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 Finite Representation of Continuous Functions. Nina Barb's

 Wrinkled Functions and Foran's Condition M .

 In [l](PP* 222;229;237;611) , Nina Bary shows the following-

 chain of inclusions: quasi-derivable ^ S + <£ = S + S ♦ S t
 for continuous functions on [o,l3.

 It can be shown that above, Banach's condition S can be

 replaced by Gli(l)0 where GE(1) is defined using condition

 E( 1) of [6].

 In our paper we define conditions GAC#D^ Ģļ GAC#D^ c GS( 1)011
 for continuous functions on [o,l3, with which we improve the above

 results. (Following Nina Bary's proof of [l] ,p.222, conditions

 GAC#Dļ and GIO^D^ are very natural.)
 To prove that 3 ♦ S / , Nina Bary introduced the wrinkled

 functions W (she called them "fonctions ridées" , [l] ,p. 236) and

 showed that W ¿ ÇS (see the example of [l] , pp. 241-2 48; see also

 [5] or [3]) and Wf'(N ♦ quasi-derivable) s Ģf (see [ļ],p#237),

 hence 7/0 (N + N) s 0, for continuous functions on ¡0 , X] •

 In our paper we give characterizations of the wrinkled

 functions which show that between Foran's condition M (introduced

 in I979 in [Õ' ) and these functions there is a very close
 relationship. So we improve Nina Bary's results on wrinkled

 functions. Finally we construct a wrinkled function which is

 approximately derivable at no point of [o,l] and for which each
 level set is perfect.
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 Let s [F : F :s continuous}. Banac.b's conditions T^, Tg,
 3, Lusin's condition N and conditions V3#, VB, AC#, AO, VBG#, VBTi,

 ACG#, AGG are defined in [13] ; E(N) and "t in [ô] •

 Definition l.( fil .p. 236). Let Ç be a measurable real set and

 let fíQ - >R. f is a wrinkled function, f fc W, if for every Measur-

 able subset ACQ, 'a' > O, f is monotone on some B Cl, «bere ' b' s
 0, f(3) is measurable and |f(3)| > 0. (Without loss of generality

 ri may be supposed to be perfect, since a measurable set is tbe

 union of a i^-set and a null set.)

 Definition 2.( Til .p. 178). A continuous function fi[o,l] - »R
 is qr a si-derivable if on eacb interval f*(x) exists and is finite

 at every point x of a set which has positive measure.

 Definition 3.( 1"8~1 ). A continuous function fulfils Foran's

 condition M if it is AC on any set on «hieb it is VB.

 Definition 4. ( [12Ö ,p.406). A function f is D^ (resp. D^) on

 a set E if for every e > 0 there exists a sequence ļlj,} of
 nonover lapping closed (resp. of open) intervals which covers S

 and 2o(f;EOIi)< í (resp. 2o(f;Ii)-c6 ).

 A function f is 3^(1,1) on B if f eD^ on Z, whenever ZCE, [z| =0.

 Remark 1. a) In [l¿0 , Lee calls condition D^, D-^(l) and he

 shows that E^(l,l) and E(l) (see [è]) are equivalent (see 1l2' ,
 Remarle 14,p.416). Another condition which is equivalent with

 E(l) is given by Iseki (see ÖL2] , pp. 415-4-16).

 b) Clearly Dj C Dr

 Definition 5.( [12], p. 416). For a function property P (resp.

 for function properties P^ and Pg) on sets we say that a function
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 f is generalized P (resp. generalized PjP ^ ) on E, writing feGP

 (resp. f ^GPjI^) on E, if E can be written as the union of

 countably »any sets on each of which f is P (resp. f is Pļ or f

 is Tkus we b®ve properties like GD* $ GD^ ; GA0#Dļ ; GAC^D^;
 GE(1).

 Remark 2. a) GD^ s D' on ą set.

 b) If f 6Dļ on a set E then |f(E)| = O and f6l(l) gn *• Hence,
 if f € GD^ oņ E then |f(E)| =0 and f £ GE(1) on g»

 c ) If f is a Darboux function and f £ GD^ on an interval then f is
 a constant «

 d ) Let f be a nonconstant continuous function on [O , l] • If A is a

 cou ntable dense subset of [0,1] then f 4- D* on [p , l] and f € on ;.

 e) -tfrtGAC^D^c Tļ oņ aņ interval (see [I3] , Theorem 7. 2. p. 230.
 Theorem 6. 2. p. 278 and Remark 2,b)).

 Remark 3. For continuous functions on [p,l] , we have :

 tf N lá quasi-derivable S+S quasi-derivable
 (6) (7)

 ♦ quasi-<3erivable s = S+S+3.

 Proof. For (1) see [6], p. 208; for (2) see [8] ,p.8# ; for (3)

 see [8] ,p.87; for (4) see [1] ,p .222, p. 229; for (6) see [l],p.599>

 hence (5) follows by (6) and [l] ,p.227; for (7) see [l],p.611.

 Proposition 1. For continuous functions on [0,l] we have:

 ♦ (1) (2) , ^ C3) „ (*)
 GA0#DÍ ♦ $ GAO#Dx GE(l)OT1 , ^ c -£n*i „ ¿ S.

 Proof . For (3), see the definitions and for (4) see [6], p.

 208. Clearly GAO#Dj C GAO^C GE(l)OT1 (see Remarle 2, e)). It
 remains to show that (1) is strict. Let 0 be the Oaator ternary

 set and let Ý be the Cantor ternary function. Let {i^i, n =
 Lr«.l

 1,2,..., 2 be the open intervals excluded at the step k in the
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 le fc
 Cantor ternary process. Let cn be the middle point of In. Let

 f t [o,i] - »R, f(x) s O, x € C« f(cļj) = l/2k. Extending f linearly,

 we have f defined and continuous on [o,l] • Clearly f e GAC^D^ on

 ļb,l] ,and f € ACG# on [0,l]- C« Suppose that f£GAC#D* on C. Tben

 there exists a sequence of sets (E^ such that C = U®n an^ either
 f e AC# on 2n or f e on EQ. Let p be a natural number such that f
 is AO on 5 . Since f € tf it follows that f is AC on E . We prove
 ' F * r

 that f êD* on Ep. .bet g. > O and let & be sriven by the fact that
 f £ AC en 1 . Since f e 'C and J E ļ = O we can cover E with a
 ' r ť r

 sequence of nonover lapping- intervals {ln} such that 2|*n I * ^ sn^

 SO(f;IQ) <■ č • Hence f€Dļ on E^ . It follows that f €.GD£ on C,
 hence f € d£ on 0. We show that f^D^ on C. Let OC U (a^,b^).

 For each i let be the greatest excluded open interval (in the

 Cantor ternary process) contained in [?ļ»bļ] , where aļ s

 Inf ( (a^,b^)0 C) and bļ = sup( (a^,b^)n C). Suppose that is
 excluded at the step 1c. Tben

 i °° i 4 ir
 J« 1 = ( 2 C4/3 1 i * 2 2/31 i , 2 Ci/31 1 4 * 2/3 ir )• Let 1 i=l 1 i=k:+l , i=l 1

 k~l

 J{ 1 = [2 Ci/31 1 , 2 Ci/31 1 ♦ 2 2/31]. Then [aļ,bj]c 1 x J[ 1 , 1 i=l 1 , i=l 1 i=k 1 x 1

 hence CC UJļ. v;e bave OCf;^) = 0(f;Jļ) = ļ*4>(Jļ)| = l/2k ,

 [0,1] = <P(C)C U<f(J1), 1 hence 2 OCf^b,)) 11 ^ 2 0(fíJt) x = 1 i=l 11 i,.l x
 «o

 2 lf(JJ)| 1 ^ 1 and f ČDÍ L on C. i=l 1 L

 Theoreta 1. Let F: [o,l] - »H, F €. "6 O quasi-derivable. Let

 a >0, 0¿P<Z ļO , l] be a perfect nowhere dense set and let D s

 {xê [0,1]- P : F is derivable ąt xļ, Then -fe er e exist a set Ç of
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 Fr-type. QCD, ļQ I = |D| and two continuous functions f^ and f2

 such that: a) F(x) = fŁ(x) + f2(x) ££ [P»l] ? b) fļ»f2feDi ££ 3?

 = [o,l]- Q i c) fpf2€ACG# on Q ? d) |f2(x)| ¿ 3« on [°»3
 f2(0) = f2(l) = 0.

 Proof. Let P^ be a perfect nowhere dense subset of D, ļP^ļ >0.

 We shall construct a strictly increasing sequence {P^J , t = 2,3»» •»

 of nowhere dense perfect subsets of D such that P^- P^ ^ is a
 - k- 1

 nowhere dense subset of positive measure in each IQ and |Q| s

 |D| , where 1^ are the intervals contiguous to P^, k = 2,3,... and

 Q = U Pu. Let gn»[0,l] A - »Ä be a continuous function such that: k=l A

 g--^(x) = F (x) on P^i is a bounded derived number on each I*; g^
 P Ti 1 ļ

 is constant on each IQ ; ļh^(x)| < a/2 Ti + on each In , where b^(x)

 = F(x) - g]_(x). The existence of g^ follows "by [l] , pp. 222-224.

 Since hļ = 0 onP, by [ljl (Theorem 8.5»p»232), it follows that h^

 e AC# onP^. By [l^ļ (Theorem I0.5tp»235), F£ACG# on P2. Clearly

 gļ e AC^ on each Ijļ. Since g^ = F- hļ it follows that g^€ AC^ on

 hence g^c ACG# on (0,1] • Since F£ACG+ on P2 it follows that bj£
 2

 AOG# on P2. Since b^- F is constant on each In, it follows that

 b^ is derivable on D- P2. Replacing F by b^ we construct a con-

 tinuous function g2, analogously to the construction of g^, such

 that g2 s on P2, g2 is AOG# on [0,l] , g2 is constant on each
 interval 1^ and |b2(x)] a /2°*^ on each 1^ , where h2(x) s h^(x)

 - g2(x)» Then b2(x) = 0 on P2; h2 is AOG# on P b2 is derivable
 «

 on D- P^; |b2(x)| d a/2 on [o,l] • Continuing in this way we
 obtain two sequences of continuous functions (Sil. S*l5. 1 * 2.5. "
 such that i

 A. g^ = b^_2 od Pļj gA e ACG# on [0,ī] ; g^ is constant on each
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 jl+l , łn • ,

 B. bt = 0 on P^; ļbjCac)! < a/2n+i on I J; biCàOG^ on Pļ+1 ;

 bļ = bi-i" &± is derivable on D- Pļ+1 .

 Clearly

 (1) lbi(x)| <¿8/2* on [0,1] •
 Then we have F(x) = g^(x) ♦ ... + for each natural

 O*

 number n and by (1), ^2 gj_(x) converges uniforaly to F(x). Let

 Fļ(x) = 2^ ggi.iC*) » F2(X) = 2 P2i^x^ ; ^ (hļ(x) -
 b^+ļ(x)). Then F^,F2€ on [o,l] and F(x) = F^(x) + FgCx).
 We bave

 k

 (2) Fx(x) s 2^ É^i-l^ * 32k^x) ;
 k

 (3) F2(x) S ^2^ + ^2k+l^x^ *

 W R±(x) s0ODPļ «

 (5) 2 0(a,ilb 1 n < a/21"2 . Osi 1 n

 By (4), (5) and [l 3] (Theorem 8.5,p.232) it follows that

 (6) H^(x) is AC# on P¿ .
 k Olr

 Since 2 ß2i-l^x^ cons^an^ on ©®cb In , it follows that

 (7) OCFļiln") » 0(R2fcîInk).
 By A., (2) and (6), it follows tbat F^ is A0G# on ?2fc° ®011ce

 OO

 is ACG^ on Q s U P4 1 • Analogously F5 ¿ is AGG., * on Q« Moreover, * i=l 1 • ¿ *

 (8) |F2C3c) I « |Ri(x)| < S 'bt(x)l ^ a.

 450



 2k
 Let £ >0 and let k be a natural number sucb that a/2 ^ g .

 Then Qc c Ü an<^ by (5) and (7) it follows that
 n=l

 5 OCFļīI^2) < a/22k< e , bence F, is DÍ on Qc. Analogously,
 n=l

 ?2 is on Therefore we obtain: F s on ÏP » '1 • ^l»^
 are Dj on ^cj *i»F2 8re A0G# on lF2^x^ ^ • on ļp,ļ]» Let

 X

 H(x) = F2(0) * ((F2(l)-F2(0))/|P1l ) J %Ł(t)dt , ubere is tbe

 characteristic function of P1# Clearly H is AO on [o,l] ; |H(x)'

 4 2a ; E is constant on each I*. Let f 2 = F2 - H and f ^ s ♦ H
 on [0,1] •

 Corollary 1. Let a > 0 and let P be a perfect nowhere dense

 suhset cf [0,1] • Let F: [j?,l] - >R, Fcď • Then there exist two

 continuous functions Fļ,F2 on Jo,l] such that : a) F = F^ ♦ F2 on

 [0,1] ? b) F2€ DJ on P and F^ Dx on P ? c) F2(0) = F2(l) = 0 '♦
 d) |F2(x)| -c a on [0,1] •

 Proof « Let f:[o,l] - *R be a continuous function defined as

 follows: f(x) = P(x), X e p u (0 , lì ; f is linear on the closure

 of each interval contiguous to PC [o,¿ . By Theorem 1, f = ^1*^2

 on [0,1] ; on t0*^ * fi»f2eDl 011 ř * f2(C) = f2(1) = 0;
 lf2(x)l < a on [0,1] . Let F2 = f2 and F^ = F - f2. Then F^ = f^
 on P, bence F^e on P.

 Corollary 2. Let a > 0 and let P be a perfect nowhere dense

 subset of [0,1] • Let F: [0,1] - *3, Fe~g • Then there exists a

 perfect nowhere dense set ą DP such that %- P is a perfect

 nowhere dense set of positive measure in each interval contiguous

 to P and there exist two continuous functions F-^.Fo on [o,l] such
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 that : a) F = F^ + F2 on [p , ī] ; b) ?ļ»F2 € on P ; F^ is AO on each
 interval contiguous to P ; is constant on «acb interval contiguous

 to Ç; c) F2(0) = F2(l) = O ; d) lF2(x)l < a on [o,l] .

 Proof. By Corollary 1, for a/2, tbere exist two continuous

 functions 2 0D IP»tì tbati a1) F s f]+*2 on [p»l] f b') f2
 on P and f^e onP; c') f2(0) = *2(1) =0 ; d') ļf2(x)ļ <. a/2

 on [0,lļ. Let [ln^ be the intervals contiguous to P witb respect to
 ¡0,1] • For eacb natural number n tbere exists a perfect nowhere

 dense subset ^ of IQ, 1^1 >0 and a continuous function F^ on
 [0,1] sucb that: Fx(x) = fx(x) on F ; Fx(0) = F(0); Fx(l) = F(l);
 Fļ€AC on each IQ; F^ is constant on each interval contiguous to

 Qjj witb respect to IQ; |F2(x)| a on [0,1] , where F2(x) = F(x) -
 Fļ(x). These follow by [l] , p. 609-611 (if we put In = £n; f^ = ;
 f2 = W ; Fļ 5 Ý î ^ = f ; a/2 = £/2). By a») and c') it follows
 that Pļ(x) = fļ(x) on PU {0,1], hence F2(x) = f2(x) on PU 10,1) .
 It follows that F2(0) =. F2(l) = 0 and by b'), F1,F2£D1 on P.

 Remark 4. a) Theorem 1 extends Nina Bary's theorem of [l] ,

 p. 222 and Corollary 1 extends Nina Bary's theorem of [l],p«603

 ( instead of condition "ļFļ(P)ļ s ļF2(F)| = 0" we put condition b)).
 b) Corollary 2 is an extension of Kina Bary's Corollary of [1],
 p «609«

 Remark 5« For continuous functions on [0,1] we bave :

 quasi-derivable c GAC#d£ ♦ GAC^D^ ç GAC#D^ + GAC#D^ Q S + S
 (see Theorem 1 and Proposition 1). We don't know if tbe inclusions

 are strict.

 Proposition 2> For continuous functions on [0,í] wg h8"** »

 quasi-clerivable ^GAC^D^ * GAC^D^.
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 Proof. The inclusion follows by Remark 5* To prove tbat the

 inclusion is strict we shall construct two continuous functions

 f,g:ļO,lļ - »[0,Í1 such that f,g€GAO#D^ and f+g is not derivable

 a.e. on [o,l] • Then f+g is not quasi-derivable on [o,lJ • Let P^
 be a perfect nowhere dense subset of [0,l] , symmetrical with

 respect to 1/2 such tbat 0,16 and ļP^ļ = 1/2. We shall construct

 s strictly increasing sequence of subsets of [0,1] , Pk, k»2. Let
 k k k
 IQ = (an»bn) the intervals contiguous to P^ with respect to
 [o,l]. Suppose that Pļ,...,Pķ have been defined and let's define

 lr - Lr

 pk+l* Pn a Per^ec<t oowhere dense subset of IQ such tbat

 an»bn€Pn » |pn' = lIn,/2 and Fn is symmetrical with respect to

 c£ = (a£ + b£)/2. TbenPk+1 = PkUU3p£) » PkUSk+1. By [ļ] ,pp.

 229-230 (for ê s l£, Q = p£ and £ = l/2n+k), there exists a
 continuous function f^jfOjlJ - ► [O, l/2k] with the following

 properties; ffc(x) s 0 on Pfc; f^ is AGG on each I^t lfk(x)| ł/2n*Ic
 t lr lr . ļ

 on In{ f^Cx) s 0 on Pqî ffc is AC on Itt » f¿ is constant on each

 l£*2; fk is not derivable on p£. Let A = PXU ( U S21*1) t B =

 U s2i ; E = [0,1] - (AUB) = [0,l] - ( U p.). 1 Then lAUBl = 1. i=l i=l 1

 Let f(x) s 2 fp. ¿li ļ(x) and g(x) = 2 fpj(x). Olear ly f, g and i=l ¿li i=l

 f+g are continuous on lp,l] • It follows tbat: a) f is ACG# on A
 and f is not derivable 8.e. on B; b) g is ACG# on B and g is not
 derivable a.e. on A; c) f£GD^ on B; feDj on I; geGD^ on A; gc
 d£ on S. By a) and b), f+g is not derivable a*a* on [0,1]* By a)

 and c), f € GAC#Dļ on [0,1] and by b) and c), géGAO^D^ on [0,1].

 We prove only the part with f. Let a2k+l^x^ s ^ *2i+l^* Tben
 is k
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 k

 f(x) s: S ^2k+l^x^# bave

 (3) R2k+1^ = 0 cnP2k+l and

 (10) ¿I 0(a2^1iInt+1) < 1/22k_1 •

 hence, by [l3ļ (Theorem 8#5»p«232) ,

 R2k+1 is AC# onP2k+l*

 k 2k 1
 .¿ince ^2i-l^x^ *s cons'tan,*:; cn e®cb , it follows that

 (12) o(f¡i^+1) = o(a2K+1ii2lc+1).
 By (9), it follows tbat

 k

 (13) f (x) = S f2i-l^x) on P2k+1*

 a) Since f(x) = R^Cx) on [o,3» f € AC^ on Pļ# Since fx,f3*# •#*f2k-l
 2k k

 are AC . on each I_ 2k , it follows tbat 2 f0. , (x) is kO^ cn eacb
 # *•* i- X #

 P^k. By (11), f is AC# on eacb Pjļk. Therefore f is AOG# on S2k+1.
 k-1 p. "* ļ

 Since f2i-l^x^ c0110*811* cn each "* , ^k-l *s 00 ^
 2 k- 1

 derivable on PQ and Rgk+l âer*vable 8*e. on ř2k+l* I-t
 2k

 follows tbat f is net derivable a.e. on 3 •

 2 k- 1
 c) Let E > O and let k be a natural number such tbat 1/2 <: 6 •

 Since EC U a » by (10) and (12), it follows that n=l a
 O* O lr 1 fc^l
 2 0(f;I„ n lr )< C , hence f £ Dt 1 on S. Since S t9i ¿li i(x) is n=l n , 1 i=l ¿li

 constant on eacb and ^k-l^3^ = 0 on ®®cb P^0"^, it follows
 tbat f is constant on eacb P^"*, bence f€D^ on Tbua t fe GD^
 on B.
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 Using Corollary 2 instead of Nina Bary 's Corollary [1] ,p.

 609, the following theorem can be proved:

 T bear em 2. (An extension of tbe t be orem of p.] ,p.611).

 •C = GAC^Dļ + GAC#Dļ + GAC^Dj. ^or continuous fonctions on ļp , lļ •

 äemark 6. %e don't know if Theorem 2 remains true if GAC.D-, ■ + I

 is replaced by GAC#D^ .

 Theorem 3. (An extension of tbe theorem of [1] ,P»237)« Let

 P be a perfect set. P C ļo , l] , |p | >0 and let F :P - ► 1Ó , 1] • If F
 e W r'"€ then F cannot be written as tbe sum of two continuous

 functions F^ and Fg such tbat F^e M and Fg is approximately
 diff erentiable on a set of positive measure. Hence W n (i'; + M) = 0

 for continuous functions on [0,1] ( s pe Remark 3).

 Proof. Suppose that there exists a set EcP of positive

 measure such tbat F2 is approximately differentiate on E. By
 [13J (Theorem 10. 14, p. 239) is ACG on E. Since F€W there exists

 SļCB, ļEļ| = 0 such tbat F(E^) is measurable, |F(E^)l > 0 and F
 is monotone on E^. Then F^ = F-Fg is VBG cn E^. Since F^€ iL. , F^ć

 ACG on Eļ. Hence ffj+Fg is ACG on E^ and |F(E^)| = 0, a
 contradiction.

 Remark 7. If P is a perfect nowhere dense set of posit ive

 measure. P Q [o ,l] then there exists a continuous function in
 on P wbicb is approximately diff erentiable on no set of positive

 measure (see Theorem 1 and Theorem 3").

 Corollary 3. Let F :P £ [o , l]

 a measurable set of positive measure. Then F i¿ approximately

 diff erentiable on no set of positive measure.
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 The cr em 4« a) Let Fi [o,l] - »R, Fe if and let P S ļb,ĪJ be a

 measurable set, |Pl > 0. Then P e W on P if and only If Fe M on

 no closed subset Q of P , I Q I > 0 •

 b) Let f tS - »R, f 6 ~€ , where 3 c[o,l] is a measurable set. Then
 f c a if and only if for ever? subset Acs of positive measure,

 f is strictly monotone on some perfect subset B C A such that

 ļf (3)| > 0 and | B I = 0.

 Proof, a) "=s£" Let Q be a closed subset of positive measure

 of P, Since F £ W on P it follows that there exists Q, ss

 0 such that F is monotone on Qlt F(Q^) is measurable and |F(Qļ)|
 >■0, hence F^li on

 "<ar" Let A be a perfect subset of P of positive measure. Since
 X

 F^is on A, by Theorem 1 of [8] (p, 83), it follows that there exists

 Be a such that F is monotone on B and F 4- AO on B, Since F fciT , F

 is monotone on B, We prove that |Bļ s 0, hence F(B) is measurable

 and |F(B)| > 0, Suppose that |F(B)ļ = 0 then F £ t?07 BAN on*B
 and by Theorem 6,7 of [l3](p,227), Fe AO on B, hence F CAO on B,
 a contradiction. Suppose that | B | > 0 then F is approximately

 differentiable on a measurable set ECB, iBļ = ļS', hence F e AGG

 on S, It follows that there exists a closed set Q, QcB, |Ql>0

 such that F € AOG c Ł1 on Q, a contradiction,

 b) " =>" is evident,

 "£=r " Let A be a perfect subset of S, 'A| >0, Since f feW, there

 exists B^ C A, jBjJ = 0, *s monotone, f(B^) is measurable

 and ļf(B^)] > 0, We prove that JBjJ = 0, Suppose that |"BjJ >0 .

 Since f e-č , fj-g is monotone. Hence f is approximately derivable

 a.e, on*Bļ, a contradiction (see Oorollary 3)« Let 0 = ^yef(Bļ) s
 fÄl(y) (' Bļ contains more than one point}. Then 0 is countable,
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 Suppose Z - [71*^2* •••!• *** £ ^ ' f ( ) ( )/4, an = inf^O
 f""^(yn)), bQ = sup(B^n f"'1(yn) ) . Since fe-ć it follows that

 th=rs exist &n > O such that f (3^ 0 (aQ- $Q, bn+ £Q))C

 (jn- f/2n+1, yn* f/2n+1 ) . let ? = U (an- <Q, bQ+ *n). Hence

 'f (Bļf'G)ļ ¿ £ . Let B be the set of points of accumulation of the

 cl-sed set B^- G. Then 3 is a perfect subset of 1, 1B' = 0, fļg
 is strictly monotone, f(B) is a compact set (since ferf ) and

 'f(B)ļ > C3/^) |f (Bx)l >0.

 Letama 1. Let A be j perfect subset of [0 , lj , ļ A ' > 0 and

 let f : A - > R , f e t? • Let B r [x c A i f is approximately

 d if ferentiable at x and f¿p(x) > o}. If E bas positive measure
 then there exists a perfect subset B of E, ļBļ = 0 , such that

 f I b ~ strictly increasing •

 Procf « That S is measurable follsv.s by 0L33»P»299* -Let Bn =

 [x6ï i O < b 1/n implies |{t : l/n ¿.(f (t)-f (x))/(t-x) , 0<-
 't-xļ <h}' > C3A)-2h}. Let Sin = *nn[i/n, (i+l)/n] for each

 natural number i. Then 5 = U U Sļn- Let p,j such that ļEpjļ>0.
 If x¿y, x,yeEpj then f(y)-f(x) > (1/p) (y-x) . Since f e tf it
 follows that f(y)-f(x) ^ (1/p) (y-x) , far xcy, x,yeSp^. Let 3
 be a perfect subset of positive measure of "ĪL-ī» Then f is strictly

 P U

 increasing on B.

 Theorem 5» Let P bęą perfect subset of [0,lj , lP| > 0. .uet

 F:P- »[0,1], F € Wrvď ; g:P- >Q, g(P) = Qi g€if J fiq- *[p,l]

 and Dap s [x£^ i f is approximately differ entiable at x} • If

 F = fog, f€t? and |f(Q- Dap)| = 0 then g€W.

 Proof . The proof is similar with that of [l] (Theorem of p.

 238), using Lemma 1 instead of the lemma of Ll] » p*239.

 457



 Let A be a perfect subset of P, 'Aļ > 0. Since Few, by Theorem

 4,b), there exists a perfect subset B of A, |B| = 0, such that

 Fļg is strictly monotone and lF(B)ļ > 0. Let B* = g(B). By [13]

 (Theorem 10.14, p .239) « it follows that f£AOG on Dap« Since

 lf(Ç- ^ap^l = 0 it follows that f 6 N on Q, hence | B*J > 0« Indeed,
 if 1B* 1 = 0 then |F(B)1 s'f(B')1 = 0, a contradiction. Let DQ ss

 {xeQ : f¿p(x) = o}. By [l 3] (Lemma 9. 2, p. 290), it follows that
 ļf(DQ)| s 0, hence Bf- DQ is measurable and ļBf- DQ| > 0 (if

 ļB* - D0ļ s 0 then 'F(B)ļ s 0, a contradiction). It follows that B'

 contains a subset "BCD^ of positive measure where f¿p doBs.not

 change the sign. Suppose that f¿p(x)> 0, for each x€E. By
 Lemma 1 there exists a perfect subset C' of E, |0'l > C, such that

 f ļ Q , is strictly increasing. Let 0 = g""^(C')» Since F is strictly
 monotone on C, it follows that g is strictly monotone on C, |0| =

 0 and ļg(C)' = ļC'ļ > 0, hence g€.W.

 Jłemark 8. Theorem 5 is an extension of the theorem of [lļ,

 p.238 (there, f e AC).

 Theorem 6. Let P Q [0,l] be a perfect set. ļPl > 0. Let

 Ftf- *[0,l]s giP-»Q <=(p,lj, <4 = g(P)i t<i|>Oi f «<5 - »[0,1] and

 let Dflp = £x e p i gis approximately differentiable at xj . If
 F = fog, F,g,f €tf , F £ W and ļg(P- Dap)ļ - 0 then f e W.

 Proof. Let 1 be a perfect subset of Q, 'A ' > 0. Let A^ s

 g~*(A), then A^ is a closed subset of P. But g is AGG on P, hence

 g satisfies Lusin's condition K on P. It follow» tbat lA^ļ >0.

 Since 'a' > 0, D0 s {x£P i g«p(x) = O] , |g(DQ)| « 0 and |g(P-Dap)|
 = 0, it follows that A^O Dap contains a subset I of positive
 measure where f¿p doesn't change the sign. Suppose that f¿p(x) > 0
 for all xe"S. By Lemma 1 it follows that there exists a perfect
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 subset G àf 5, (Cl > O sueb that gj^ Is strictly increasing. ?£W
 implies that tbere exists a perfect subset B of 0 sucb that 'Bl s

 O, PļB is strictly monotone and lF(B)ļ > 0. Let B^ = g(B) c A.

 Since g is AOG on Dap it follows tbat |b¿1 s 0* Since gjB is
 strictly increasing and Fjb is strictly monotone it follows tbat
 f [ is strictly monotone and |f(BŁ)| = |f(g(B))| « |F(B)| > 0,

 bence f € W on Q«

 Definition 6« Let F:[0,lj - »fi, F e *6 » ? Is said to be W* if
 for every subinterval I of [o,íl , tbere exists a perfect subset P

 of I, |P J s 0, Fļp - monotone, sucb tbat |F(P)1 > 0« Clearly WCW*.

 Remark 9. By Corollary 2 of 6] (p. 213), « typical continuous

 function f » (p,l3 - does not bave finite or infinite derivative

 at any point. By [83 (Theorem 3»P*87), if f is a continuous func-

 tion on I c [p,jQ and if {xel t f'(x) exists} bas measure 0 tben
 tbere is a perfect set P, ļP| =0 such tbat f is increasing on P

 and |f (P )ļ > 0 • Hence a typical .continuous function is W* • Is W

 typical for continuous functions on [Ò,lJ ?

 Remark 10» Tbere exists a fune ti on ge W* - W. By OloJ (Example

 2, p. 41), tbere exists a continuous function g defined on [o,l]

 whose graph bas V - finite Hausdorff length and such tbat g is

 nowhere diff erentiable but has approximate derivative 0 almost

 everywhere (g will satisfy condition T^). Since the set E = {x :
 g'(x) s +00} bas measure 0 (see [13] , Theorem 4.4, p. 270), by [8]
 (Theorem 3»P*&7)* it follows tbat geW*« By Corollary 3* E

 Lemma 2« Tbere exist a continuous function I: tptl] - * [p»l]

 and a symmetric perfect nowhere dense subset Q of [0,1] , 0,1 £ Q,

 |q ļ s 1/2, such tbat : a) F e W on P; b) For each y € [0,11 , Q O

 F~*(y) is a nonempty perfect subset of Q; c) Fj^ bas finite or
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 infinite derivative at no peint xt Ç; d) Fj ^ bas finite
 appr oximate derivative at no point x 6 Q; e) F is linear and

 str ict lv decreasing on each interval contiguous to Q.

 k i
 Proof, We sball define the set Let a2¿ * (1 - 2 1/2 k )/4

 k=2

 s 1/(2* A- ) + 1/(2*8 ), i>0; ®2i»l = ^82i* * ®i»l ®i •
 °* i i

 i» 1« Then ap¿ - - 2 K , cpj -t 1 - 1/4- i ♦ 3/8 i t k=2i+l K , 1
 o©

 Sd-î i=2 cir* Let Q = £* î There exists e.»(x) taking on 0 or 1
 fc=2i

 and X = 2 e^(x)Cļ][. The open intervals deleted in the s-step of
 s-1 s-1

 the construction of Q are Ca 0 =• ( 2 e*c* 11 + a_, S e.,c4 1 1 + c_), 8 el,##es-l 0 i=l 11 8 i=l 1 1 8

 (ei,...eg-i)€ ÍP.1I-1. 0e ##<Ģ 4 0 iff s = 2p-l, p>l and in 1 ##<Ģ S-1

 this case lO- 0 J = 2/8^. The remaining intervals of the s-
 I-* 2p-2

 S s

 step are *ei...es * C^0!6! • * as^ ' *here

 fO,l}8. Then Ç, = lim 2sag =. 1/2. Let F(x) = 2 e2i(x)/2, xeQ.
 s - ►©• i=l

 Extending F linearly on each interval contiguous to Q we have F

 defined and continuous on [0,1] • We have:

 <"> = F«<nRer..e2s) » [¿«ai/S1. *
 1/2S] .

 (See fig.l for the representation of the first two steps in the

 construction of the graph of F.)

 a) Let aļ = l/2i+1 + l/4i+1, i^O, c{ = aļ^ - aļ, i>l, bence

 cļ = l/2*+* + 3/4^+^. Let P = {x : There exists e^(x) taking on 0
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 ūo A

 A

 fil ' 1 1 1
 - - - k

 "li.il J J I"
 Ve* CŁ, c< Ct^1

 *
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 or 1 and x = 2®ļ(x)cļļ. Olearly P is a symmetric perfect nowhere
 dense subset of ļo, 3/^1« open intervals deleted in tbe s-

 s-1

 step of tbe construction of P are 01 _ s ( 2 G-?0-! + aI »
 1*,# s-1 i=l 1 8

 s-1 ,

 S ®ļCļ ♦ c¿), («i» •• • »es_i) € {0,1} ~ and tbe remaining intervals

 s s

 cf tbe s-step are á* _ » [ 2 e<Cj 1 1 , 2 11 i ♦ •iļ, ®J wbere el* * #es _ isl 1 1 , i=l 11 ®J

 (e1,...,es) ejp,l}s , lP| = 1im 2sa¿ = 1/2. Let Fx(x) =
 S - * **

 2 eo4(x)/2^ if x€P. "Extending F, i linearly on eacb interval i=l i

 contiguous to P, we bave F^ defined and continuous on ļo, 3/4-]

 (see [5ļ)« If s is odd (resp. even) then F^ is linear and strictly
 decreasing (resp. constant) on eacb 02 . • Let b iP - * Q, b(x)
 _ _ l"#*s OO _ «ft _

 s b( 2 e>(x)cJ) 1 1 = 2 e4(x)c4. 1 1 Extending b linearly on eacb inter- 1=1 1 1 i=l 1 1

 val contiguous to P we bave b defined, continuous and increasing

 on Ł), 3/4-1 » b(0) = 0, b(3/4-) = l'i b = constant on eacb

 0e . if s is even; b(PA8i ) = QHR ; el***es-l . el"*es el--es

 Ä ) = H. a • vVe prove that b€.AC on ft), 3/43* Since
 1" Ä s el###es a

 3/4

 b is increasing it suffices to show tbat J b'(x)dx s 1, bence
 0

 S b'(x)dx s |Q| • Tbe function b is derivable a.e. on P. Let ift€P. 0 P 0

 be a point at whicb b is derivable. Then b'(x0) « .##e I/ S ""H® 1 s

 I R¿ ...e • • • 1 s b€nce $ b'(x)dx s I q| • Since P^Cx) • F(b(x)) and 1 ...e • • • s P

 Fx6 W on P (see Lemma 3 of [53)* ^7 Theorem 6, F€W on Q.
 b) Let ye [p,l3» ^ 7 uniquely represented in base 2, y s
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 Syj/21, then Ay = l*£Q * F(x) = y) = [x€Q t ®2i(x) s ytļ is a
 nowhere perfect subset of Q. If y bas two representations in base

 2, y = Xyj/21 = 2yi/2Í tben iy «lieft i F(x) = y} « {x6<i i
 ®2i^x) = y±J U{x€Q : e2^(x) = yļ} is a nonempty perfect subset
 of Q.

 c) By b) it follows that 0 is a derived number for ?Jq at x€Q*
 LetxQ€Ç. Then for each s>l there exist e^f««*te28 sucb tbat x^

 Re e . Since O (F ; Qfi R ) = 1/2S and (l/2s)/a?<- ¿s > ®- , 1*** e 2s . l'* 2s ¿s

 s -+ a* it follows that Fj Q has finite or infinite derivative at
 no point xQe

 d) iet xQe Q , and for each s^l, let ei»**»»e2s SUC^J that xc6
 S s

 R . Then either (i) F(x 0 )e [Ž ep^x)^1, ¿1 S e2ļ(x)/21 ¿1 ♦ 1*** 2s . 0 i=l ¿1 Ul ¿1
 S • s •

 1/28*1] or (il) F(x 0 ) [S S e21(x)/2ł ¿1 • ♦ 1/2S+1, ï«a(i)/2' s £X • . 1/2S] . 0 i=l ¿1 i=l £X

 Suppose for example (i). Let Seļ...e2s » <îr,(8el...e2s01ClU

 8el,,*e2s011lUa9l",e2s110llJ8el***e2sllll)' Tben 1Sel*"e2s'/

 S- •2.1"* 1A and if yse Eei--e2s then
 f* . O

 (1/2° )/®2s » bence ^ bas 8 finite approximate derivative
 at no point x_€Q.

 e) Let s = 2p-l, p>l, then

 (15) 2^ejC^ ♦ «B) - *(^eiei ♦ es) . ï(«2p.i) - ř(«2p-l)

 = ř(£ O » 1/2P"1.
 k=2p c

 Theorem 7. There exists a continuous function f:[Ò,l] - *[OfÍl

 with the following properties: a) f e W; b)Fcr each y € [0 , lj ,
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 f ~^(y) is a nonempty perfect set i c) For each x£ [o ,2 , f ' (x) does
 not exist (finite or infinite) ; d ) f is approximately derivable at

 no point x€ ļjPfīl •

 Proof« In what follows we use tbe notations introduced in

 the proof of Lemma 2. Let I s [a, 10c [bfl] and let bj: [Ofļ] - > [â,b] ,

 bj(x) = (b-a)x ♦ a. Let = bj(ç) sa* (b-a)*Q. It follows that
 1*1 1 = (l/2)*(b-a), a,b£Qj and ^ is a Symmetrie perfect nowhere
 dense subset of [ą»b] , which can be obtained on [a,b] exactly as

 was obtained on [o,][] • Tbe open intervals deleted in tbe s-step

 of tbe construction of QT 1 are (0T)a _ = a + (b-a)0Ä a , 1 1 eX#* ,eg-l _ el###es-l a

 v,hicb are nonempty if and only if s s 2p-l, p^l. In this case

 <16> (CI)«1-.es.1 ■ (b-)-C2/8P).
 The remaining intervals of tbe s-step are

 (17) (2L) 1 e = a + (b-a)R ' . 1 ®i*##es e el" ' s

 Let gj = FobJ1 . By Theorem 5, gjeW on Qj, (The graph of gj is
 similar to tbe graph of F, see fig.l) We bave:

 (IS) gj(a) = 0; gj(b) = 1; gj(I) s [o,l] and

 (19) Sl^l^.-.egg) s 6I^in ^^...e^ s ^ 1e2i/2± *

 S e2i/2Ł ♦ 1/28].
 i=l

 By (15), for s = 2p-l, we have

 (20) OfertíO-r). 1 1 •l#,#03-l ) . 1/&-1 . 1 1 •l#,#03-l

 Let s Q. We shall construct a strictly increasing sequence

 , k^2, of nowhere dense perfect subsets of Ip»l3 and denote
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 Ir Ir t

 by In = the intervals contiguous to with

 respect to [p,l] . Let a£ = [aj,cj] , b£,= [c£,b£], where c£ is the

 middle point of l£. Then Qk = ( 0 (Q fct/ Q k)). Let t1 = P
 itei An Bn

 on [0,1] • Suppose that f^ítOjl] - > [otl] , k»2 bas already been

 defined and let's define fk:[pfl] - * [o,l] as follows* f^C*) =

 fk-lW- x € '-l • fk<z) = f K-l(an_1) *

 e,k-l^*^ • *6An 1 ' fk^ = fk-l^cn ) * ^k-l^n )~fk-l^cn
 An

 g . Je prove that {f^} is an uniformly convergent
 Bq.

 sequence of continuous functions on [p»1!* Clearly f^'C on [p,l] .
 Suppose that f ^ , k>2 on [o,l3. We prove that fķ€"^ on [0,1] •
 Since ffe = on it folleos that f^eif on We bave

 (21) VoļT1) = ík-I<an_1)' V0^ ■ ^k-l^n"1^ * -

 fk-l(bn"1) ! fk-l is lineaI on ^n"1' bS_1J-

 (See (18) and the definition of f^ on A^"* and Also,

 (22) f^A^"1) = fk(^_1) = [f ļ;_i (*n_1) i'ķ_i (cn~*Ü * and

 VBn"1) = fk-l(Bn"X) = IW^^-WC^' '
 where [x»y]# is either [x,yļ or [y,x] (see (18)). By (21) and (22)

 °(fk' [an"1'bn"1J) » 0(fl£-l! hene# tke.-€on

 Suppose tb»t liķ.ļi'n"1) - fe l/2k"2 , k>2 and let's
 prove that

 (25) |ft(«n) - ffc(b¡j)l él/2W.
 ļr ļr ļr ļr

 Let (an,bn) be an open interval of Then (an,bn) is an open
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 interval either of (i) Q or of (ii) Q , for some natural

 number p. Suppose (i), then by (21) and (22) it follows that

 - Vbn>l * flt-l<bp"1)l/2'Ł
 l/2k_1. Since ffc(x) - fk_ļ(x) = O on (»•• (20)

 and the definition of f fc) 9 by (21), (22) and (23)» it follows that

 (24) lfk(x) - fķ.ļii)! 1/2*-1 on [0,1]. Let f(r) = lim(fk(x))
 Then by (?4), f fc- » f [unifj on [o,lJ , hence € 'C on £0,1].

 a) Since fk(x) = f(x) on by Lemma 2, a) it follows that ffeW
 on Since lUQfcl s 1, fe W on tp » Í1 •

 b) Suppose that there exists yft€jp,l] ° such that E *íx£|p,lj : ° "Q

 f(x) s yQJ has an isolated point xQ. Since f (x) s ffc(x) on by

 Lemma 2,b) it follows that xoe[b,l3 - U Since xQ is isolated,
 kjsl

 there exists £> 0 such that (x , x +£ )OE = {x Let k
 ° ° Jq o

 1 r

 be a natural number such that I„ C (x «-£,x_+£). * V/e may suppose
 LLļ£ O * O
 Ir ^

 without loss of generality that x„€A_ . Let z_ 0 s g u (x_) ^LO.IJ. ^ nk 0 0
 « le

 Sy Lemma 2,b) Ez = 1xcQn : g (x) » zQJ is a perfect nonempty
 ° k Ank

 set. But B C a£ c (x -S-.x +£) and f(E ) = {yJ , a contradic-
 o k o

 ti on.

 c) If xQ g U Qfe» since f = f^ on by Lemma 2tc) it follows
 that f ' (x0) does not exist finite or infinite. Let x0fe[ptl3 -

 ( U* ^). Then there exists a sequence of natural Bombers
 lis X

 k>l, such that x 0 = O iï and ił ^ I? • řor fati» incl *>1 0 k=l ^ nl °2 • incl

 there exists a sequence of natural numbers {P^Ji k>l such that
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 (25) llļĻl = 2/8Pl+'"+Pte , |ijĻ I = I b£J » l/8Pl+"'+Plc and

 O(ftlļĻ) = 2/2Pl**"+Pk , benoe O(fuļĻ) «

 Indeed, for n^ there exists p^l sucb tbat is ®n open interval
 I 1 .

 from the step 2pj-l of the construction of Q^, bence I ļl* . ļ s 2/8 •
 P 1

 By (15), 0(f;lj^) = - f ļ(«^) I « 1/2 P 1 • Continuing, for
 lr

 n^, k> 2 there exists 1 such tbat In is an open interval from
 If

 the step 2pfc-l of the construction of Q (resp. Q ) for
 *n¡.i BCi

 x°6A°k-i <r9Sp* Henoe '^k1 = '(2/aPlC) =
 Pl+ A •• • + Plç_l+P|r KIK Ir Ir-l

 2/8 A Plç_l+P|r KIK snd by (20) o (f ;i„ Ir ) = 0 (f ;A„ Ir-l ) *(2/2 K ) =
 k k-1

 Pi + • • .+Plr
 2/2 • By b) it follows that O is a derived number for f

 at xQ. By (25), 0(f ;lj^)/| ijjj - * , k-»o- , hence f'(x0) does

 not exist, finite or infinite#

 d) If xQ c u Q^, since f = on by Lemma 2,d) it follows tbat
 f¿p(xQ) does not exist finite. Let xQ € [0,1] - (UQ^). Suppose
 that f '(xn) = tÄ. It follows tbat there exists a measurable set

 »ť O O

 B sucłr tbat d(B ,x ) = 1 and lim (f(x)-f(x ))/(x-x ) = t .
 o xo 0 x~>x0 0 0

 x £ E
 0

 (Here d("Ē;x) denotes the density of the set E at x.) Let k be a

 natural number sucb that Jt ļ 4 4^"* ; JE O Jj/ļJj > 5/$2 for
 o

 each interval J with xQ£j, |J| 61/8^ and |f (x)-f (xQ)| <
 lc«-l

 4 ł|x-x0| , for xc E OJ. We may suppose without loss of
 o

 generality that xQCA^ . By (19), either (i) g k (xQ) € [o, 1/2]
 k '
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 or (ii) g ^ (xQ) £ [1/2 , lj • Suppose for example (i). Let =
 S

 ^R.k ^010lU^RAk ^Olll U^R*k ^1101U^R.k Hill * Then HkCAn. »
 ' X ' nk

 e k CHk) e[3A, 1], |Hkl/u£ |=4-»i, = 5/Í2S-, h»ne» «^n Hk * 0.
 ' k "
 By (18) and (25), lf(c* )-f(a* )| = 1/2 1+*"*P|t. It follows that

 nlt nlc
 P] A + • • •"♦'Pír-

 there exists xeSx O Hfc such that ļf(x)-f(x0)| >(1/4) (1/2 A K).
 O

 Ir Pl+ 1 Pi 1 + • • • +P u
 Hence |f(i)-f(x0)| /U,Ll Ir » (1/4) (1/2 1 tt)*8 1 • • • Sť u

 and so |f(x)-f(x_)| > . |x^c | • For J = we have a contra-
 k

 diction.

 We are indebted to Professor Solomon Marcus for bis help,

 in preparing this article*
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