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 On the Maximal Multiplicative Family for the
 Class of Quasicontinuous Functions

 Let ( X , T) be a topological space with the topology T. We say that a real
 function / : X - ► R is quasicontinuous at a point x € X if for every e > 0 and
 for every U € T such that x € U there exists a nonempty set V € T such that
 V C U and |/(i) - /(x)| < e for each t € V. If F is a nonempty set and A
 is a family of real functions on Y, then N(A) = {g : Y - ► R; <7/ € /I for every
 / € A} is called the maximal multiplicative class for A ([l]) . In [2] the following
 is proved:

 If X is a complete metric space, Q is the family of all quasicontinuous real
 functions on X , then

 N{Q) = {/€(?; if x C(f), then f(x) = 0 and
 z e CI (C(/) n /-'(0))},

 where C(f) denotes the set of all continuity points of / and Cl A is the closure
 of A.

 In this article this theorem is generalized to real functions defined on topo-
 logical spaces. The proof of this generalized theorem will follow from Remarks
 3 and 4 and Theorem 1. Now let Q be the family of all quasicontinuous real
 functions on X.

 Remark 1. N(Q) c Q.

 Proof. If g € N(Q), then g = g • 1 € Q.

 Remark 2. If / is continuous at x e X, then f g is quasicontinuous at x for
 every function g : X - ► R quasicontinuous at x.

 The proof of this remark is easy.

 Remark 3. Let / € Q. Suppose that /(x) = 0, x £ C(f) and for every open
 neighborhood U of x there is a point u € C(/) n U such that /( u) = 0. Then fg
 is quasicontinuous at x for every g € Q.
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 The proof of this remark is also easy.

 Remark 4. If f € Q, x & C(f) and f(x) ý then there exists g G Q such
 that fg is not quasicontinuous at x.

 Proof. Because / G Q and x £ C(/), there exists e > 0 such that x G
 C7(Int({í G X : |/(í) - f(x)' > e})), where Int denotes the interior operation.
 We can assume that e < |/(x)|/2. Let us put

 c if u = x or (u G C7(Int({i G X : | f(t) - f(x) ' > e}))
 g(u) = < and I /(«) ~ f{¿) ' > e)

 l//(u) otherwise

 where c > 0 is a number such that cf(x) ý 1* Obviously g is quasicontinuous at
 each point u G C7(Int({í G X : |/(ť) - f(x)' > e})) such that | f(u) - f{x)' > e.
 Because x G C/(Int({ř G X : ' f(t) - f(x)' > e})), it is also quasicontinuous at x.
 Therefore g is quasicontinuous at each point u such that <?(u) = c.

 Let u ^ i be a point at which 'f(u) - f(x)' < e. Let rj > 0 be a number
 such that |/(x)|277/4 < min(/(u) - f(x) + e, f(x) - f(u) + e) and let U G T be
 a neighborhood of u. Since / G Q, there is a nonempty set V G T such that
 V G U and |/(í) - /(u)ļ < |/(x)|2t7/4 for every t G V. Because x ^ C(f), we
 can assume that x £ V. We have V C {i G X : |/(í) - /(x)| < e} and for every
 tev,

 |íW-y(«)l = |i//W-i//WI = l/(«)-/WI/l/W/(«)l
 <4|/(u)-/(í)|/|/(*)|2
 < 'f{x)'2v/'f{x)'2 = V-

 Therefore g is quasicontinuous at u.
 Analogously we show the quasicontinuity of the function g at points u £

 C/(Int({í G X : |/(í) - /(x)| > e})) at which |/(u) - f(x)' = e. Hence g G Q.
 But for u x either fg{u) = 1 or fg(u) < c(/(x) - e) or fg(u) > c(f(x) + e), so
 fg is not quasicontinuous at any point x for which fg(x) = c/(x). This completes
 the proof.

 THEOREM 1. Let / G Q. If there exists a nonempty set U €T such that
 A = {u G U : /(u) = 0} 0 and /(u) ý 0 f°r every point u G C(f) fi Cl U> then
 there exists a function g G Q such that fg £ Q.

 Proof. Because / G Q, and /(u) ^ 0 at each point u G C(f) D Cl U,
 C/({u G Cl U : f(u) = 0}) is nowhere dense. Let

 B{x) = {y G R : for every e > 0,
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 X e C7(Int({tt : |/(u) - y| < e}))

 for z € X. Let A' = {ti € A : B(u) - {0} ^ 0}. For every u 6 Ai let
 a(u) 6 B (u) - {0} be fixed. We define the function g as follows:

 ' 1 for each xe Cl{X-ClU)

 Q(X) ( ' ~ _ J !//(*) for each xeciu- Cl(X - Cl U ) with f{x) Ï 0
 Q(X) ( ' _ ~ | l/a(x ) for each x e Ax - Cl{X - Cl U )

 k 0 otherwise.

 We shall prove that g € Q. Obviously g is quasicontinuous at each point x G
 Cl{X - Cl U). Let x e Cl U - Cl(X - Cl U) be a point at which f{x) ± 0, let V
 be an open neighborhood of x and let e > 0. Since / € Q, there is a nonempty
 open set W C V - Cl{X - Cl U) - Cl A such that

 |/(«)-/(»)|<min(|/(x)|/2,(|/(«)|V2)e)

 for every u G W. We have for all u € W C V,

 |*(«)-*(*)| = |l//(tt) - l//(x)| = |/(tt) - /(s)|/|/(tt)||/(x)|
 < (|/(x)|2 • e/2)/(|/(x)|2/2) = e

 and g is quasicontinuous at x.
 Now let x E Ai - Cl(X - Cl U), let V be an open neighborhood of x and let

 e > 0. Since a(x) € B(x),

 x € C7(Int({u € X : 'f[u) - a(x)| < min(|a(x)|/2, |a(x)|2e/2)})).

 There exists a nonempty open set W C V - Cl(X - ClU) - Cl A such that
 |/(u) - a(x)| < min(|a(x)|/2, |a(x)|2e/2). We have for u € W

 Itf(tt) - 0(*)l = |1 //(«) - 1/«(«)| = |/(tt) - a(«)|/|/(tt)||a(«)|
 < |a(x)|V(2|a(x)|2/2) = e

 and g is quasicontinuous at x.
 Suppose that g{x) = 0. Let V be an open neighborhood of x and let e > 0.

 Observe that in this case B(x) - {0} = 0. Let a > 0 be such that 1 /a < e/2. We
 will show that there is a point u € V such that |/(u) | > a. Indeed, if |/(t)| < a
 for every t € V, then for each 6 > 0 (6 < a) and for each y € [-a, a] - (- S,S)
 there is an open neighborhood W (y) of x and a positive number rj(y) such that

 Int({i e X : I f(t) - y' < r?(y)}) n^(y)= 0.
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 Because / is quasicontinuous,

 (*) 0 e X : |/(«) - y| < f|(y)} n W(y) = 0.

 There are yu y2, . . . , y„ € [-a, a] - (-5, 6) such that U?=i(y. - *l(Pi),yi + v(vi)) 2
 [-a, a] - (-5,5). Put Wo = fl?=i W(y<) and let u € Wo.

 If /(u) € [-a, a] - (-6,6), then there is t'o < n such that

 /(«) € (y<o - VÍUiohVio + ^(y<o))>

 contradicting (*). So |/(u)| < 6 for every u G Wo and / is continuous at x,
 contrary to /(x) = 0 and x G ClU. So there exists a point u G V such that
 |/(u)| > a. But / is quasicontinuous at u. Therefore there is a nonempty open
 set W C V such that |/(ť)| > a for every t G W. Consequently 'g(t) - y(x)| =
 l/|/(í)| < 1 /a < e for every t G W and g is quasicontinuous at x. So g G Q. But

 ' /(«) for each x 6 Cl(X - Cl U )
 fg(x) = I 1 for each xeClU- Cl{X -ClU) -A

 0 for each x G A,

 or fg is not quasicontinuous at any point x G U fi A. This completes the proof.

 Example 1. Let X be the interval [0, 1] and let f(x) = x + | sin(l/x) | for all
 x G (0, 1) and /(0) = /(1) = 0.

 The topology on X is the one for which the sets [0,r), 0 < r < 1, form a
 base of neighborhoods of 0, the sets (x - r,x + r) fl (0, 1), r > 0, form a base of
 neighborhoods of x for x G (0, 1); and the sets {1} U ((0, r) D {u G X : |/(tt) - u| <
 u}), 0 < r < 1, form a base of neighborhoods of 1. Note that / G Q and / is
 continuous at each point x G X - {0}. There is an open neighborhood V C [0, l)
 of 0 such that f(u) ^0 for each u G V - {O}. (It is obvious that /(1) = 0 and
 1 G Cl V - {0}.) Let g G Q. It follows from Remark 2 that fg is quasicontinuous
 at each point x G (0,1]. We shall show also that it is quasicontinuous at 0. Let
 e > 0 and let U be an open neighborhood of 0. Because fg( 1) = 0 and fg is
 qusicontinuous at 1, for every V = {1} U ((0,r) n {u G X : |/(u) - u| < u}) such
 that (0,r) C U there is an open nonempty set W C V with | fg(u) - /<7(1) | < e
 for every u G W. Because fg( 1) = fg( 0), the proof is complete.

 Example 2. Let X = R2 and let T be a topology on X such that: if
 (x, y) ý (0,0), then U belongs to a base of neighborhoods of (x,y) iff U is
 Euclidean open and (0,0) ^ Z7.; (t/n)^Ļ1 is a base of neighborhoods of (0,0) iff

 Un = {(x,y) G R2 : x = rcos<p, y = rsin<p, 0 < r < 1, 0 <<p < 2ir/n}.
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 For n = 2, 3, ... let Kn be the closed ball with center An = (cos 27r/n, sin 27r/n)
 and with radius rn = dist(An, An+1)/8. Put

 Í0 if (x,y) = (0,0)
 /(x, y) = S dist((x,y),An)/rn if (x,y) G Kn (n = 2,3,...)

 [ 1 otherwise.

 Observe that / is quasicontinuous at each point (x, y) € X and continuous at each
 point An (n = 2, 3, . . .). Moreover (0,0) is a discontinuity point of /, /(0,0) = 0
 and for every neighborhood Un of (0, 0), /(x, y) ^ 0 for (x, y) €Un - {(0, 0)} and
 f{An) = 0 and An 6 CI Un. So for every open neighborhood V of (0,0) there is
 a continuity point (x, y) G CIV of / at which / (x, y) = 0. Define

 „(rr „' - Í 1/f(x^y) if {x,y)eUiDKn (n = 2,3, . . .)
 S „(rr { iV) „' - ļ i otherwise

 Then g E Q and fg is not quasicontinuous at (0,0).

 Remark 5. Let M¡,(Q) = {/ : X - ► R; for every bounded function g G
 Q, fg G Q}. Then / G Mj(Q) iff / € Q and for each discontinuity point x of /
 we have /(x) - 0.

 This remark is obvious.

 Remark 6. Example 1 shows that the requirement in Theorem 1 that f(u) ý
 0 at all points u G C(/) D Cl U cannot be relaxed. Example 2 shows that the
 existence of points u G C(/) n /-1( 0) C'CIU for every neighborhood U of x in
 Theorem 1 is not a sufficient condition for the quasicontinuity of fg at x with
 g G Q.

 REFERENCES

 (1) Bruckner, A.M., Differentiation of real functions, Lect. Note in Math. 659,
 Springer- Verlag, 1978.

 (2) Grande, Z., Sołtysik, L., Some remarks on quasicontinuous real functions,
 Problemy Matematyczne No. 10 (in print).

 Received November 7, Í988

 441


	Contents
	p. 437
	p. 438
	p. 439
	p. 440
	p. 441

	Issue Table of Contents
	Real Analysis Exchange, Vol. 15, No. 2 (1989-90) pp. 420-777
	Front Matter
	CONFERENCE ANNOUNCEMENTS [pp. 422-422]
	ERRATA: THE PACKING DIMENSION OF A TYPICAL CONTINUOUS FUNCTION IS 2 [pp. 423-423]
	TOPICAL SURVEY
	Porosity in Convexity [pp. 424-436]

	RESEARCH ARTICLES
	On the Maximal Multiplicative Family for the Class of Quasicontinuous Functions [pp. 437-441]
	ORDERED FAMILIES OF BAIRE-2-FUNCTIONS [pp. 442-444]
	Finite Representation of Continuous Functions, Nina Bary's Wrinkled Functions and Foran's Condition M. [pp. 445-469]
	The algebra generated by derivatives which are continuous almost everywhere [pp. 470-482]
	THE STRUCTURE OF ω-LIMIT SETS FOR CONTINOUS FUNCTIONS [pp. 483-510]
	EXTENSIONS OF DARBOUX FUNCTIONS [pp. 511-547]
	FUNCTIONS WHOSE LEVEL SETS ARE ALL PERFECT [pp. 548-558]
	ON SOME QUESTIONS RAISED BY J. FORAN [pp. 559-581]
	Darboux Functions with a Perfect Road [pp. 582-591]
	ON ω-LIMIT SETS FOR VARIOUS CLASSES OF FUNCTIONS [pp. 592-604]
	On Sets of Points of Approximate Semicontinuity in Euclidean Spaces [pp. 605-621]
	INTERVALS OF FINITELY ADDITIVE SET FUNCTIONS [pp. 622-643]
	On Functions Discontinuous on Countable Sets [pp. 644-651]
	Convexity Theorems for Generalized Riemann Derivatives [pp. 652-674]
	LOCAL CONVEX HULLS OF A CURVE, AND THE VALUE OF ITS FRACTAL DIMENSION [pp. 675-695]

	INROADS
	LIPSCHITZIAN HOMEOMORPHISMS WITH LARGE SETS OF DIRECTIONAL DERIVATIVES [pp. 696-703]
	Some Applications of an L¹ Version of the Gauss Integral Theorem [pp. 704-709]
	ON LEVINSON'S INEQUALITY [pp. 710-712]
	A FURTHER EXTENSION OF A RESULT OF BORWEIN AND DITOR [pp. 713-723]
	ANOTHER LOOK AT A CONVERGENCE THEOREM FOR THE HENSTOCK INTEGRAL [pp. 724-728]
	ON MINIMAL CONVEX USCO AND MAXIMAL MONOTONE MAPS [pp. 729-742]
	AN ANALOGUE OF CHARZYŃSKI'S THEOREM [pp. 743-753]
	ON ACG FUNCTIONS [pp. 754-759]
	A CONVERSE TO A THEOREM OF SIERPINSKI ON ALMOST SYMMETRIC SETS [pp. 760-767]
	A historical note on the measurability properties of symmetrically continuous and symmetrically differentiable functions [pp. 768-771]
	A THREE-DART RESPONSE TO AN ARGUMENT OF BAGEMIHL [pp. 772-776]

	QUERIES [pp. 777-777]
	Back Matter



