot (b-a)$, $a,b \in Q_I$ and Q_I is a symmetric perfect nowhere dense subset of [a,b], which can be obtained on [a,b] exactly as Q was obtained on [0,1]. The open intervals deleted in the s-step of the construction of Q_I are $(O_I)_{e_1 \cdots e_{s-1}} = a + (b-a)O_{e_1 \cdots e_{s-1}}$, which are nonempty if and only if s = 2p-1, p > 1. In this case

(16)
$$(c_1)_{e_1 \cdots e_{s-1}} = (b-a) \cdot (2/8^p).$$

The remaining intervals of the s-step are

(17)
$$(R_I)_{e_1 \cdots e_s} = a + (b-a)R_{e_1 \cdots e_s}$$

Let $g_I = F \circ h_I^{-1}$. By Theorem 5, $g_I \in W$ on Q_I . (The graph of g_I is similar to the graph of F, see fig.1) We have:

(18)
$$g_T(a) = 0; g_T(b) = 1; g_T(I) = [0,1]$$
 and

(19)
$$g_{I}(R_{I})_{e_{1}\cdots e_{2s}} = g_{I}(Q_{I}\cap (R_{I})_{e_{1}\cdots e_{2s}}) = \left[\sum_{i=1}^{s} e_{2i}/2^{i}, \sum_{i=1}^{s} e_{2i}/2^{i} + 1/2^{s}\right].$$

By (15), for s = 2p-1, we have

(20)
$$O(g_{I}; (O_{I})_{e_{1} \cdots e_{s-1}}) = 1/2^{p-1}$$
.

Let $Q_1 = Q$. We shall construct a strictly increasing sequence Q_k , $k \ge 2$, of nowhere dense perfect subsets of [0,1] and denote

by $I_n^k = (a_n^k, b_n^k)$, $k \ge 1$, $n \ge 1$, the intervals contiguous to \mathbb{Q}_k with respect to [0,1]. Let $A_n^k = [a_n^k, c_n^k]$, $B_n^k = [c_n^k, b_n^k]$, where c_n^k is the middle point of I_n^k . Then $\mathbb{Q}_k = \mathbb{Q}_{k-1} \cup (\bigcup_{n=1}^{\infty} (\mathbb{Q}_{A_n^k} \cup \mathbb{Q}_{B_n^k}))$. Let $f_1 = F$ on [0,1]. Suppose that $f_{k-1} : [0,1] \longrightarrow [0,1]$, $k \ge 2$ has already been defined and let's define $f_k : [0,1] \longrightarrow [0,1]$ as follows: $f_k(x) = f_{k-1}(x)$, $x \in \mathbb{Q}_{k-1}$; $f_k(x) = f_{k-1}(a_n^{k-1}) + (f_{k-1}(c_n^{k-1}) - f_{k-1}(a_n^{k-1}))$. $g_{A_n^{k-1}}(x)$, $x \in A_n^{k-1}$; $f_k(x) = f_{k-1}(c_n^{k-1}) + (f_{k-1}(b_n^{k-1}) - f_{k-1}(c_n^{k-1}))$.

 $g_{B_n^{k-1}}(x)$, $x \in B_n^{k-1}$. We prove that $\{f_k\}$ is an uniformly convergent sequence of continuous functions on [0,1]. Clearly $f_1 \in \mathcal{C}$ on [0,1]. Suppose that $f_{k-1} \in \mathcal{C}$, $k \ge 2$ on [0,1]. We prove that $f_k \in \mathcal{C}$ on [0,1]. Since $f_k = f_{k-1}$ on Q_{k-1} it follows that $f_k \in \mathcal{C}$ on Q_{k-1} . We have

(21) $f_{k}(a_{n}^{k-1}) = f_{k-1}(a_{n}^{k-1}); f_{k}(c_{n}^{k-1}) = f_{k-1}(c_{n}^{k-1}); f_{k}(b_{n}^{k-1}) = f_{k-1}(b_{n}^{k-1}); f_{k-1}(b_{n}^{k-1}); f_{k-1}(b_{n}^{k-1}) = f_{k-1}(b_{n}^{k-1}); f_{k-1}(b_{n}^{k-1}); f_{k-1}(b_{n}^{k-1}) = f_{k-1}(b_{n}^{k-1}); f_{k-1}(b_{n}^{k-1}); f_{k-1}(b_{n}^{k-1}) = f_{k-1}(b_{n}^{k-1}); f_{k-1}(b_{n}^{k-1}); f_{k-1}(b_{n}^{k-1}) = f_{k-1}(b_{n}^{k-1}); f_{k-1}(b_{n}^{k-1}); f_{k-1}(b_{n}^{k-1}); f_{k-1}(b_{n}^{k-1}); f_{k-1}(b_{n}^{k-1}) = f_{k-1}(b_{n}^{k-1}); f_{k-1}(b_{n}^{k-1}) = f_{k-1}(b_{n}^{k-1}); f_{k-1}(b_{n}^{k-1}); f_{k-1}(b_{n}^{k-1}) = f_{k-1}(b_{n}^{k-1}); f_{k$

(See (18) and the definition of f_k on A_n^{k-1} and B_n^{k-1} .) Also,

(22)
$$f_{k}(A_{n}^{k-1}) = f_{k}(A_{n}^{k-1}) = [f_{k-1}(a_{n}^{k-1}), f_{k-1}(c_{n}^{k-1})]^{\#} \text{ and}$$

$$f_{k}(B_{n}^{k-1}) = f_{k-1}(B_{n}^{k-1}) = [f_{k-1}(c_{n}^{k-1}), f_{k-1}(b_{n}^{k-1})]^{\#},$$

where [x,y] is either [x,y] or [y,x] (see (18)). By (21) and (22) $O(f_k;[a_n^{k-1},b_n^{k-1}]) = O(f_{k-1};[a_n^{k-1},b_n^{k-1}]), \text{ hence } f_k \in \mathcal{C} \text{ on } [0,1].$

Suppose that $|f_{k-1}(a_n^{k-1}) - f_{k-1}(b_n^{k-1})| \le 1/2^{k-2}$, $k \ge 2$ and let's prove that

 $\begin{aligned} & \left|\mathbf{f}_k(\mathbf{a}_n^k) - \mathbf{f}_k(\mathbf{b}_n^k)\right| \leq 1/2^{k-1}. \\ & \text{Let } (\mathbf{a}_n^k, \mathbf{b}_n^k) \text{ be an open interval of } \mathbb{Q}_k. \text{ Then } (\mathbf{a}_n^k, \mathbf{b}_n^k) \text{ is an open} \end{aligned}$

interval either of (i) Q_{k-1} or of (ii) Q_{k-1} , for some natural number p. Suppose (i), then by (21) and (22) it follows that $|f_k(a_n^k) - f_k(b_n^k)| \le |f_{k-1}(A_p^{k-1})| \le |f_{k-1}(a_p^{k-1}) - f_{k-1}(b_p^{k-1})|/2 \le 1/2^{k-1}$. Since $f_k(x) - f_{k-1}(x) = 0$ on $Q_{k-1} \cup (\bigcup \{a_n^{k-1}\})$ (see (20)

and the definition of f_k), by (21), (22) and (23), it follows that

- (24) $|f_k(x) f_{k-1}(x)| \le 1/2^{k-1}$ on [0,1]. Let $f(x) = \lim_{k \to \infty} (f_k(x))$ Then by (24), $f_k \to f$ [unif] on [0,1], hence $f \in \mathcal{C}$ on [0,1].
- a) Since $f_k(x) = f(x)$ on Q_k , by Lemma 2,a) it follows that $f \in W$ on Q_k . Since $|\bigcup Q_k| = 1$, $f \in W$ on [0,1].
- b) Suppose that there exists $y_o \in [0,1]$ such that $E_{y_o} = \{x \in [0,1]: f(x) = y_o\}$ has an isolated point x_o . Since $f(x) = f_k(x)$ on Q_k , by Lemma 2,b) it follows that $x_o \in [0,1] \bigcup_{k=1}^{\infty} Q_k$. Since x_o is isolated, there exists S > 0 such that $(x_o S, x_o + S) \cap E_{y_o} = \{x_o\}$. Let k be a natural number such that $I_{n_k}^k \subset (x_o S, x_o + S)$. We may suppose without loss of generality that $x_c \in A_{n_k}^k$. Let $z_o = g_{A_k}^k (x_o) \in [0,1]$. By Lemma 2,b) $E_{z_o} = \{x \in Q_{n_k}^k : g_{A_n}^k (x) = z_o\}$ is a perfect nonempty set. But $E_{z_o} \subset A_{n_k}^k \subset (x_o S, x_o + S)$ and $f(E_{z_o}) = \{y_o\}$, a contradiction.
- c) If $x_0 \in \bigcup \mathbb{Q}_k$, since $f = f_k$ on \mathbb{Q}_k , by Lemma 2,c) it follows that $f'(x_0)$ does not exist finite or infinite. Let $x_0 \in [0,1]$ $(\bigcup_{k=1}^{\infty})$. Then there exists a sequence of natural numbers $\{n_k\}$, $k \ge 1$, such that $x_0 = \bigcap_{k=1}^{\infty} I_{n_k}^k$ and $I_{n_1}^1 \supset I_{n_2}^2 \supset \dots$ For $\{n_k\}$, $k \ge 1$ there exists a sequence of natural numbers $\{p_k\}$, $k \ge 1$ such that

$$|\mathbf{I}_{\mathbf{n}_{k}}^{k}| = 2/8^{\mathbf{P}_{1}^{+}\cdots^{+}\mathbf{P}_{k}} , |\mathbf{A}_{\mathbf{n}_{k}}^{k}| = |\mathbf{B}_{\mathbf{n}_{k}}^{k}| = 1/8^{\mathbf{P}_{1}^{+}\cdots^{+}\mathbf{P}_{k}} \text{ and } \\ 0(f;\mathbf{I}_{\mathbf{n}_{k}}^{k}) = 2/2^{\mathbf{P}_{1}^{+}\cdots^{+}\mathbf{P}_{k}} , \text{ hence } 0(f;\mathbf{A}_{\mathbf{n}_{k}}^{k}) = 0(f;\mathbf{B}_{\mathbf{n}_{k}}^{k}) = 1/2^{\mathbf{P}_{1}^{+}\cdots^{+}\mathbf{P}_{k}}. \\ \text{Indeed, for } \mathbf{n}_{1} \text{ there exists } \mathbf{p}_{1} \geq 1 \text{ such that } \mathbf{I}_{\mathbf{n}_{1}}^{k} \text{ is an open interval } \\ \text{from the step } 2\mathbf{p}_{1}^{-1} \text{ of the construction of } \mathbf{Q}_{1}, \text{ hence } |\mathbf{I}_{\mathbf{n}_{1}}^{1}| = 2/8^{\mathbf{P}_{1}}. \\ \text{By } (15), \, 0(f;\mathbf{I}_{\mathbf{n}_{1}}^{1}) = |f_{1}(\mathbf{b}_{\mathbf{n}_{1}}^{1}) - f_{1}(\mathbf{s}_{\mathbf{n}_{1}}^{1})| = 1/2^{\mathbf{P}_{1}^{-1}}. \text{ dentinuing, for } \\ \mathbf{n}_{k}, \, k \geq 2 \text{ there exists } \mathbf{p}_{k} \quad 1 \text{ such that } \mathbf{I}_{\mathbf{n}_{k}}^{k} \text{ is an open interval } \\ \text{from the step } 2\mathbf{p}_{k}^{-1} \text{ of the construction of } \mathbf{Q}_{\mathbf{A}_{k-1}}^{k-1} \quad (\text{resp. } \mathbf{Q}_{\mathbf{B}_{k-1}}^{k-1}) \text{ for } \\ \mathbf{n}_{k-1}^{k-1} \quad \mathbf{P}_{\mathbf{n}_{k-1}}^{k-1} \quad \mathbf{P}_{\mathbf{n}_{k-1}}^{k-1} \quad (2/8^{\mathbf{P}_{k}}) = 2/8^{\mathbf{P}_{1}^{k-1}} \quad \mathbf{P}_{\mathbf{n}_{k-1}}^{k-1} \quad$$

natural number such that $|\mathbf{t}_0| < 4^{\mathbf{k}-1}$; $|\mathbf{E}_{\mathbf{x}_0} \cap \mathbf{J}|/|\mathbf{J}| > 5/32$ for each interval J with $\mathbf{x}_0 \in \mathbf{J}$, $|\mathbf{J}| \leq 1/8$ $p_1 + \cdots + p_k$ and $|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)| < 4^{\mathbf{k}-1} \cdot |\mathbf{x} - \mathbf{x}_0|$, for $\mathbf{x} \in \mathbf{E}_{\mathbf{x}_0} \cap \mathbf{J}$. We may suppose without loss of generality that $\mathbf{x}_0 \in \mathbf{A}_{n_k}^k$. By (19), either (i) $\mathbf{g}_{\mathbf{A}_{n_k}^k}(\mathbf{x}_0) \in [0, 1/2]$

or (ii) $g_{A_{n_k}^k}(x_o) \in [1/2, 1]$. Suppose for example (i). Let $H_k = A_{n_k}^k$ $A_{n_k}^k$ $A_{n_k}^k$

We are indebted to Professor Solomon Marcus for his help. in preparing this article.

References

diction.

- [1] Bary, N.: Mémoire sur la représentation finie des fonctions continues. Math. Ann., 103 (1930), 185-248 and 598-653.
- [2] Bruckner, A.M.: Differentiation of Real Functions. Lecture
 Notes in Mathematics, 659, Springer-Verlag, New York (1978).
- [3] Cater, F.S.: On nondifferentiable wrinkled functions. Real Analysis Exchange, 14 (1988-89), 175-188.
- [4] Ene,G. and Ene,V.: Nonabsolutely Convergent Integrals. Real Analysis Exchange, 11 (1985-86), 121-135.
- [5] Ene, V.: Construction of a wrinkled function. Real Analysis Exchange, 14 (1988-89), 224-227.

- [6] Ene, V.: A study of Foran's conditions A(N) and B(N) and his class F. Real Analysis Exchange, 10(1985), 194-211.
- [7] Foran, J.: An extension of the Denjoy integral. Proc. Amer. Math. Soc., 49 (1975), 359-365.
- [8] Foran, J.: A Generalization of Absolute Continuity. Real Analysis Exchange, 5 (1979-80), 82-91.
- [9] Foren, J.: Continuous functions. Real Analysis Exchange, 2 (1977), 85-103.
- [10] Foran, J.: On continuous functions with graphs of V-finite linear measure. Proc. Cambridge Philos. Soc. . 76(1974). 33-43.
- [11] Foran, J.: Differentiation and Lusin's Condition (N). Real Analysis Exchange, 3 (1977-78), 34-37.
- [12] Lee, C.M.: Some Hausdorff variants of absolute continuity,
 Banach's condition (S) and Lusin's condition (N), Real
 Analysis Exchange, 13 (1988), 404-419.
- [13] Saks,S.: Theory of the integral. 2nd rev.ed. Monografie Matematyczne, 7 (1937), PWN, Warsaw.

Received 16 January, 1989