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 NOTE ON POINT SET THEORY

 A large number of analogies between Baire category and Lebesgue measure

 are unified and generalized in [3]. Here an additional analogy established

 in [5] is generalized to perfect category bases (X,^ ), where X is a dense-in-
 itself complete metric space. For definitions and properties used below

 refer to [l]-[4].

 Theorem. For any given sequence of Baire sets, there exists in each abundant

 Baire set a denumerable set which cannot be represented as the limit of any

 subsequence of the given sequence.

 Proof. Let neļļ'ļ a ^iven sequence of Baire sets and let S be an abun-
 dant Baire set. According to the Fundamental Theorem, there exists a region A

 in which S is abundant everywhere. By Theorem 1.III.2 of [3] we have
 00

 A-S = U T
 i=l

 where each set T^ is a singular set. We proceed to determine a dyadic
 schema of subregions A^ of A, where O varies over all finite sequences of
 elements of the set 1ß = {0,1}.

 Define A^ and A^ to be two disjoint subregions of A each of which has

 diameter <1 and is disjoint from the set T^. For fixed 3 ^ IB we denote by ^

 the first one of the sets E^, X - which is abundant in A^ and choose a sub-
 region C0 of k0 in which RD - is abundant everywhere. Since R0 - is a Baire

 p p p, 1 p, 1

 set we have

 oo

 CB-Rß,l - U Tß,i
 i=l

 where each set T. is singular. We then define AQn and AQ1 to be two dis-
 pai pU^ pi

 joint subregions of C^ each of which has diameter <_~ and is disjoint from

 Tl' T2' Tß,l and T(3,2 •

 410



 Assume raélN and that for 0€ |pm and ail i€ļK| we have already determined
 the set R , the singular sets T and regions A A .. Fix ß€|ßm+^ .

 O j ni O j 1 OU O -L

 Let R0 . .. denote the first one of the sets E . 1 , X - E which is abundant 3,m+l . .. m+1 . 1 , m+1

 in A0 and let C_ be a subregion of A0 in which R0 ... is abundant everywhere.
 P P P p,m+l

 Then

 OO

 Cû~ RQ -L1 = U To . ß ß,m+l -L1 ß,i .

 where each set T0 . is singular. Define kD and A0 to be two disjoint sub-
 iti . pU pi

 regions of Cn each of which has diameter < - - and is disjoint from all
 p - m+z

 previously defined sets T with index i _< m+2.
 Let

 p-n 1 u m a 1 , m m o
 m=l , O e Jß m

 be the perfect set obtained from the dyadic schema thus determined and let D

 be a denumerable subset of P which is everywhere dense in P. It is clear that

 dcaAs.

 For each m£jM define

 p = U ^ (KnV oO A~i ol : oe!Bm and R = E } m ^ oO ol o,m m

 Q = (J v {A oO nU A Ol : aelBm and R = X- E } m v oO Ol ö, m m

 Then

 00

 p = n 1 J (pmuQ_) m m 1 J m m
 m=l

 Because P is disjoint from all the sets for all oeßm and all iéINl, we

 have PCR^ so that
 0,m

 Pf'P CE and PAQCX- E
 mm mm

 This implies

 P- E = [PH(P U Q )] - E
 m mmm

 = [(PAP HE )U(PP'Q )] -E
 mm mm

 = POQm m m

 for every m e 0^1.

 All



 Suppose now that there did exist a subsequence <^En ic 6 IN se<łuence
 < E ) m such that
 ' n / nelN m

 D = lim E
 k nk

 Then it follows that

 P- D = lim (P- E )
 k '

 As seen from the preceding paragraph, each of the sets P - E is a closed
 nk

 set. Hence, the set

 oo oo

 p- d = u n (p-E_ )
 j=l k-j nk

 is an -set. But, D being a denumerable set everywhere dense in the perfect

 set P, this leads to the contradiction that P is of the first category in

 itself !
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