Rool Anelysis Exahange Vol 15 (1989-90)
Vasile Ene, Institute of Nathematics, str. Academiei 14, 70109 Bucharest, Romania

Finite Representation of Continucus Functions, Nina Bary's Wrinkled Functions and Foran's Condition Me

In [1](pp. 222;229;237;611), Nins Bary sbows the following cbain of inclusions: quasi-derivable $\varsubsetneqq s+s \varsubsetneqq \mathscr{F} \boldsymbol{f}=\mathrm{S}+\mathrm{S}+\mathrm{S}$, for continuous functions on $[0,1]$.

It can be shown that above, Banach's condition S can be replaced by $G E(1) \cap T_{1} \varsubsetneqq$, where $G E(1)$ is defined using condition $E(1)$ of [6].

In our paper we define conditions $G A C D_{1}^{*} \varsubsetneqq G_{i} C_{*} D_{1} \subset G B(1) \cap T_{1}$ for continuous functions on $[0,1]$, with which we improve the above results. (F'cllowing Nina Bary's proof of [l],p.222, conditions $G A C D_{1}^{*}$ and $G A C D_{1}$ are very natural.)

To prove that $S+S \neq \mathscr{C}$, NinA Bary introduced the wrinkled functions W (she called them "fonctions ridées", [l],p.236) and showed that $W \neq \varnothing$ (see the example of [1],pp.241-248; see also [5] or [3]) and $W \cap(N+q u a s i-d e r i v a b l e)=\varnothing$ (see [l],p.237), bence $W \cap(N+N)=\varnothing$, fir continuous functions on $[0,1]$.

In our paper we give characterizations of the urinkled functions which show that between Foran's condition k (introduced in 1979 in [8]) and these functions there is a very close relationship. So we improve Nina Bary's results on winkled functions. Finally we construct a arinkled function which is approximately derivable at no point of $[0,1]$ and for which eacb level set is perfect.

Let $\boldsymbol{b}=\{F: F$ is continuous $\}$. Banach's conditions T_{1}, T_{2}, S , Lusin's condition N and conditions $\mathrm{VB}, \mathrm{VB}, A C_{+}, A C, V B G_{+}, \mathrm{VBC}$, A_{+}, ACG are defined in [13]; $E(N)$ and t in [6].

Definition 1.([1],p.236). Let \& be a neasurable real set and let $f: Q \rightarrow R$. f is a wrinkled function, $f \in W$, if for evory measurable subset $\triangle C Q,|A|>0, f$ is monotone on some $B C A$, where $|B|=$ $0, f(B)$ is measurable and $|f(B)|>0$. (Witbout loss of generality A may be supposed to be perfect, since a measurable set is the union of a $\mathbb{F}_{\boldsymbol{r}}-$ set and a null set.)

Definition 2. ([1], D.178). A continuous function $f:[0,1] \longrightarrow R$ is quasi-derivable if on eacb interval $f^{\prime}(x)$ exists and is finite at every point x of a set which has positive measure.

Definition 3.([8]). A continuous function fulfils Foran's condition M if it is $A C$ on any set on which it is VB.

Definition 4. ([12],p.406). A function f is D_{1} (resp. D_{1}^{*}) on a set E if for every $\varepsilon>0$ there exists a sequence $\left\{I_{i}\right\}$ of nonoverlapping closed (resp. of open) intervals which covers E and $\sum_{i} O\left(f ; E \cap I_{i}\right)<\varepsilon$ (resp. $\left.\sum_{i} O\left(f ; I_{i}\right)<\varepsilon\right)$.

A function f is $E_{1}(1,1)$ on E if $f \in D_{1}$ on Z, whenever $Z \subset E,|Z|=0$.
Remark 1_{0} a) In [12], Lee calls condition $D_{1}, D_{1}(1)$ and be shows that $E_{1}(1,1)$ and $E(1)$ (see [6]) are equivalent (see [12], Remark $14, p .416$). Anotber condition which is equivalent with $E(1)$ is given by Iseki (see [12],pp.415-416).
b) Olearly $D_{1}^{+} \subset D_{1}$.

Definition 5. ([12],p.416). For a function property P (resp. for function properties P_{1} and P_{2}) on sets we say that a function
f is generalized P (resp. ©eneralized $P_{2} P_{2}$) on E, uritine $f \in G P$ (resp. $f \in G P_{2} P_{2}$) on E, if E can be aritten as the union of countably many sets on each of which f is P (resp. f is P_{1} or f is P_{2}). Thus we bave properties like $G D_{1}^{*} ; G D_{1}: G A O_{1} D_{1}^{*} ; G A C_{+} D_{1}$; GE(1).

Remark 2. a) $G D_{1}^{*}=D_{1}^{*}$ on a set.
b) If $f \in D_{1}$ on a set E then $|f(\mathbb{F})|=0$ and $f \in \mathbf{F}(1)$ on . Hence, if $f \in G D_{1}$ on E then $|f(E)|=0$ and $f \in G E(1)$ on E.
c) If f is a Darboux function and $f \in G D_{1}$ on an interval then f is a constant.
d) Let f be a nonconstant continuous function on $[0,1]$. If A is a countable dense subset of $[0,1]$ then $f \notin D_{1}^{*}$ on $[0,1]$ and $f \in D_{1}^{*}$ on . e) $\ell \cap G A C_{*} D_{1} \subset T_{1}$ on an interval (see [13], Theorem Z.2,p.230, Theorem 6.2,p. 278 and Remark 2,b)).

Remark 3. For continuous functions on $[0,1]$, we have:
 + quasi-derivable $=\mathscr{C}=S+S+S$.

Proof. For (1) see [6],p.208; for (2) see [8],p. 84 ; for (3) see [8],p.87; for (4) see [1],p.222,p.229; for (6) see [1],p.599, bence (5) follous by (6) and [1],p.237; for (7) see [1],p.611.

Proposition 1. For continuous functions on $[0,1]$ we have:

Froof. For (3), see the definitions and for (4) see [6],p. 208. Clearly $G A C_{*} D_{1}^{*} \subset G A C_{*} D_{1} \subset G E(1) \cap T_{1}$ (see Remark 2,e)). It remains to show that (1) is strict. Let C be the Oeator ternary set and let φ be the cantor ternary function. Let $\left\{I_{n}^{k}\right\}, n=$ $1,2, \ldots, 2^{k-1}$ be the open intervals excluded at the step k in the

Cantor ternary process. Let c_{n}^{k} be the middle point of I_{n}^{k}. Let $f:[0,1] \longrightarrow R, f(x)=0, x \in C ; f\left(c_{n}^{k}\right)=1 / 2^{k}$. Extending finearly, we have f defined and continuous on $[0,1]$. Clearly $f \in G A C D_{1}$ in $[0,1]$, and $f \in A C G_{*}$ on $[0,1]-C$. Suppose that $f \in G A C_{*} D_{1}^{*}$ on C. Then there exists a sequence of sets $\left\{E_{n}\right\}$ sucb that $C=U E_{n}$ and eitber $f \in A C_{*}$ on E_{n} or $f \in D_{l}^{*}$ on E_{n}. Let p be a natural number such that f is $A C_{*}$ on E_{p}. Since $f \in \mathcal{C}$ it follors that f is $A C_{*}$ on \bar{E}_{p}. We prove that $f \in D_{1}^{*}$ on $\bar{\Phi}_{p}$. Let $\varepsilon>0$ and let δ be given by the fact that $f \in A C$, on \bar{E}_{p}. Since $f \in \mathcal{C}$ and $\left|\bar{E}_{p}\right|=0$ we can cover E_{p} uith a sequence of nonoverlappine intervals $\left\{I_{n}\right\}$ such that $\sum\left|I_{n}\right|<\mathcal{S}$ and $\sum O\left(f ; I_{n}\right)<\varepsilon$. Hence $f \in D_{1}^{*}$ on \bar{E}_{p}. It follows that $f \in G D_{1}^{*}$ on C, bence $f \in D_{1}^{*}$ on 0 . We shor that $f \notin D_{1}^{*}$ on C. Let $C \subset \bigcup_{i=1}\left(a_{i}, b_{i}\right)$. For each i let J_{i} be the ereatest excluded open interval (in the Cantor ternary process) contained in $\left[a_{i}, b_{i}^{j}\right]$, ubere $a_{i}=$ $\inf \left(\left(a_{i}, b_{i}\right) \cap c\right)$ and $b_{i}=\sup \left(\left(a_{i}, b_{i}\right) \cap c\right)$. Suppose tbat J_{i} is excluded at the step k. Then
$J_{1}=\left(\sum_{i=1}^{k-1} c_{i} / 3^{i}+\sum_{i=k+1}^{\infty} 2 / 3^{i}, \sum_{i=1}^{k-1} c_{i} / 3^{i}+2 / 3^{k}\right)$. Let $J_{i}=\left[\sum_{i=1}^{k-1} c_{i} / 3^{i}, \sum_{i=1}^{k-1} c_{i} / 3^{i}+\sum_{i=k}^{\infty} 2 / 3^{i}\right]$. Then $\left[a_{i}, b_{i}\right] \subset J_{i}$, bence $C \subset \cup J_{i}$. We have $O\left(f ; J_{i}\right)=O\left(f ; J_{i}\right)=\left|\varphi\left(J_{i}\right)\right|=1 / 2^{k}$, $[C, 1]=\varphi(C) \subset \cup \varphi\left(J_{i}\right)$, bence $\sum_{i=1}^{\infty} O\left(f ;\left(a_{i} b_{i}\right)\right) \geqslant \sum_{i=1}^{\infty} O\left(f ; J_{i}\right)=$ $\sum_{i=1}^{\infty}\left|\varphi\left(J_{i}\right)\right| \geqslant 1$ and $f \notin D_{i}^{*}$ on C.

Thearem 1. Let $F:[0,1] \longrightarrow R, F \in$ C $a>0, \varnothing \subseteq P \subset[0,1]$ be a perfect nowbere dense set and let $D=$ $\{x \in[0,1]-P: P$ is derivable at $x\}$. Then there exist a set Q of
F_{r}-type, $Q \subset D,|Q|=|D|$ and tuo continupus functicns f_{1} and f_{2} such that: a) $F(x)=f_{1}(x)+f_{2}(x)$ on $\left.[0,1] ; b\right) f_{1}, f_{2} \in D_{1}^{+}$on a^{c} $=[0,1]-Q ; c) f_{1}, f_{2} \in A C G$ on $\left.Q ; d\right)\left|f_{2}(x)\right|<3 a$ on $[0,1]$ and $f_{2}(0)=f_{2}(1)=0$.

Proof. Let P_{1} be a perfect norbere dense subset of $D,\left|P_{1}\right|>0$. Wie sball construct a strictly increasing sequence $\left\{P_{k}\right\}, k=2,3, \ldots$, of nowhere dense perfect subsets of D such that $P_{k}-P_{k-1}$ is a nowbere dense subset of positive measure in eacb \bar{I}_{n}^{k-1} and $|Q|=$ $|D|$, where I_{n}^{k} are the intervals cinticuous to $P_{k}, k=2,3, \ldots$ and $Q=\bigcup_{k=1}^{\infty} P_{k}$. Iet $g_{1}:[0,1] \longrightarrow R$ be a continuous function such that: $E_{1}(x)=F(x)$ on $P_{1} ; g_{1}$ is a bounded derived number on each $I_{n} ; g_{1}$ is constant on each $I_{n}^{2} ;\left|b_{1}(x)\right|<a / 2^{n+1}$ on each I_{n}^{1}, where $b_{1}(x)$ $=F(x)-g_{1}(x)$. The existence of g_{1} followis by [1],pp.222-224. Since $b_{1}=0$ on P, by $[13]$ (Thearem 8.5,p.232), it follors that b_{1} $\in A C$, on P_{1}. By [13] (Theorer 10.5,p.235), $F \in A C G_{*}$ on P_{2}. Clearly $G_{1} \in A_{*}$ on each I_{n}^{l}. Since $g_{1}=P-b_{1}$ it follows that $\varepsilon_{1} \in A C_{*}$ on H_{1}, bence $g_{1} \in A C G_{*}$ on $[0,1]$. Since $F \in A C G_{*}$ on P_{2} it follows that $b_{1} \in$ $A C G *$ on P_{2}. Since $h_{1}-F$ is constant on each I_{n}^{2}, it follows that b_{1} is derivable on $D-P_{2}$. Keplacing F by b_{1} we construct a continuous function g_{2}, analocously to the construction of ε_{1}, sucb that $g_{2}=b_{1}$ on P_{2}, g_{2} is $\triangle C G_{*}$ on $[0,1], g_{2}$ is constant on each interval I_{n}^{3} and $\left|b_{2}(x)\right|<a / 2^{n+2}$ on each I_{n}^{2}, where $b_{2}(x)=b_{1}(x)$ - $g_{2}(x)$. Then $b_{2}(x)=0$ on $F_{2} ; b_{2}$ is $A C G$ on $P_{3} ; b_{2}$ is derivable on $D-P_{3}:\left|b_{2}(x)\right|<a / 2^{2}$ on $[0,1]$. Continuing in this way we obtain two sequences of continuous functions $\left\{g_{1}\right\},\left\{b_{1}\right\}, 1=2,3, \ldots$ sucb that:
4. $g_{i}=b_{i-1}$ on $P_{i} ; g_{i} \in A C G_{*}$ on $[0,1] ; g_{i}$ is constant on eacb

$$
I_{n}^{1+1} ;
$$

B. $\quad b_{i}=0$ on $P_{i} ; \quad\left|b_{i}(x)\right|<a / 2^{n+i}$ on $I_{n}^{i} ; b_{i} \in A C G_{*}$ on P_{1+1};

$$
b_{i}=b_{i-1}-g_{i} \text { is derivable on } D=P_{i+1}
$$

Clearly
(1) $\left|b_{i}(x)\right|<a / 2^{i}$ on $[0,1]$.

Then we have $F(x)=g_{1}(x)+\ldots+g_{m}(x)+h_{m}(x)$, for each natural number and by (1), $\sum_{i=1}^{\infty} g_{i}(x)$ converges uniformly to $F(x)$. Let $F_{1}(x)=\sum_{i=1}^{\infty} g_{2 i-1}(x) ; F_{2}(x)=\sum_{i=1}^{\infty} g_{2 i}(x) ; R_{m}(x)=\sum_{i=m}^{\infty}\left(h_{i}(x)-\right.$ $b_{i+1}(x)$). Then $F_{1}, F_{2} \in C$ on $[0,1]$ and $F(x)=F_{1}(x)+F_{2}(x)$. We have

$$
\begin{equation*}
F_{1}(x)=\sum_{i=1}^{k} E_{2 i-1}(x)+R_{2 k}(x) ; \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
F_{2}(x)=\sum_{i=1}^{k} g_{2 i}(x)+R_{2 k+1}(x) ; \tag{3}
\end{equation*}
$$

(4) $\quad R_{i}(x)=0$ on P_{i};
(5) $\quad \sum_{n=1}^{\infty} 0\left(R_{i} ; I_{n}^{i}\right)<a / 2^{i-2}$.

By (4), (5) and [13] (Theorem 8.5,p.232) it follows that

$$
\begin{equation*}
R_{i}(x) \text { is } A C_{*} \text { on } P_{i} \tag{6}
\end{equation*}
$$

Since $\sum_{i=1}^{k} g_{2 i-1}(x)$ is constant on each $I_{n}^{2 k}$, it follows that

$$
\begin{equation*}
O\left(F_{1} ; I_{n}^{2 k}\right)=O\left(R_{2 k} ; I_{n}^{2 k}\right) \tag{7}
\end{equation*}
$$

By A., (2) and (6), it follows that F_{1} is $10 G_{*}$ on $P_{2 k}$. Hence F_{1} is ACG on $Q=\bigcup_{i=1}^{\infty} P_{i}$. Analogously F_{2} is $A O G_{*}$ on Q. Moreover,

$$
\begin{equation*}
\left|F_{2}(x)\right|=\left|R_{1}(x)\right|<\sum_{i=1}^{\infty}\left|h_{i}(x)\right|<a \tag{8}
\end{equation*}
$$

Let $\varepsilon>0$ and let k be a natural number such that $a / 2^{2 k}<\varepsilon$. Then $C^{c} \subset \bigcup_{n=1}^{\infty} I_{n}^{2 k+2}$ and by (5) and (7) it follows that $\sum_{n=1}^{\infty} C\left(F_{1} ; I_{n}^{2 k+2}\right)<a / 2^{2 k}<\varepsilon$, bence F_{1} is D_{1}^{*} on Q^{c}. Analocously, F_{2} is D_{1}^{*} on G_{i}^{c}. Therefcre we obtain: $F=F_{1}+F_{2}$ on $[0,1] ; F_{1}, F_{2}$ are D_{1}^{*} on $Q_{i}^{c} ; F_{1}, F_{2}$ are $A C G$ on $Q ;\left|F_{2}(x)\right|<a$ on $[0,1]$. Let $H(x)=F_{2}(0)+\left(\left(F_{2}(1)-F_{2}(0)\right) /\left|P_{1}\right|\right) \int_{0}^{x} K_{F_{1}}(t) d t$, where $K_{L_{1}}$ is the characteristic function of P_{1}. Clearly H is $A C$ on $[0,1]$; $|H(x)|$ $<2 a$; H is constant on each I_{n}^{l}. Let $f_{2}=F_{2}-H$ and $f_{1}=F_{1}+H$ on $[0,1]$.

Corollary 1. Let $a>0$ and let P be a perfect nowbere dense subset of $[0,1]$. Let $F:[0,1] \rightarrow R, F \in \mathcal{C}$. Then there exist tuo continuous functions F_{1}, F_{2} on $[0,1]$ such that: a) $F=F_{1}+F_{2}$ on $[0,1]$; b) $F_{2} \in D_{1}^{*}$ on P and $F_{1} \in D_{1}$ on P; c) $F_{2}(0)=F_{2}(1)=0$; d) $\left|F_{2}(x)\right|<a$ on $[0,1]$.

Procf. Let $f:[0,1] \longrightarrow R$ be a continuous function defined as follows: $f(x)=F(x), x \in P \cup\{0,1\} ; f$ is linear on the closure of eacb interval contiguous to $P \subset[0,1]$. By Theorem $1, f=f_{1}+f_{2}$ on $[0,1] ; f_{1}, f_{2} \in C$ on $[0,1] ; f_{1}, f_{2} \in D_{1}^{*}$ on $F ; f_{2}(0)=f_{2}(1)=0$; $\left|f_{2}(x)\right|<$ on $[0,1]$. Let $F_{2}=f_{2}$ and $F_{1}=F-f_{2}$. Then $F_{1}=f_{1}$ on P, bence $F_{1} \in D_{1}$ on P.

Corollary 2. Let $a>0$ and let P be a perfect nowbere dense subset of $[0,1]$. Let $F:[0,1] \longrightarrow R, F \in G$. Then tbere exists a perfect nowbere dense set $Q \supset P$ such that $9-P$ is a perfect nowhere dense set of positive measure in each interval contiguous tc P and there exist two continuous functions F_{1}, F_{2} on $[0,1]$ such
that: a) $F=F_{1}+F_{2}$ on $[0,1]$; b) $F_{1}, F_{2} \in D_{1}$ on $P ; F_{1}$ is AC on each interval contiguous to $P ; F_{1}$ is constant on ach interval contieuous to q; c) $F_{2}(0)=F_{2}(1)=0 ;$ d) $\left|F_{2}(x)\right|<a$ 으 $[0,1]$.

Procf. By Corollary 1, for $8 / 2$, there exist two continuous functions f_{1}, f_{2} on $[0,1]$ sucb that: a') $F=f_{1}+f_{2}$ on $\left.[0,1] ; b l\right) f_{2}$ $\in D_{1}^{*}$ on P and $f_{1} \in D_{1}$ on $\left.\left.P ; c^{\prime}\right) f_{2}(0)=f_{2}(1)=0 ; d^{\prime}\right)\left|f_{2}(x)\right|<a / 2$ on $[0,1]$. Let $\left\{I_{n}\right\}$ be the intervals contiguous to P witb respect to $[0,1]$. For eacb natural number n there exists a perfect nowbere jense subset Q_{n} of $\bar{I}_{n},\left|Q_{n}\right|>0$ and a continuous function F_{1} on $[0,1]$ such that: $F_{1}(x)=f_{1}(x)$ on $F ; F_{1}(0)=F(0) ; F_{1}(1)=F(1)$; $F_{1} \in A C$ on each $I_{n} ; F_{1}$ is constant on each interval contigucus to Q_{n} aith respect to $\bar{I}_{n} ;\left|F_{2}(x)\right|<a$ cn $[0,1]$, where $F_{2}(x)=F(x)$ $F_{1}(x)$. These follow by [l],p.609-611 (if we put $I_{n}=f_{n} ; f_{1}=\bar{\varphi}$; $\left.f_{2}=\Psi ; F_{1}=\varphi \mathbf{F}_{2}=\psi ; a / 2=\varepsilon / 2\right)$. By a') and c') it follons tbat $F_{1}(x)=f_{1}(x)$ on $P \cup\{0,1\}$, bence $F_{2}(x)=f_{2}(x)$ on $P \cup\{0,1\}$. It follows that $F_{2}(0)=F_{2}(1)=0$ and by $b \prime$), $F_{1}, F_{2} \in D_{1}$ on P.

Remark 4. a) Theorem 1 extends Nina Bary's thecrem of [1], p. 222 and Corcllary 1 extends Nina Bary's the 3 em of [1], p. 603 (instead of condition " $\left|F_{1}(P)\right|=\left|F_{2}(F)\right|=0$ " we put conditicn b)). b) Corollary 2 is an extension of Nina Bary's Corollary of [1], p.609.

Remark 5. Fcr continuous functions on $[0,1]$ we bave: quasi-derivable $\subseteq G A C_{*} D_{1}^{*}+G A C_{*} D_{1}^{*} \subseteq G A C_{*} D_{1}+G A C_{*} D_{1} \subseteq S+S$ (see Theorem 1 and Propositicn 1). We don't know if the inclusions are strict.

Proposition 2. For continuous functions on $[0,1]$ we bave: quasi-derivable $\varsubsetneqq{ }^{G A C_{*}} D_{1}+G A C_{*} D_{1}$.

Procf. The inclusicn follows by Remark 5. To prove that the inclusion is strict we shell construct two continuous functions $f, g:[0,1] \longrightarrow[0,1]$ such that $f, \varepsilon \in G A C D_{1}$ and $f+g$ is not derivable a.e. on $[0,1]$. Then $f+g$ is not quasi-derivabie on $[0,1]$. Let P_{1} be a perfect nowhere dense subset of $[0,1]$, symetrical witb respect to $1 / 2$ such that $0,1 \in F_{1}$ and $\left|P_{1}\right|=1 / 2$. We sball construct a strictly increasing sequence of subsets of $[0,1], P_{k}, k \geqslant 2$. Iet $I_{n}^{k}=\left(a_{n}^{k}, b_{n}^{k}\right)$ be the intervals contiguous to P_{k} with respect to $[C, 1]$. Suppose that P_{1}, \ldots, P_{k} have been defined and let's define P_{k+1}. Let P_{n}^{k} be a perfect nowhere dense subset of \bar{I}_{n}^{k} such that $A_{n}^{k}, b_{n}^{k} \in P_{n}^{k},\left|P_{n}^{k}\right|=\left|I_{n}^{k}\right| / 2$ and F_{n}^{k} is symetrical aitb respect to $c_{n}^{k}=\left(a_{n}^{k}+b_{n}^{k}\right) / 2$. Tben $P_{k+1}=P_{k} \cup\left(\bigcup_{n=1}^{\infty} P_{n}^{k}\right)=P_{k} \cup S^{k+1}$. By [1], pp. 229-230 (for $\delta=I_{n}^{k}, Q=P_{n}^{k}$ and $\varepsilon=1 / 2^{n+k}$), there exists a continuous function $f_{k}:[0,1] \rightarrow\left[0,1 / 2^{k}\right]$ witb tbe following properties: $f_{k}(x)=0$ on $P_{k} ; f_{k}$ is ACG on eacb $I_{n}^{k} ;\left|f_{k}(x)\right|<1 / 2^{n+k}$ on $I_{n}^{k} ; f_{k}(x)=0$ on $P_{n}^{k} ; f_{k}$ is AC on $I_{n}^{k+1} ; f_{k}$ is constant on eacb $I_{n}^{k+2} ; I_{k}$ is not derivable on P_{n}^{k}. Let $A=P_{l} \cup\left(\bigcup_{i=1}^{\infty} S^{2 i+1}\right) ; B=$ $\bigcup_{i=1}^{\infty} S^{2 i} ; E=[0,1]-(A \cup B)=[0,1]-\left(\bigcup_{i=1}^{\infty} P_{i}\right) \cdot \operatorname{Tben}|A \cup B|=1$. Let $f(x)=\sum_{i=1}^{\infty} f_{2 i-1}(x)$ and $g(x)=\sum_{i=1}^{\infty} f_{2 i}(x)$. Clearly f, g and $f+g$ are continuous on $[0,1]$. It follows that: a) f is $A C G$ on A and f is not derivable a.e. on $B ; b) g$ is $\Delta C G_{\text {, }}$ on B and g is not derivable a.e. on A; c) $f \in G D_{1}$ on $B ; f \in D_{1}^{*}$ on $E ; E \in G D_{1}$ on $A ; g \in$ D_{1}^{*} on F. By a) and b), $f+g$ is not derivable a.e.on [0,1$]$. By a) and c), $f \in G A C D_{1}$ on $[0,1]$ and by b) and $\left.c\right), ~ e \in G A C C_{1}$ on $[0,1]$. We prove only the part witb f. Let $R_{2 k+1}(x)=\sum_{i=k}^{\infty} f_{2 i+1}(x)$. Tben
$f(x)=\sum_{i=1}^{k} f_{2 i-1}(x)+R_{2 k+1}(x)$. \#e have

$$
\begin{equation*}
R_{2 k+1}(x)=0 \text { on } P_{2 k+1} \text { and } \tag{S}
\end{equation*}
$$

(10) $\sum_{n=1} O\left(R_{2 k+1} ; I_{n}^{2 k+1}\right)<1 / 2^{2 k-1}$,
hence, by [13] (Theorem $8.5, \mathrm{p} .232$),
(11) $\quad{ }^{R_{2 k+1}}$ is $A C$ on $P_{2 k+1}$.
since $\sum_{i=1}^{k} f_{2 i-1}(x)$ is constant on each $I_{n}^{2 k+1}$, it follows that

$$
\begin{equation*}
O\left(f ; I_{n}^{2 k+1}\right)=O\left(R_{2 k+1} ; I_{n}^{2 K+1}\right) \tag{12}
\end{equation*}
$$

By (9), it follows that

$$
\begin{equation*}
f(x)=\sum_{i=1}^{k} f_{2 i-1}(x) \text { on } P_{2 k+1} \tag{13}
\end{equation*}
$$

a) Since $f(x)=R_{1}(x)$ on $[0,1], f \in A C$ on P_{1}. Since $f_{1}, f_{3}, \ldots, f_{2 k-1}$ are AC, on each $I_{n}^{2 k}$, it follows that $\sum_{i=1}^{k} f_{\text {2i-1 }}(x)$ is AC, on each $P_{n}^{2 k}$. By (11), f is $A C$ on each $P_{n}^{2 k}$. Therefore f is $A C G_{*}$ on $S^{2 k+1}$. Since $\sum_{i=1}^{k-1} f_{2 i-1}(x)$ is constant on each $I_{n}^{2 k-1}, f_{2 k-1}$ is not derivable on $P_{n}^{2 k-1}$ and $R_{2 k+1}$ is derivable ae. on $P_{2 k+1}$. It follows that f is not derivable ace. on $s^{2 k}$.
c) Let $\varepsilon>0$ and let k be a natural number such that $1 / 2^{2 k-1}<\varepsilon$. Since EC $\bigcup_{n=1}^{\infty} I_{n}^{2 k+1}$, by (10) and (12), it follows that $\sum_{n=1}^{\infty} O\left(f ; I_{n}^{2 k+1}\right)<\varepsilon$, hence $f \in D_{1}^{+}$on F. Since $\sum_{i=1}^{k-1} f_{2 i-1}(x)$ is constant on each $I_{n}^{2 k+1}$ and $f_{2 k-1}(x)=0$ on each $P_{n}^{2 k-1}$, it follows that ρ is constant on each $P_{n}^{2 k-1}$, hence $f \in D_{1}$ on $S^{2 k}$. Thus $f \in G D_{1}$ on B.

Using Corollary 2 instead of Nina Bary's Corollary [l],p. 609, the following theorem can be proved:

Theorem 2. (An extension of the theorem of [1],p.611). $C=G A C_{*} D_{1}+G A C_{*} D_{1}+G A C_{*} D_{1}$ for continuous functions on $[0,1]$.

Remark 6. We don't know if 'ibeocem 2 remains trae if $G A C C_{1}$ is replaced by $G A C_{*} D_{1}^{*}$.

Theorem 3. (An extension of the theorem of [1],p.237). Let P be a perfect set, $P \subset[0,1],|P|>0$ and let $F: P \longrightarrow[0,1]$. If F $\epsilon W \cap \mathcal{L}$ then F cannot be uritten as the sum of tro continuous functions F_{1} and F_{2} such tbat $F_{1} \in \mathbb{N}$ and F_{2} is approximately differentiable on a set of positive measure. Hence $W \cap(\mathbb{N}+\mathbb{H})=\varnothing$ for continuous functions on $[0,1]$ (see Remark $z 2$.

Proof. Suppose that there exists a set ECF of positive measure sucb that F_{2} is appreximately differentiable on E. By [13] (Theorem $10.14, p .239$) F_{2} is ACG on E. Since $F \in W$ there exists $F_{1} \subset E,\left|E_{1}\right|=0$ such that $F\left(E_{1}\right)$ is measurable, $\left|F\left(E_{1}\right)\right|>0$ and F is monotone on F_{1}. Then $F_{1}=P-F_{2}$ is $V B G$ on E_{1}. Since $F_{1} \in \mathbb{K}, F_{1} \in$ $A C G$ on E_{1}. Hence $F_{1}+F_{2}$ is $A C G$ on E_{1} and $\left|F\left(E_{1}\right)\right|=0$, a contradiction.

Remark 7. If P is a perfect nowhere dense set of positive measure, $P \subseteq[0,1]$ tben there exists a continuous function in D_{1}^{*} on P wibich is approximately differentiable on no set of positive measure (see Theorem 1 and Theorem 3).

Corollary 3. Let $F: P \subseteq[0,1] \longrightarrow[0,1]$, were $F \in \boxplus \cap C$ and P is a measurable set of positive measure. Then F is approximately differentiable on no set of positive measure.

The arem 4. a) Let $F:[0,1] \longrightarrow R, P \in C$ and let $P \subseteq[0,1]$ be a measurable set, $|P|>0$. Then $F \in W$ on P if and only if $F \in M$ on no closed subset Q of $P,|Q|>0$.
b) Let $f: S \rightarrow R, f \in \mathscr{C}$, where $S \subset[0,1]$ is a measurable set. Then $f \in N$ if and only if for every subset $A \subset S$ of positive measure, f is strictly monotone on some perfect subset $B C A$ such that $|f(B)|>0$ and $|B|=0$.

Procf. a) " \Rightarrow " Let Z be a closed subset of positive measure of P. Since $F \in W$ on P it follous that there exists $Q_{1} \subset Q,\left|Q_{1}\right|=$ 0 sucb that F is monotone $\rho n Q_{1}, F\left(Q_{1}\right)$ is measurable and $\left|F\left(Q_{1}\right)\right|$ >0, hence $F \notin M$ on \hat{Q}.
$" \Leftarrow "$ Let A be a perfect subset of P of positive reasure. Since Fi \ddagger if on A, by Theorem 1 of [8] (p.83), it follows that there exists $B \subset A$ sucb that F is monctone on B and $F \notin A C$ on B. Since $F \in \zeta, F$ is monotone on \bar{B}. We prove that $|\bar{B}|=0$, bence $F(\bar{B})$ is measurable and $|F(\bar{B})|>0$. Suppose that $|F(\bar{B})|=0$ then $F \epsilon \ell \cap \nabla B \cap N$ on \bar{B} and by Theorem 6.7 of [13] (p.227), $F \in A C$ on \bar{B}, bence $F \in A C$ on B, a contradiction. Suppose that $|\bar{B}|>0$ then F is approximately differentiable on a measurable set $E \subset B,|E|=|\bar{B}|$, bence $F \in A C G$ on E. It follows that there exists a closed set $Q, Q \subset E,|Q|>0$ such that $F \in A C G \subset M \subset \in Q$, a contradiction.
b) " \Rightarrow " is evident.
$" \Longleftarrow "$ Let A be a perfect subset of $S,|A|>0$. Since $f \in W$, there exists $B_{1} \subset A,\left|B_{1}\right|=0, f_{\mid B_{1}}$ is monotone, $f\left(B_{1}\right)$ is measurable and $\left|f\left(B_{1}\right)\right|>0$. We prove that $\left|\bar{B}_{1}\right|=0$. Suppose that $\left|\bar{B}_{1}\right|>0$. Since $f \in \mathcal{E}, f_{\mid \bar{B}_{1}}$ is monctone. Hence f is approximately derivable a.e. on \bar{B}_{1}, a contradiction (see Corollary 3). Let $C=\left\{y \in f\left(\bar{B}_{1}\right)\right.$: $f^{-1}(y) \cap \bar{B}_{1}$ contains more than one point $\}$. Then O is countable.

Supose $:=\left\{y_{1}, \bar{y}_{2}, \ldots\right\}$. Let $\varepsilon<\left(\left|f\left(B_{1}\right)\right|\right) / 4, a_{n}=\inf \left(\bar{B}_{1} \cap\right.$ $\left.f^{-1}\left(y_{n}\right)\right), b_{n}=\sup \left(\bar{B}_{1} \cap f^{-1}\left(y_{n}\right)\right)$. Since $f \in \mathcal{E}$ it follows that th=re exist $\delta_{n}>0$ such that $f\left(\bar{S}_{1} \cap\left(a_{n}-f_{n}, b_{n}+\delta_{n}\right)\right) \subset$ $\left(y_{n}-\varepsilon / 2^{n+1}, y_{n^{+}} \varepsilon / 2^{n+1}\right)$. Let $\xi=U_{n}\left(a_{n}-\varepsilon_{n}, b_{n^{+}} \varepsilon_{n}\right)$. Hence $\left|f\left(\bar{B}_{1} \cap G\right)\right|<\varepsilon$. Let B be the set of points of accumulation of the clised set $\bar{B}_{1}-G$. Then B is a perfect subset of $A,|B|=0,\left.f\right|_{B}$ is strictly monotone, $f(E)$ is a compact set (since $f \in \mathscr{C}$) and $|f(B)|>(3 / 4)\left|f\left(B_{1}\right)\right|>0$ 。

Lemua 1. Let A be a perfect subset of $[0,1],|A|>0$ and let $f: A \longrightarrow R, f \in \mathscr{C}$. Let $E=\{x \in A: f$ is approximately differentiable at x and $\left.f_{a p}^{\prime}(x)>0\right\}$. If E bas positive measure then there exists a perfect subset B of $E,|B|=0$, such that $\mathrm{f}_{\mid B}$ is strictly increasing.

Procf. That E is measurable follows by [13],0.299. Let $F_{n}=$ $\{x \in \mathbb{B}: 0<b<1 / n$ implies $\mid\{t: 1 / n \leqslant(f(t)-f(x)) /(t-x), 0<$ $|t-x|<b\} \mid>(3 / 4) \cdot 2 h\}$. Let $E_{i n}=E_{n} \cap[i / n,(i+1) / n]$ for each natural number i. Then $T=\bigcup_{i} \bigcup_{n} \Xi_{i n}$. Let p, j such that $\left|E_{p j}\right|>0$. If $x<y, x, y \in E_{p j}$ then $f(y)-f(x) \geqslant(l / p)(y-x)$. since $f \in \mathcal{C}$ it folloxs that $f(y)-f(x) \geqslant(1 / p)(y-x)$, for $x<y, x, y \in \bar{F}_{p j}$. Let B be a perfect subset of positive measure of $\bar{E}_{p j}$. Then f is strictly increasing on B.

Theorem 5. Let P be a perfect subset of $[0,1],|P|>0$. Let $F: P \longrightarrow[0,1], F \in W \cap \mathcal{C} ; E: P \longrightarrow Q, E(P)=Q ; g \in \mathcal{C} ; f: Q \longrightarrow[0,1]$ and $D_{a p}=\{x \in Q: f$ is approxicately differentiablo at $x\}$. If $F=f \circ g, f \in \mathcal{G}$ and $\left|f\left(Q-D_{a p}\right)\right|=0$ then $g \in W$.

Proof. The proof is similar with that of [l] (Theorem of p. 238), using Lemma 1 instead of the lemma of [1], p.239.

Let \dot{A} be a perfect subset of $P,|A|>0$. Since $F \in i n$, by Theorem $4, b)$, there exists a perfect subset B of $A,|B|=0$, such that $\left.F\right|_{B}$ is strictly monotene and $|F(B)|>0$. Let $B^{\prime}=g(B)$. By [13] (Tbeorem 10.14,p.239), it follows that $f \in A C G$ on $D_{a p}$. Since $\left|f\left(G-D_{a p}\right)\right|=0$ it follows that $f \in \mathbb{N}$ on Q, bence $|B|>0$. Indeed, if $\left|B^{\prime}\right|=0$ then $|F(B)|=\left|f\left(B^{\prime}\right)\right|=0$, a contradiction. Let $D_{0}=$ $\left\{x \in Q: f_{a p}^{\prime}(x)=0\right\}$. By [13](Lemma 9.2,p.290), it follows that $\left|f\left(D_{0}\right)\right|=0$, hence $B^{\prime}-D_{0}$ is measurable and $\left|B^{\prime}-D_{0}\right|>0$ (if $\left|B^{\prime}-D_{0}\right|=0$ then $|F(B)|=0$, a contradiction). It follows that B^{\prime} contains a subset $E \subset D_{a p}$ of positive measure where $f_{a p}^{\prime}$ does.not change the sien. Suppose that $f_{a p}^{\prime}(x)>0$, for each $x \in E$. By
Lemma 1 there exists a perfect subset C^{\prime} of $E,\left|C^{\prime}\right|>C$, such that ${ }^{1} \mid C$, is strictly increasing. Let $\sigma=G^{-1}\left(C^{\prime}\right)$. Since F is strictly monotone on C, it follows that E is strictly monotone on $\mathrm{C},|\mathrm{C}|=$ 0 and $|g(C)|=|C|>0$, bence $\& \in W$.

Remark 8, Theorem 5 is an extension of the tbeorem of [1], p. 238 (there, $f \in A C$).

Theorem 6. Let $P \subseteq[0,1]$ be a perfect set, $|P|>0$. Let $F: P \longrightarrow[0,1]: g: P \rightarrow Q \subset[0,1], Q=g(P) ;|Q|>0 ; f: Q \rightarrow[0,1]$ and let $D_{\text {ap }}=\{x \in P: g$ is approximately differentiable at $x\}$. If $F=f \circ g, F, g, f \in \mathcal{G}, F \in W$ and $\left|g\left(P-D_{a p}\right)\right|=0$ then $f \in W$.

Proof. Let A be a perfect subset of $Q,|A|>0$. Let $A_{1}=$ $g^{-1}(\Lambda)$, tben Λ_{1} is a closed subset of P. But g is $A C G$ on P, bence g satisfies Lusin's condition N on P. It follows that $\left|\Lambda_{1}\right|>0$. Since $|A|>0, D_{0}=\left\{x \in P: g_{a p}^{\prime}(x)=0\right\},\left|g\left(D_{0}\right)\right|=0$ and $\left|g\left(P-D_{a p}\right)\right|$ $=0$, it follows that $\wedge_{1} \cap D_{a p}$ contains a subset F of positive measure where $f_{a p}^{\prime}$ doesn't change the sign. Suppose that $f_{a p}^{\prime}(x)>0$ for all $x \in \mathbb{Z}$. By Lemma l it follows that there exists a perfect
subset C of $F,|C|>0$ such that $g_{\mid C}$ is strictly increasing. $F \in W$ implies that there exists a perfect subset B of C such that $|B|=$ $0, P \mid B$ is atrictly monotone and $|F(B)|>0$. Let $B_{1}=g(B) \subset A$. Since g is $A C G$ on $D_{a p}$ it follows that $\left|B_{1}\right|=0$. Since $g \mid B$ is strictly increasing and $F_{\mid B}$ is strictly monotone it follows that $\left.f\right|_{B_{1}}$ is strictly monotone and $\left|f\left(B_{1}\right)\right|=|f(g(B))|=|f(B)|>0$, hence $f \in \mathbb{T}$ on Q.

Definition 6. Let $F:[0,1] \longrightarrow R, F \in E$. F is said to be W^{*} if for every subinterval I of $[0,1]$, there exists a perfect subset P of $I,|P|=0, P_{\mid P}$ - monotone, such that $|F(P)|>0$. Clearly WCW*.

Remark 9. By Corollary 2 of [2](p.213), a typical continuous function $f:[0,1] \longrightarrow R$ does not bave finite or infinite derivative at any point. By [8] (Tbeorem 3,p.87), if f is a contimus function on $I \subset[0,1]$ and if $\left\{x \in I: f^{\prime}(x)\right.$ exists $\}$ bas measure 0 then there is a perfect set $P,|P|=0$ such that f is incressing on P and $|f(P)|>0$. Hence a typical.continuous function is W^{*}. Is W typical for continuous functions on $[0,1]$?

Remark 10. There exists a function $\mathrm{g} \in \mathbb{W}^{*}$ - W. By [10] (Example $2, p .41$), there exists a continuous function g defined on $[0,1]$ Whose graph bas \bar{F} - finite Hausdorff length and sucb that g is nowbere differentiable but bas approximate derivative 0 almost everywhere (\mathcal{E} will satisfy condition T_{1}). Since the set $E=\left\{\begin{array}{l}\text { : }\end{array}\right.$ $\left.f^{\prime}(x)=+\infty\right\}$ has measure 0 (see [13], Tbeorem 4.4,p.270), by [8] (Theorem 3,p.87), it follows that $g \in W^{*}$. By Corollary 3, $g \notin W$.

Lemma 2. There exist a continuous function $I:[0,1] \rightarrow[0,1]$ and a symmetric perfect nowbere dense subset Q of $[0,1], 0,1 \in Q$, $|Q|=1 / 2$, such that: a) $P \in W$ on P; b) For each $y \in[0,1], Q \cap$ $F^{-1}(y)$ is a nonempty perfect subset of $\left.Q ; c\right) P \mid Q$ bas finite or
infinite derivative at no pcint $x \in G ;$ d) Fle bas finite approximate derivative at no point $x \in Q ; e) F$ is linear and strictly decreasing on each interval contíuous to Q.

Proof: We sball define the set q. Let $a_{2 i}=\left(1-\sum_{k=2}^{i+1} 1 / 2^{k}\right) / 4^{i}$ $=1 /\left(2 \cdot 4^{i}\right)+1 /\left(2 \cdot 8^{i}\right), 1 \geqslant 0 ; a_{2 i-1}=2 a_{21}, 1 \geqslant 1, c_{1}=a_{1-1}-a_{i}$, $i \geqslant 1$. Then $a_{2 i}=c_{2 i}=\sum_{k=2 i+1}^{\infty} c_{k}, c_{2 i-1}=1 / 4^{i}+3 / 8^{i}, i \geqslant 1$, $a_{2 i-1}=\sum_{k=2 i}^{\infty} c_{k}$. Let $Q=\left\{x:\right.$ There exists $e_{i}(x)$ taking on 0 or 1 and $\left.x=\sum e_{i}(x) c_{i}\right\}$. The open intervals deleted in the s-step of the construction of Q are $c_{e_{1} \ldots e_{s-1}}=\left(\sum_{i=1}^{s-1} e_{i} c_{i}+a_{s}, \sum_{i=1}^{s-1} e_{i} c_{i}+c_{s}\right)$, $\left(e_{1}, \ldots \theta_{s-1}\right) \in\{0,1\}^{s-1} \cdot 0_{e_{1} \ldots e_{s-1} \neq \emptyset \text { iff } s=2 p-1, p \geqslant 1 \text { and in }, ~}$ this case $10_{e_{1} \ldots e_{2 p-2}} \mid=2 / 8^{\text {p }}$. The remaining intervals of the $\mathrm{s}-$ step are $R_{e_{1} \ldots \theta_{s}}=\left[\sum_{i=1}^{S} e_{i} c_{i}, \sum_{i=1}^{S} e_{i} c_{i}+a_{s}\right]$, where $\left(e_{1}, \ldots, e_{s}\right) \epsilon$ $\{0,1\}^{s}$. Then $G=\lim _{s \rightarrow \infty} 2^{s} a_{s}=1 / 2$. Let $F(x)=\sum_{i=1}^{\infty} \theta_{2 i}(x) / 2^{i}$, $x \in Q$. Extending F linearly on eacb interval contiguous to Q we bave F defined and continuous on $[0,1]$. We bave:

$$
\begin{align*}
& F\left(R_{e_{1} \ldots e_{2 s}}\right)=F\left(\in \cap_{R_{e_{1}} \ldots \theta_{2 s}}\right)=\left[\sum_{i=1}^{s} \theta_{2 i} / 2^{i}, \sum_{i=1}^{s} e_{2 i} / 2^{i}+\right. \tag{14}\\
& \left.1 / 2^{s}\right] .
\end{align*}
$$

(See fig.l for the representation of the first two steps in the construction of the graph of $\mathrm{F}_{\text {. }}$)
a) Let $a_{i}=1 / 2^{i+1}+1 / 4^{i+1}, i \geqslant 0, c_{i}=a_{i-1}-a_{i}, i \geqslant 1$, bence $c_{i}=1 / 2^{i+1}+3 / 4^{i+1}$. Let $P=\left\{x\right.$: There exists $\theta_{i}(x)$ taking on 0

fig 1
or 1 and $\left.x=\sum e_{i}(x) c_{i}^{i}\right\}$. Clearly P is a symmetric perfect nowbere dense subset of $[0,3 / 4]$. The cpen intervals deleted in the sstep of the construction of P are $0_{e_{1}}^{\prime} \ldots e_{s-1}=\left(\sum_{i=1}^{s-1} e_{i} c_{i}^{\prime}+a_{s}^{\prime}\right.$, $\left.\sum_{i=1}^{s-1} e_{i} c_{i}^{\prime}+c_{s}^{\prime}\right),\left(e_{1}, \ldots, e_{s-1}\right) \in\{0,1\}^{s-1}$ and the remaining intervals of the s-step are $\mathbb{R}_{e_{1}}^{\prime} \ldots e_{s}=\left[\sum_{i=1}^{s} e_{i} c_{i}^{\prime}, \sum_{i=1}^{s} e_{i} c_{i}^{\prime}+e_{s}^{\prime}\right]$, where
$\left(e_{1}, \ldots, e_{s}\right) \in\{0,1\}^{s},|P|=\lim _{s \rightarrow \infty} 2^{S_{a}},=1 / 2$. Let $F_{1}(x)=$ $\sum_{i=1}^{\infty} e_{2 i}(x) / 2^{i}$ if $x \in P$. Extending F_{1} linearly on each interval contiguous to P, we have F_{1} defined and continuous on $[0,3 / 4]$ (see [5]). If s is odd (resp. even) then F_{1} is linear and strictly decreasing (resp. constant) on each $O_{e_{1}}^{\prime} \ldots e_{s}$. Let $h: P \rightarrow Q, b(x)$ $=b\left(\sum_{i=1}^{\infty} e_{i}(x) c_{i}^{\prime}\right)=\sum_{i=1}^{\infty} e_{i}(x) c_{i}$. Extending b linearly on each interval contiguous to P we have b defined, continuous and incressing on $[0,3 / 4], h(0)=0, b(3 / 4)=1 ; b=$ constant $0 n$ each $0_{e_{1} \ldots \theta_{s-1}}$ if s is even; $b\left(P \cap R_{e_{1}}^{\left.\dot{e}_{1} \ldots e_{s}\right)}=Q \cap_{R_{1}} \ldots e_{s}\right.$; $b\left(R_{e_{1}}^{\prime} \ldots e_{s}\right)=R_{e_{1} \ldots e_{s}}$. We prove that $b \in A O$ on $[0,3 / 4]$. Since b is increasing it suffices to show that $\int_{0}^{3 / 4} b^{\prime}(x) d x=1$, bence $\int_{P} b^{\prime}(x) d x=|Q|$. The function b is derivable a.e. on P. Let $x_{0} \in P$.
 $\left|R_{e_{1}}^{\prime} \ldots e_{s}\right|=1$, bence $\int_{P} h^{\prime}(x) d x=|Q|$. Since $F_{1}(x)=F(b(x))$ and $F_{1} \in W$ on P (see Lemma 3 of [5]), by Tbeorem $6, F \in W$ on Q. b) Let $y \in[0,1]$. If \boldsymbol{y} is uniquely represented in base $2, \mathcal{y}=$
$\Sigma y_{i} / 2^{i}$, then $A_{y}=\{x \in Q: F(x)=y\}=\left\{x \in Q: e_{2 i}(x)=y_{i}\right\}$ is a nowbere perfect subset of \&. If y bas tro representations in base 2, $y=\sum y_{i} / 2^{i}=\sum y_{i} / 2^{i}$ then $A_{y}=\{x \in Q: F(x)=y\}=\{x \in Q:$ $\left.\theta_{2 i}(x)=y_{i}\right\} \cup\left\{x \in Q: \theta_{2 i}(x)=y_{i}^{i}\right\}$ is a nonempty perfect subset of Q.
c) By b) it follows that 0 is a derived number for \mathbb{F}_{Q} at $x \in Q$. Let $\mathbf{x}_{0} \in \mathbb{Q}$. Then for each $s \geqslant 1$ there exist $e_{1}, \ldots, \theta_{2 s}$ such that x_{C} ${ }^{R_{e}}{ }_{1} \ldots e_{2 s}$. Since $O\left(F ; \in \cap R_{e_{1} \ldots e_{2 s}}\right)=1 / 2^{s}$ and $\left(1 / 2^{s}\right) / a_{2 s} \rightarrow \infty$, $s \rightarrow \infty$ it follows that \mathbb{F}_{Q} bas finite or infinite derivative at no point $X_{0} \in Q$.
d) Let $x_{0} \in Q$, and for each $s \geqslant 1$, let $e_{1}, \ldots, e_{2 s}$ such that $x_{0} \in$ ${ }^{R} e_{1} \ldots e_{2 s}$. Then eitber (i) $F\left(x_{0}\right) \in\left[\sum_{i=1}^{S} e_{2 i}(x) / 2^{i}, \sum_{i=1}^{s} e_{2 i}(x) / 2^{i}+\right.$ $\left.1 / 2^{s+1}\right]$ or (ii) $F\left(x_{0}\right)\left[\sum_{i=1}^{S} e_{2 i}(x) / 2^{i}+1 / 2^{s+1}, \sum_{i=1}^{S} e_{2 i}(x) / 2^{i}+1 / 2^{s}\right]$.
Suppose for example (i). Let $E_{e_{1}} \ldots e_{2 s}=Q \cap\left(R_{e_{1}} \ldots e_{2 s} O 1 C 1 U\right.$
 $\left|R_{e_{1} \ldots \theta_{2 s}}\right| \longrightarrow 1 / 4$ and if $y_{s} \in E_{e_{1} \ldots \theta_{2 s}}$ then $\left|P\left(y_{s}\right)-F\left(x_{0}\right)\right| / a_{2 s} \geqslant$ $\left(1 / 2^{s+2}\right) / z_{2} \rightarrow \infty$, bence F has a finite approximate derivative at no point $x_{0} \in Q$.
e) Let $s=2 p-1, p \geqslant 1$, then

$$
\begin{align*}
& F\left(\sum_{i=1}^{s-1} e_{i} c_{i}+a_{s}\right)-F\left(\sum_{i=1}^{s-1} e_{i} c_{i}+c_{s}\right)=F\left(a_{2 p-1}\right)-F\left(c_{2 p-1}\right) \tag{15}\\
& =F\left(\sum_{k=2 p}^{\infty} c_{k}\right)=1 / 2^{p-1} .
\end{align*}
$$

Theorem 7. There exists a continuous function $f:[0,1] \rightarrow[0,1]$ aith the following properties: a) $f \in \mathbb{W}$; b) Fcr each $y \in[0,1]$,
$f^{-1}(y)$ is à nonempty perfect set; c) For each $x \in[0,1], f^{\prime}(x)$ does not exist (finite or infinite); d) f is approximately derivable at no point $x \in[0,1]$.

Proof. In what follows we use the notations introduced in the proof of Lemma 2. Let $I=[a, b] \subset[0,1]$ and let $b_{I}:[0,1] \rightarrow[a, b]$, $b_{I}(x)=(b-a) x+a$. Let $Q_{I}=b_{I}(Q)=a+(b-a) \cdot Q$. It follows that $\left|\dot{Q}_{I}\right|=(1 / 2) \cdot(b-a), a, b \in \mathbb{Q}_{I}$ and Q_{I} is a symmetric perfect nowbere dense subset of $[a, b]$, which can be obtained on $[a, b]$ exactly as Q was obtained on $[0,1]$. The open intervals deleted in the s-step of the construction of Q_{I} are $\left(O_{I}\right)_{e_{1} \ldots \theta_{s-1}}=0+(b-a) O_{\theta_{1} \ldots \theta_{S-1}}$, which are nonempty if and only if $s=2 p-1, p \geqslant 1$. In this case

$$
\begin{equation*}
\left(C_{I}\right)_{e_{1} \ldots e_{s-1}}=(b-a) \cdot\left(2 / 8^{p}\right) \tag{16}
\end{equation*}
$$

The remaining intervals of the s-step are

$$
\begin{equation*}
\left(R_{I}\right)_{e_{1} \ldots e_{s}}=\left\{+(b-a) R_{e_{1}} \ldots e_{s} .\right. \tag{17}
\end{equation*}
$$

Let $g_{I}=$ Fob ${ }_{I}^{-1}$. By Theorem 5, $g_{I} \in W$ on Q_{I}. (The graph of g_{I} is similar to the graph of F, see fig.l) We bave:

$$
\begin{align*}
& g_{I}(a)=0 ; \varepsilon_{I}(b)=1 ; g_{I}(I)=[0,1] \text { and } \tag{18}\\
& E_{I}\left(\left(R_{I}\right) e_{1} \ldots \theta_{2 s}\right)=g_{I}\left(Q_{I} \cap\left(R_{I}\right)_{e_{1}} \ldots \theta_{2 s}\right)=\left[\sum_{i=1}^{s} e_{2 i} / 2^{i},\right. \\
& \left.\sum_{i=1}^{s} e_{2 i} / 2^{i}+1 / 2^{s}\right] .
\end{align*}
$$

By (15), for $s=2 p-1$, we bave
(20) $\quad 0\left(\mathcal{E}_{I} ;\left(O_{I}\right)_{e_{1} \ldots \theta_{s-1}}\right)=1 / 2^{p-1}$.

Let $Q_{1}=Q_{\text {. We sball construct a strictly increasing sequence }}$ $Q_{k}, k \geqslant 2$, of nowbere dense perfect subsets of $[0,1]$ and denote
by $I_{n}^{k}=\left(a_{n}^{k}, b_{n}^{k}\right), k \geqslant 1, n \geqslant 1$, the intervals contiguous to Q_{k} witb respect to $[0,1]$. Let $A_{n}^{k}=\left[a_{n}^{k}, c_{n}^{k}\right], B_{n}^{k},=\left[c_{n}^{k}, b_{n}^{k}\right]$, where c_{n}^{k} is the middle point of I_{n}^{k}. Then $Q_{k}=Q_{k-1} \cup\left(\bigcup_{n=1}^{\infty}\left(Q_{A_{n}^{k}}^{k_{n}} \cup Q_{B_{n}^{k}}\right)\right)$. Let $P_{1}=F$ on $[0,1]$. Suppose that $f_{k-1}:[0,1] \longrightarrow[0,1], k \geqslant 2$ bas already been defined and let's define $f_{k}:[0,1] \longrightarrow[0,1]$ as follows: $f_{k}(x)=$ $f_{k-1}(x), x \in Q_{k-1} ; f_{k}(x)=f_{k-1}\left(a_{n}^{k-1}\right)+\left(f_{k-1}\left(c_{n}^{k-1}\right)-f_{k-1}\left(a_{n}^{k-1}\right)\right) \cdot$ $E_{A_{n}}^{k-1}(x), x \in A_{n}^{k-1} ; f_{k}(x)=f_{k-1}\left(c_{n}^{k-1}\right)+\left(f_{k-1}\left(b_{n}^{k-1}\right)-f_{k-1}\left(c_{n}^{k-1}\right)\right)$. $g_{B_{n}^{k-1}}(x), x \in B_{n}^{k-1}$. We prove that $\left\{f_{K}\right\}$ is an uniformly convergent sequence of continuous functions on $[0,1]$. Clearly $f_{1} \in \mathscr{C}$ on $[0,1]$. Suppose that $f_{k-1} \in \mathscr{C}, k \geqslant 2$ on $[0,1]$. Wie prove tbat $f_{k} \in \mathscr{C}$ on $[0,1]$. Since $f_{k}=f_{k-1}$ on Q_{k-1} it follcas that $f_{k} \in \mathcal{C}$ on $\dot{ष}_{k-1}$. We bave

$$
\begin{align*}
& f_{k}\left(a_{n}^{k-1}\right)=f_{k-1}\left(a_{n}^{k-1}\right) ; f_{k}\left(c_{n}^{k-1}\right)=f_{k-1}\left(c_{n}^{k-1}\right) ; f_{k}\left(b_{n}^{k-1}\right)= \tag{21}\\
& f_{k-1}\left(b_{n}^{k-1}\right) ; f_{k-1} \text { is linear on }\left[a_{n}^{k-1}, b_{n}^{k-1}\right] .
\end{align*}
$$

(See (18) and the definition of f_{k} on A_{n}^{k-1} and B_{n}^{k-1}.) Also,

$$
\begin{align*}
& f_{k}\left(A_{n}^{k-1}\right)=f_{k}\left(A_{n}^{k-1}\right)=\left[f_{k-1}\left(a_{n}^{k-1}\right), f_{k-1}\left(c_{n}^{k-1}\right)\right]^{*} \text { and } \tag{22}\\
& f_{k}\left(B_{n}^{k-1}\right)=f_{k-1}\left(B_{n}^{k-1}\right)=\left[f_{k-1}\left(c_{n}^{k-1}\right), f_{k-1}\left(b_{n}^{k-1}\right)\right]^{*},
\end{align*}
$$

where $[x, y]$ is either $[x, y]$ or $[y, x]$ (see (18)). By (21) and (22) $O\left(f_{k} ;\left[a_{n}^{k-1}, b_{n}^{k-1}\right]\right)=O\left(f_{k-1} ;\left[a_{n}^{k-1}, b_{n}^{k-1}\right]\right)$, bence $f_{k} \in \mathcal{C}$ on $[0,1]$. Suppose that $\left|f_{k-1}\left(a_{n}^{k-1}\right)-f_{k-1}\left(b_{n}^{k-1}\right)\right| \leqslant 1 / 2^{k-2}, k \geqslant 2$ and let's prove tbat

$$
\begin{equation*}
\left|f_{k}\left(a_{n}^{k}\right)-f_{k}\left(b_{n}^{k}\right)\right| \leqslant 1 / 2^{k-1} \tag{23}
\end{equation*}
$$

Let $\left(a_{n}^{k}, b_{n}^{k}\right)$ be an open interval of Q_{k}. Then $\left(a_{n}^{k}, b_{n}^{k}\right)$ is an open
interval eitber of (i) $Q_{A_{p}}^{k-1}$ cr of (ii) $Q_{B_{p}^{k-1}}$, for some natural number p. Suppose (i), then by (21) and (22) it follons that $\left|f_{k}\left(a_{n}^{k}\right)-f_{k}\left(b_{n}^{k}\right)\right| \leq\left|f_{k-1}\left(A_{p}^{k-1}\right)\right| \leq\left|f_{k-1}\left(a_{p}^{k-1}\right)-f_{k-1}\left(b_{p}^{k-1}\right)\right| / 2 \leqslant$ 1/2k-1. Since $f_{k}(x)-1_{k-1}(x)=0$ on $Q_{k-1} \cup\left(\bigcup_{n}^{\infty}\left\{e_{n}^{k-1}\right\}\right)$ (see (20) and the definition of f_{k}), by (21), (22) and (23), it follows tbat

$$
\begin{equation*}
\left|f_{k}(x)-f_{k-1}(x)\right| \leqslant 1 / 2^{k-1} \text { on }[0,1] \text {. Let } f(x)=\lim _{k \rightarrow \infty}\left(f_{k}(x)\right) \tag{24}
\end{equation*}
$$ Then by (24), $\mathrm{I}_{\mathrm{k}} \rightarrow \mathrm{P}$ [unif] on $[0,1]$, hence $f \in \mathcal{C}$ on $[0,1]$.

a) Since $f_{k}(x)=f(x)$ on Q_{k}, by Lemma $2, a$) it follows that $f \in W$ on Q_{K}. Since $\left|\cup Q_{K}\right|=1, f \in W$ on $[0,1]$.
b) Suppose that there exists $y_{0} \in[0,1]$ such that $E_{y_{0}}=\{x \in[0,1]$: $\left.f(x)=y_{0}\right\}$ bas an isolated point x_{0}. Since $f(x)=f_{k}(x)$ on Q_{k}, by Lemma $2, b$) it follows that $x_{0} \in[0,1]-\bigcup_{k=1}^{\infty} Q_{k}$. Since x_{0} is isolated, there exists $\delta>0$ such that $\left(x_{0}-f, x_{0}+f\right) \cap \mathrm{F}_{y_{0}}=\left\{x_{0}\right\}$. Let k be a natural number such that $I_{n_{k}}^{k} \subset\left(x_{0}-f, x_{0}+f\right)$. We may suppose Without loss of generality that $x_{c} \in A_{n_{k}}^{k}$. Let $z_{0}=g_{n_{k}}^{k}\left(x_{0}\right) \in[0,1]$. By Lemma $2, b) E_{z_{0}}=\left\{x \in Q_{n_{k}}^{k}: G_{A_{n_{k}}^{k}}(x)=z_{o}\right\}$ is a perfect nonempty set. But $F_{z_{0}} \subset A_{n_{k}}^{k} \subset\left(x_{0}-f, x_{0}+f\right)^{k}$ and $f\left(E_{z_{0}}\right)=\left\{y_{0}\right\}$, a contradiction.
c) If $x_{0} \in \cup Q_{k}$, since $f=f_{k}$ on Q_{k}, by Lemma $2, c$) it follious that $f^{\prime}\left(x_{0}\right)$ does not exist finite or infinite. Iet $x_{0} \in[0,1]$ $\left(\bigcup_{k=1}^{\infty} \partial_{k}\right)$. Then there exists a sequence of natural mabers $\left\{n_{k}\right\}$, $k \geqslant 1$, sucb that $x_{0}=\bigcap_{k=1}^{\infty} I_{n_{k}}^{k}$ and $I_{n_{1}}^{1} \supset I_{n_{2}}^{2} \supset \ldots$. For $\left\{n_{k}\right\}, k \geqslant 1$ there exists a sequence of natural numbers $\left\{p_{k}\right\}, k \geqslant 1$ sucb t bat

$$
\begin{equation*}
\left|I_{n_{k}}^{k}\right|=2 / 8^{p_{1}+\cdots+p_{k}},\left|A_{n_{k}}^{k}\right|=\left|B_{n_{k}}^{k}\right|=1 / 8^{p_{1}+\cdots+p_{k}} \text { and } \tag{25}
\end{equation*}
$$

$O\left(f ; I_{n_{k}}^{k}\right)=2 / 2^{p_{1}+\cdots+p_{k}}$, bence $O\left(f ; A_{n_{k}}^{k}\right)=O\left(f ; B_{n_{k}}^{k}\right)=1 / 2^{p_{1}+\cdots+p_{k}}$. Indeed, for n_{1} there exists $p_{1} \geqslant 1$ sucb that $d_{n_{1}}^{1}$ is an open interval from the step $2 p_{1}-1$ of the construction of Q_{1}, bence $\left|I_{n_{1}}^{1}\right|=2 / 8^{p_{1}}$. By (15), $O\left(f ; I_{n_{1}}^{1}\right)=\left|f_{1}\left(b_{n_{1}}^{1}\right)-f_{1}\left(a_{n_{1}}^{1}\right)\right|=1 / 2^{p_{1}-1}$. Oontinuing, for $n_{k}, k \geqslant 2$ there exists $p_{k} 1$ sucb that $I_{n_{k}}^{k}$ is an open interval from the step $2 p_{k}-1$ of the construction of $Q_{Q_{n_{k-1}}^{k-1}}$ (resp. $Q_{B_{n_{k-1}}^{k-1}}$) for $x_{0} \in A_{n_{k-1}}^{k-1}\left(\right.$ resp. $\left.x_{0} \in B_{n_{k-1}}^{k-1}\right)$. Hence $\quad\left|I_{n_{k}}^{k}\right|=\left|A_{n_{k-1}}^{k-1}\right| \cdot\left(2 / 8^{p_{k}}\right)=$ $2 / 8^{p_{1}+\cdots+p_{k-1}+p_{k}}$ and by (20) $O\left(f ; I_{n_{k}}^{k}\right)=O\left(f ; A_{n_{k-1}}^{k-1}\right) \cdot\left(2 / 2^{p_{k}-1}\right)=$ $2 / 2^{p_{1}+\cdots+p_{k}}$. By b) it follows that 0 is a derived number for f at x_{0}. By (25), $0\left(f_{i} I_{n_{k}}^{k}\right) /\left|I_{n_{k}}^{k}\right| \rightarrow \infty, k \rightarrow \infty$, hence $f^{\prime}\left(x_{0}\right)$ does not exist, finite or infinite.
d) If $x_{0} \in \cup Q_{k}$, since $f=f_{k}$ on Q_{k}, by Lemma $2, d$) it follows that $f_{a p}^{\prime}\left(x_{0}\right)$ does not exist finite. Let $x_{0} \in[0,1]-\left(U \mathbb{G}_{k}\right)$. Juppose that $f_{a p}^{\prime}\left(x_{0}\right)=t_{0}$. It follows that there exists a measurable set $E_{x_{0}}$ such that $d\left(\mathbb{E}_{x_{0}}, x_{0}\right)=1$ and $\lim _{x \rightarrow x_{0}}\left(f(x)-f\left(x_{0}\right)\right) /\left(x-x_{0}\right)=t_{0}$. (Here $d(E ; x)$ denotes the density of the set E at x_{0}) Let k be a natural number such tbat $\left|t_{0}\right|<4^{k-1} ;\left|s_{x_{0}} \cap J\right| /|J|>5 / 32$ for each interval J witb $x_{0} \in J,|J| \leqslant 1 / 8^{p_{1}+\cdots+p_{k}}$ and $\left|f(x)-f\left(x_{0}\right)\right|<$ $4^{k-1} \cdot\left|x-x_{0}\right|$, for $x \in E_{x_{0}} \cap J$. We may suppose without loss of eenerality that $x_{0} \in A_{n_{k}}^{k}$. By (19), eitber (i) $g_{A_{n_{k}}^{k}}\left(x_{0}\right) \in[0,1 / 2]$
or (ii) $g_{\mathbf{A}_{k}}\left(x_{0}\right) \in[1 / 2,1]$. Suppose for example (i). Let $H_{k}=$ $\left(R_{A_{n_{k}}^{k}}\right)_{0101} \cup\left(R_{A_{n_{k}}^{k}}\right)_{0111} \cup\left(R_{A_{n_{k}}^{k}}\right) 1101 \cup\left(R_{A_{n_{k}}^{k}}\right) 1111$ •Then $H_{k} \subset A_{n_{k}}^{k}$, $g_{A_{n_{k}}}\left(H_{k}\right) \in[3 / 4,1],\left|H_{k}\right| /\left|A_{n_{k}}^{k}\right|=4 \cdot a_{4}=5 / 3_{2} \xi_{,}$, benee. $\mathbf{K}_{0} \cap H_{k} \neq \varnothing$. By (18) and (25), $\left|f\left(c_{n_{k}}^{k}\right)-f\left(a_{n_{k}}^{k}\right)\right|=1 / 2^{p_{1}+\cdots \odot p_{k}}$. It follows that there exists $x \in E_{x_{0}} \cap H_{k}$ such that $\left|f(x)-f\left(x_{0}\right)\right| \geqslant(1 / 4)\left(1 / 2^{p_{1}+\ldots+p_{k}}\right)$. Hence $\left|f(x)-f\left(x_{0}\right)\right| /\left|A_{n_{k}}^{k}\right| \geqslant(1 / 4)\left(1 / 2^{p_{1}+\cdots+p_{k}}\right) \cdot 8^{p_{1}+\cdots+p_{k}} \geqslant 4^{k-1}$ and so $\left|f(x)-f\left(x_{0}\right)\right| \geqslant 4^{k-1} \cdot\left|x-x_{0}\right|$. For $J=\mathbb{A}_{n_{k}}^{k}$ we beve a contradiction.

We are indebted to Professor Solomon Marcus for bis belp. in preparing this article.

References

[1] Bary, N.: Mémoire sur la représentation finie des fonctions continues. Matb.Ann.,103 (1930), 185-248 and 598-653.
[2] Bruckner, A.M.: Differentiation of Real Functions. Lecture Notes in Mathematics, 659, Springer-Verlag, New York (1978).
[3] Cater,F.S.: On nondifferentiable wrintled functions. Real Analysis Excbange, 14 (1988-89), 175-188.
[4] Fne, G. and Ene, V.: Nonabsolutely Convergent Integrals. Teal Anslysis Brebange, 11 (1985-86), 121-135'
[5] Ene,V.: Construction of a wirinkled function. Real Analysis Excbange, 14 (1988-89), 224-227.
[6] Sne,V.: 1 study of Foran's conditions $A(N)$ and $B(N)$ and bis class \mathcal{F}. Real Analysis Exchange, 10(1985),194-211.
[7] Foran, J.: an extension of the Denjoy integral. Proc.Amer. Matb.Soc.,49 (1975), 359-365.
[8] Foran,J.: A Generalization of Absolute Continuity. Real Analysis Exchange, 5 (1979-80), 82-91*.
[9] Foran, J.: Continuous functions. Real Anmlyais Irchange, 2 (1977), 85-103.
[10] Foran, J.: On continuous functions witb grapbs of r-finite linear measure. Proc.Cambridge Pbilos.Soc.,76(1974),33-43.
[11] Foran,J.: Differentiation and Lusin's Condition (N). Real Analysis Exchance, 3 (1977-78), 34-37.
[12] Lee,C.N.: Some Hausdorff variants of absolute continuity, Banach's conditicn (S) and Lusin's condition (N), Real Analysis Exchange, 13 (1988), 404m419.
[13] Saks, S.: Theory of the integral. 2nd rev.ed. Monografie Matematyczne, 7 (1937), PWN, Warsaw.

Recaived 16 danuery, 1989

