John C. Morgan II, California State Polytechnic University, Pomona, California 91768

NOTE ON POINT SET THEORY

A large number of analogies between Baire category and Lebesgue measure are unified and generalized in [3]. Here an additional analogy established in [5] is generalized to perfect category bases (X, \mathcal{C}) , where X is a dense-initself complete metric space. For definitions and properties used below refer to [1]-[4].

Theorem. For any given sequence of Baire sets, there exists in each abundant Baire set a denumerable set which cannot be represented as the limit of any subsequence of the given sequence.

Proof. Let $\langle E_n \rangle_{n \in \mathbb{N}}$ be a given sequence of Baire sets and let S be an abundant Baire set. According to the Fundamental Theorem, there exists a region A in which S is abundant everywhere. By Theorem 1.III.2 of [3] we have

$$A - S = \bigcup_{i=1}^{\infty} T_i$$

where each set T_i is a singular set. We proceed to determine a dyadic schema of subregions A_{σ} of A, where σ varies over all finite sequences of elements of the set $\beta = \{0,1\}$.

Define A_0 and A_1 to be two disjoint subregions of A each of which has diameter ≤ 1 and is disjoint from the set T_1 . For fixed $\beta \in \mathbb{B}$ we denote by $R_{\beta,1}$ the first one of the sets E_1 , $X-E_1$ which is abundant in A_{β} and choose a subregion C_{β} of A_{β} in which $R_{\beta,1}$ is abundant everywhere. Since $R_{\beta,1}$ is a Baire set we have

$$C_{\beta} - R_{\beta,1} = \bigcup_{i=1}^{\infty} T_{\beta,i}$$

where each set $^T_{\beta,i}$ is singular. We then define $^A_{\beta 0}$ and $^A_{\beta 1}$ to be two disjoint subregions of $^C_{\beta}$ each of which has diameter $\leq \frac{1}{2}$ and is disjoint from T_1 , T_2 , $^T_{\beta,1}$ and $^T_{\beta,2}$.

Assume $m \in \mathbb{N}$ and that for $\sigma \in \mathbb{B}^m$ and all $i \in \mathbb{N}$ we have already determined the set $R_{\sigma,m}$, the singular sets $T_{\sigma,i}$, and regions $A_{\sigma 0}$, $A_{\sigma 1}$. Fix $\beta \in \mathbb{B}^{m+1}$. Let $R_{\beta,m+1}$ denote the first one of the sets E_{m+1} , $X-E_{m+1}$ which is abundant in A_{β} and let C_{β} be a subregion of A_{β} in which $R_{\beta,m+1}$ is abundant everywhere. Then

$$C_{\beta} - R_{\beta,m+1} = \bigcup_{i=1}^{\infty} T_{\beta,i}$$

where each set $T_{\beta,i}$ is singular. Define $A_{\beta 0}$ and $A_{\beta 1}$ to be two disjoint subregions of C_{β} each of which has diameter $\leq \frac{1}{m+2}$ and is disjoint from all previously defined sets T with index $i \leq m+2$.

Let

$$P = \bigcap_{m=1}^{\infty} \bigcup_{\sigma \in \mathbb{R}^m} A_{\sigma}$$

be the perfect set obtained from the dyadic schema thus determined and let D be a denumerable subset of P which is everywhere dense in P. It is clear that $D \subset A \cap S$.

For each $m \in \mathbb{N}$ define

$$P_{m} = \bigcup \{A_{\sigma 0} \cup A_{\sigma 1} : \sigma \in \mathbb{B}^{m} \text{ and } R_{\sigma, m} = E_{m}\}$$

$$Q_{m} = \bigcup \{A_{\sigma 0} \cup A_{\sigma 1} : \sigma \in \mathbb{B}^{m} \text{ and } R_{\sigma, m} = X - E_{m}\}$$

Then

$$P = \bigcap_{m=1}^{\infty} (P_m \cup Q_m)$$

Because P is disjoint from all the sets $T_{\sigma,i}$, for all $\sigma \in \mathbb{B}^m$ and all $i \in \mathbb{N}$, we have $P \subset R_{\sigma,m}$ so that

$$P \cap P_m \subset E_m$$
 and $P \cap Q_m \subset X - E_m$

This implies

$$P - E_{m} = [P \cap (P_{m} \cup Q_{m})] - E_{m}$$
$$= [(P \cap P_{m} \cap E_{m}) \cup (P \cap Q_{m})] - E_{m}$$
$$= P \cap Q_{m}$$

for every $m \in \mathbb{N}$.

Suppose now that there did exist a subsequence $\langle E_{n_k} \rangle_{k \in \mathbb{N}}$ of the sequence $\langle E_{n_k} \rangle_{n \in \mathbb{N}}$ such that

$$D = \lim_{k} E_{n_{k}}$$

Then it follows that

$$P - D = \lim_{k} (P - E_{n_k})$$

As seen from the preceding paragraph, each of the sets P—E is a closed set. Hence, the set

$$P-D = \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} (P-E_{n_k})$$

is an \mathcal{F}_{σ} -set. But, D being a denumerable set everywhere dense in the perfect set P, this leads to the contradiction that P is of the first category in itself!

REFERENCES

- [1] J.C. Morgan II, The absolute Baire property. Pacific Journal of Mathematics 65(1976), 421-436.
- [2] ------, On the general theory of point sets, II. Real Analysis Exchange 12(1986-87), 377-386.
- [3] ______, Point Set Theory. Pure and Applied Mathematics: A
 Series of Monographs and Textbooks, Volume 131. Marcel
 Dekker, Inc. New York and Basel (to appear).
- [4] ----- , Survey of point set theory 1989. (available from the author)
- [5] W. Sierpiński, Sur les bases dénombrables de la famille de tous les ensembles linéaires dénombrables. Sprawozdania z posiedzeń Towarzystwa Naukowego Warszawskiego, Wydział III 42(1949), 182-184. [reproduced in Oeuvres Choisies, Vol.III, p.621-622. Państwowe Wydawnictwo Naukowe, Warszawa 1976]

Received July 17, 1989