On the Maximal Multiplicative Family for the Class of Quasicontinuous Functions

Let (X, T) be a topological space with the topology T. We say that a real function $f: X \rightarrow \mathrm{R}$ is quasicontinuous at a point $x \in X$ if for every $\varepsilon>0$ and for every $U \in T$ such that $x \in U$ there exists a nonempty set $V \in T$ such that $V \subset U$ and $|f(t)-f(x)|<\varepsilon$ for each $t \in V$. If Y is a nonempty set and A is a family of real functions on Y, then $N(\mathcal{A})=\{g: Y \rightarrow \mathbf{R} ; g f \in \AA$ for every $f \in \AA\}$ is called the maximal multiplicative class for $\AA([1])$. In [2] the following is proved:

If X is a complete metric space, Q is the family of all quasicontinuous real functions on X, then

$$
\begin{gathered}
N(Q)=\{f \in Q ; \text { if } x \notin C(f), \text { then } f(x)=0 \text { and } \\
\left.x \in C l\left(C(f) \cap f^{-1}(0)\right)\right\},
\end{gathered}
$$

where $C(f)$ denotes the set of all continuity points of f and $C l A$ is the closure of A.

In this article this theorem is generalized to real functions defined on topological spaces. The proof of this generalized theorem will follow from Remarks 3 and 4 and Theorem 1. Now let Q be the family of all quasicontinuous real functions on X.

Remark 1. $N(Q) \subset Q$.
Proof. If $g \in N(Q)$, then $g=g \cdot 1 \in Q$.
Remark 2. If f is continuous at $x \in X$, then $f g$ is quasicontinuous at x for every function $g: X \rightarrow \mathbf{R}$ quasicontinuous at x.

The proof of this remark is easy.
Remark 3. Let $f \in Q$. Suppose that $f(x)=0, x \notin C(f)$ and for every open neighborhood U of x there is a point $u \in C(f) \cap U$ such that $f(u)=0$. Then $f g$ is quasicontinuous at x for every $g \in Q$.

The proof of this remark is also easy.
Remark 4. If $f \in Q, x \notin C(f)$ and $f(x) \neq 0$, then there exists $g \in Q$ such that $f g$ is not quasicontinuous at x.

Proof. Because $f \in Q$ and $x \notin C(f)$, there exists $\varepsilon>0$ such that $x \in$ $C l(\operatorname{Int}(\{t \in X:|f(t)-f(x)|>\varepsilon\}))$, where Int denotes the interior operation. We can assume that $\varepsilon<|f(x)| / 2$. Let us put

$$
g(u)=\left\{\begin{array}{cc}
c \text { if } u=x & \text { or }(u \in C l(\operatorname{Int}(\{t \in X:|f(t)-f(x)| \geq \varepsilon\})) \\
& \text { and }|f(u)-f(x)| \geq \varepsilon) \\
1 / f(u) & \text { otherwise }
\end{array}\right.
$$

where $c>0$ is a number such that $c f(x) \neq 1$. Obviously g is quasicontinuous at each point $u \in C l(\operatorname{Int}(\{t \in X:|f(t)-f(x)| \geq \varepsilon\}))$ such that $|f(u)-f(x)| \geq \varepsilon$. Because $x \in \operatorname{Cl}(\operatorname{Int}(\{t \in X:|f(t)-f(x)|>\varepsilon\}))$, it is also quasicontinuous at x. Therefore g is quasicontinuous at each point u such that $g(u)=c$.

Let $u \neq x$ be a point at which $|f(u)-f(x)|<\varepsilon$. Let $\eta>0$ be a number such that $|f(x)|^{2} \eta / 4<\min (f(u)-f(x)+\varepsilon, f(x)-f(u)+\varepsilon)$ and let $U \in T$ be a neighborhood of u. Since $f \in Q$, there is a nonempty set $V \in T$ such that $V \subset U$ and $|f(t)-f(u)|<|f(x)|^{2} \eta / 4$ for every $t \in V$. Because $x \notin C(f)$, we can assume that $x \notin V$. We have $V \subset\{t \in X:|f(t)-f(x)|<\varepsilon\}$ and for every $t \in V$,

$$
\begin{aligned}
|g(t)-g(u)|= & |1 / f(t)-1 / f(u)|=|f(u)-f(t)| /|f(t) f(u)| \\
& <4|f(u)-f(t)| /|f(x)|^{2} \\
& <|f(x)|^{2} \eta /|f(x)|^{2}=\eta .
\end{aligned}
$$

Therefore g is quasicontinuous at u.
Analogously we show the quasicontinuity of the function g at points $u \notin$ $C l(\operatorname{Int}(\{t \in X:|f(t)-f(x)| \geq \varepsilon\}))$ at which $|f(u)-f(x)|=\varepsilon$. Hence $g \in Q$. But for $u \neq x$ either $f g(u)=1$ or $f g(u) \leq c(f(x)-\varepsilon)$ or $f g(u) \geq c(f(x)+\varepsilon)$, so $f g$ is not quasicontinuous at any point x for which $f g(x)=c f(x)$. This completes the proof.

THEOREM 1. Let $f \in Q$. If there exists a nonempty set $U \in T$ such that $A=\{u \in U: f(u)=0\} \neq \emptyset$ and $f(u) \neq 0$ for every point $u \in C(f) \cap C l U$, then there exists a function $g \in Q$ such that $f g \notin Q$.

Proof. Because $f \in Q$, and $f(u) \neq 0$ at each point $u \in C(f) \cap C l U$, $C l(\{u \in C l U: f(u)=0\})$ is nowhere dense. Let

$$
B(x)=\{y \in \mathbf{R}: \text { for every } \varepsilon>0
$$

$$
x \in C l(\operatorname{Int}(\{u:|f(u)-y|<\varepsilon\}))
$$

for $x \in X$. Let $A_{1}=\{u \in A: B(u)-\{0\} \neq \emptyset\}$. For every $u \in A_{1}$ let $a(u) \in B(u)-\{0\}$ be fixed. We define the function g as follows:

$$
g(x)= \begin{cases}1 & \text { for each } \\ 1 / f(x) & \text { for each } \quad x \in C l(X-C l U) \\ 1 / a(x) & \text { for each } x \in C l(X-C l U) \text { with } f(x) \neq 0 \\ 0 & \text { otherwise. }\end{cases}
$$

We shall prove that $g \in Q$. Obviously g is quasicontinuous at each point $x \in$ $C l(X-C l U)$. Let $x \in C l U-C l(X-C l U)$ be a point at which $f(x) \neq 0$, let V be an open neighborhood of x and let $\varepsilon>0$. Since $f \in Q$, there is a nonempty open set $W \subset V-C l(X-C l U)-C l A$ such that

$$
|f(u)-f(x)|<\min \left(|f(x)| / 2,\left(|f(x)|^{2} / 2\right) \varepsilon\right)
$$

for every $u \in W$. We have for all $u \in W \subset V$,

$$
\begin{aligned}
|g(u)-g(x)| & =|1 / f(u)-1 / f(x)|=|f(u)-f(x)| /|f(u)||f(x)| \\
& <\left(|f(x)|^{2} \cdot \varepsilon / 2\right) /\left(|f(x)|^{2} / 2\right)=\varepsilon
\end{aligned}
$$

and g is quasicontinuous at x.
Now let $x \in A_{1}-C l(X-C l U)$, let V be an open neighborhood of x and let $\varepsilon>0$. Since $a(x) \in B(x)$,

$$
x \in C l\left(\operatorname{Int}\left(\left\{u \in X:|f(u)-a(x)|<\min \left(|a(x)| / 2,|a(x)|^{2} \varepsilon / 2\right)\right\}\right)\right) .
$$

There exists a nonempty open set $W \subset V-C l(X-C l U)-C l A$ such that $|f(u)-a(x)|<\min \left(|a(x)| / 2,|a(x)|^{2} \varepsilon / 2\right)$. We have for $u \in W$

$$
\begin{aligned}
|g(u)-g(x)| & =|1 / f(u)-1 / a(x)|=|f(u)-a(x)| /|f(u)||a(x)| \\
& <|a(x)|^{2} \varepsilon /\left(2|a(x)|^{2} / 2\right)=\varepsilon
\end{aligned}
$$

and g is quasicontinuous at x.
Suppose that $g(x)=0$. Let V be an open neighborhood of x and let $\varepsilon>0$. Observe that in this case $B(x)-\{0\}=\emptyset$. Let $a>0$ be such that $1 / a<\varepsilon / 2$. We will show that there is a point $u \in V$ such that $|f(u)|>a$. Indeed, if $|f(t)| \leq a$ for every $t \in V$, then for each $\delta>0(\delta<a)$ and for each $y \in[-a, a]-(-\delta, \delta)$ there is an open neighborhood $W(y)$ of x and a positive number $\eta(y)$ such that

$$
\operatorname{Int}(\{t \in X:|f(t)-y|<\eta(y)\}) \cap W(y)=\emptyset .
$$

Because f is quasicontinuous,

$$
\begin{equation*}
\{t \in X:|f(t)-y|<\eta(y)\} \cap W(y)=\emptyset . \tag{*}
\end{equation*}
$$

There are $y_{1}, y_{2}, \ldots, y_{n} \in[-a, a]-(-\delta, \delta)$ such that $\bigcup_{i=1}^{n}\left(y_{i}-\eta\left(y_{i}\right), y_{i}+\eta\left(y_{i}\right)\right) \supseteq$ $[-a, a]-(-\delta, \delta)$. Put $W_{0}=\bigcap_{i=1}^{n} W\left(y_{i}\right)$ and let $u \in W_{0}$.

If $f(u) \in[-a, a]-(-\delta, \delta)$, then there is $i_{0} \leq n$ such that

$$
f(u) \in\left(y_{i_{0}}-\eta\left(y_{i_{0}}\right), y_{i_{0}}+\eta\left(y_{i_{0}}\right)\right),
$$

contradicting (*). So $|f(u)|<\delta$ for every $u \in W_{0}$ and f is continuous at x, contrary to $f(x)=0$ and $x \in C l U$. So there exists a point $u \in V$ such that $|f(u)|>a$. But f is quasicontinuous at u. Therefore there is a nonempty open set $W \subset V$ such that $|f(t)|>a$ for every $t \in W$. Consequently $|g(t)-g(x)|=$ $1 /|f(t)|<1 / a<\varepsilon$ for every $t \in W$ and g is quasicontinuous at x. So $g \in Q$. But

$$
f g(x)=\left\{\begin{array}{lll}
f(x) & \text { for each } & x \in C l(X-C l U) \\
1 & \text { for each } & x \in C l U-C l(X-C l U)-A \\
0 & \text { for each } & x \in A,
\end{array}\right.
$$

or $f g$ is not quasicontinuous at any point $x \in U \cap A$. This completes the proof.
Example 1. Let X be the interval $[0,1]$ and let $f(x)=x+|\sin (1 / x)|$ for all $x \in(0,1)$ and $f(0)=f(1)=0$.

The topology on X is the one for which the sets $[0, r), 0<r<1$, form a base of neighborhoods of 0 , the sets $(x-r, x+r) \cap(0,1), r>0$, form a base of neighborhoods of x for $x \in(0,1)$; and the sets $\{1\} \cup((0, r) \cap\{u \in X:|f(u)-u|<$ $u\}$), $0<r<1$, form a base of neighborhoods of 1 . Note that $f \in Q$ and f is continuous at each point $x \in X-\{0\}$. There is an open neighborhood $V \subset[0,1)$ of 0 such that $f(u) \neq 0$ for each $u \in V-\{0\}$. (It is obvious that $f(1)=0$ and $1 \in C l V-\{0\}$.) Let $g \in Q$. It follows from Remark 2 that $f g$ is quasicontinuous at each point $x \in(0,1]$. We shall show also that it is quasicontinuous at 0 . Let $\varepsilon>0$ and let U be an open neighborhood of 0 . Because $f g(1)=0$ and $f g$ is qusicontinuous at 1 , for every $V=\{1\} \cup((0, r) \cap\{u \in X:|f(u)-u|<u\})$ such that $(0, r) \subset U$ there is an open nonempty set $W \subset V$ with $|f g(u)-f g(1)|<\varepsilon$ for every $u \in W$. Because $f g(1)=f g(0)$, the proof is complete.

Example 2. Let $X=\mathbf{R}^{2}$ and let T be a topology on X such that: if $(x, y) \neq(0,0)$, then U belongs to a base of neighborhoods of (x, y) iff U is Euclidean open and $(0,0) \notin U . ;\left(U_{n}\right)_{n=1}^{\infty}$ is a base of neighborhoods of $(0,0)$ iff

$$
U_{n}=\left\{(x, y) \in R^{2}: x=r \cos \varphi, y=r \sin \varphi, 0 \leq r<1,0 \leq \varphi \leq 2 \pi / n\right\}
$$

For $n=2,3, \ldots$ let K_{n} be the closed ball with center $A_{n}=(\cos 2 \pi / n, \sin 2 \pi / n)$ and with radius $r_{n}=\operatorname{dist}\left(A_{n}, A_{n+1}\right) / 8$. Put

$$
f(x, y)= \begin{cases}0 & \text { if } \quad(x, y)=(0,0) \\ \operatorname{dist}\left((x, y), A_{n}\right) / r_{n} & \text { if } \quad(x, y) \in K_{n}(n=2,3, \ldots) \\ 1 & \text { otherwise. }\end{cases}
$$

Observe that f is quasicontinuous at each point $(x, y) \in X$ and continuous at each point $A_{n}(n=2,3, \ldots)$. Moreover (0,0) is a discontinuity point of $f, f(0,0)=0$ and for every neighborhood U_{n} of $(0,0), f(x, y) \neq 0$ for $(x, y) \in U_{n}-\{(0,0)\}$ and $f\left(A_{n}\right)=0$ and $A_{n} \in C l U_{n}$. So for every open neighborhood V of $(0,0)$ there is a continuity point $(x, y) \in C l V$ of f at which $f(x, y)=0$. Define

$$
g(x, y)= \begin{cases}1 / f(x, y) & \text { if }(x, y) \in U_{1} \cap K_{n} \quad(n=2,3, \ldots) \\ 1 & \text { otherwise }\end{cases}
$$

Then $g \in Q$ and $f g$ is not quasicontinuous at $(0,0)$.
Remark 5. Let $M_{b}(Q)=\{f: X \rightarrow \mathbf{R}$; for every bounded function $g \in$ $Q, f g \in Q\}$. Then $f \in M_{b}(Q)$ iff $f \in Q$ and for each discontinuity point x of f we have $f(x)=0$.

This remark is obvious.
Remark 6. Example 1 shows that the requirement in Theorem 1 that $f(u) \neq$ 0 at all points $u \in C(f) \cap C l U$ cannot be relaxed. Example 2 shows that the existence of points $u \in C(f) \cap f^{-1}(0) \cap C l U$ for every neighborhood U of x in Theorem 1 is not a sufficient condition for the quasicontinuity of $f g$ at x with $g \in Q$.

REFERENCES

(1) Bruckner, A.M., Differentiation of real functions, Lect. Note in Math. 659, Springer-Verlag, 1978.
(2) Grande, Z., Sołtysik, L., Some remarks on quasicontinuous real functions, Problemy Matematyczne No. 10 (in print).

Raceived Novamber 7, 1988

