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 THE RADON-N IKOD YM DERIVATIVE IN EUCLIDEAN SPACES

 The usual Radon-Nikodym Theorem can be stated as follows:

 If $ is a signed measure and m is a measure on a a-

 algebra A. of subsets of a set X where both $ and m are ef-

 fluite, then there is an ra-measurable function f and a singular

 completely additive function of a set 0 such that for each

 E 6 CL , $(E) a jg f dm + 9(E), Here 0 is singular means that

 there is a set Z ć d with m(Z) = 0 such that for B £ 0~

 with B A Z = <J> , 0(B) = 0. The function f is sometimes called

 the Radon-Nikodym derivative of $ with respect to m and

 written d$/dm.

 In Euclidean spaces, if a function $ is defined on the

 Borei sets, the general upper derivate is defined by

 D$>(x) = sup lim $(En)/m(En) where the supremum is taken over all

 regular sequences ÍEn) of closed sets with xé AEr and

 lim diam En = 0 for which lim $(En)/m(En) exists. A sequence

 {En} is regular provided there is r > o such that for each n

 m(En)/m(Qn) > r where Qn is the smallest cube containing En.

 The general lower derivate M? is defined by the infimum of such

 limits and the general derivative D$(x) is the common value of

 D$(x) and Dp(x) when they are equal.
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 Saks ([1] p. 10 ff.) considers only countably additive set

 functions $ satisfying the restriction that $ is finite

 valued. None of the results in Saks are lost if these functions

 $ are considered to be countably additive and finite valued on

 bounded sets. In the general theory of countably additive set

 functions, the Jordan decomposition theorem asserts that any

 completely additive set function $ can be written as $+ - $

 where <$+ and <£~ are non-negative. Moreover, only one of

 or can take on the value +00. Thus it will only be

 necessary to consider non-negative functions $. We also consider

 below only the case where the a-algebra Q* is the collection of

 Borei sets.

 Under the restriction that $ be finite valued on bounded

 sets, one obtains the following results ([1] p. 69 and p. 114 ff.):

 1) Given E ed and e > o, there is a closed set F C E

 such that $ (E ' F) < e

 2) The general derivative exists a.e. and equals d$/dm a.e.

 3) If 0 is singular, D0 = 0 a.e.

 We wish to consider the consequences in Euclidean spaces of

 omitting the hypothesis that $ be finite valued on bounded

 sets. (The function $ will be assumed to be a-finite, non-

 negative and defined on the Borei sets.) Easy examples 1, 2, and

 3 given below show that each of 1), 2), and 3) above respectively
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 fails to hold. However, it will also be shown that weaker

 versions of 1), 2), and 3) do hold and these indicate what happens

 when $ is not finite valued on bounded sets.

 Example 1. Let E be the set of points (x, y) in the plane

 with y = sin(l/x). Let $(A) be the length of A A E. Then

 given any e > 0 there does not exist a closed set FC E with

 <£(E'F) < e. This is because any set ACE with $(E'A) < e must

 have points on the y-axis in its closure.

 Example 2. Let P be a nowhere dense perfect subset of [0, 1]

 of positive measure. Let (an> bn) be the intervals contiguous

 to P in [0, 1]. Let f(x) = 1/ ( bn - an) if xé (an, bn)

 and f(x) =0 if x ú P. Let

 <£(E) = / f(x)dm. Then f = d$/dm but D$(x) = ® at each
 E

 xč P because every closed interval with x in its interior

 contains infinitely many contiguous intervals and hence has

 infinite ^-measure due to the fact that $((an, bn)) = 1.

 Example 3. Let be a sequence of pairwise disjoint sets of

 measure 0 with lim diam ER = 0 and such that for each natural
 CO

 number k, ' E is dense. Let $ be a measure such that ' n=k n

 for each n, ^(En) = 1 and $((UEn)c) = 0. Then $ is
 singular, but D$(x) = ® at every point x since every

 neighborhood of each point x has infinite measure.
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 Clearly, variations on these examples are possible. However,

 given $ which is a-finite and defined on the Borei sets, let

 A^ = {x: every neighborhood of x has infinite <£ measure}.

 Then is a closed set. Moreover, every Borei set can be

 approximated within e by its closed subsets if and only if A^ =

 <J>. For if A^ $ <ļ> then for any x £ A^, {x} is of finite

 ^-measure because is a~finite. Then {x}c can not be

 approximated with a closed subset of {x}c. Indeed, every set

 E C {x}c with <$(EC) < ® has x in its closure. Thus the

 restriction of <£ to functions which are finite valued on bounded

 sets is both necessary and sufficient for 1) to hold.

 (Conversely, of course, no open set G with x£ G

 approximates {x} in measure.)

 To characterize those sets E for which <£(E) can be

 approximated within e using closed subsets of E, let A$>E

 {x: every neighborhood N of x satisfies <$(N A E) = <*>} .

 1T) Given E and any e > o there is a closed subset F of

 E with $(E'F) < e if and only if A^,ĒC E.

 For if a$,e' E * the same argument as above shows that E can

 not be approximated from within by closed sets. Suppose A^ g cl

 E. For each pair of natural numbers n and k, let

 An,k = {X^E: i/k < A$,E^ ^ l/(k-l) and n-l< ||x|| < n}
 where 1/0 is understood to be «>. Then each An ^ is of finite

 measure, can be approximated from within by closed sets Fn ^ so
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 that $(An>k'Fn>k) < e/2n+k+2 and then F=l>n,k^,E is
 closed and (ļ>( E ' F ) < e. The set F is closed because g is

 closed and ÜFn ^ can not have any limit points other than

 points in g.

 Now if <£ takes on the value +°° on some bounded set, even

 though 2) and 3) need not hold,

 2f) J)$ - d$/dm a.e.

 and if 0 is a singular function which takes on the value +00

 31) D0 = 0 a.e.

 (Conversely, if $ takes on -®, D$ = d$/dm a.e. and if 0 is

 singular and takes on -°°, 50= 0 a.e.)

 Note that the negative part of a completely additive set

 function which takes on +00 is bounded below and hence its

 general derivative exists and is finite a.e. and equals its Radon-

 Nikodym derivative a.e.; in the case where the function is

 singular, both derivatives equal 0 a.e.

 To see that 3f) holds, note that there is a set Z of

 measure 0 such that for each ECZc, 0(E) = 0. But each point

 X é Zc is a point of density of Zc and thus there is a closed

 set Ex C Zc so that x is a point of density of Ex. Then if

 In is the sequence of intervals centered at x with diameter

 1/n, E f' I satisfies lim m(E f' I )/m(I ) = 1. It follows A 11 A 11 11

 that D0(x) = 0 because 0(EX A In) /m(ExO In) = 0 and {Exfl In}
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 is a regular sequence of closed sets.

 To see that 21) holds, let $ be given and let f = d$/dm.

 Then

 $(E) = / fdm + 0(E) and since D0(x) = 0 a.e., it suffices
 E

 to show that $0 (E) = Jfdm satisfies D$0 = f a.e. To see this,
 E

 for each natural number n, let fn(x) = min(f(x),n). Let ®n(E)

 = / fn(x)dm. Then (fn(x)} is a non-decreasing sequence of
 E

 functions which approaches f(x). For each Borei set E, the

 monotone convergence theorem implies that lim ^n(E) = ®0(E).

 Moreover, since each $n is finite valued on bounded sets, D$n

 exists a.e. Clearly, > D$n(x). For if x belongs to

 each closed set E^ where the sequence (E^ } is regular and

 lim diam E^ = 0, then

 *o (Eļc)/m(E^) > ^n(Eļc)/m(Eļc) . Since $0 is a ^-finite measure,

 it follows that f is finite a.e. For otherwise, if f

 equaled 00 on a set of positive measure E, $ would be infinite

 on each set of positive measure of E and 0 on each subset of

 measure 0 of E and then E would not be the countable union

 of sets of finite ^-measure. Finally, to see that _D$(x) = f(x)

 a.e., let An = (x:fn(x) = f(x) < n and D$n(x) = fn(x)). Let

 x be a point of density of An. Then there is a closed set Ex

 with density 1 at x such that EXC An. If is the closed

 interval with equal length sides of diameter 1/k centered at

 x and E^ = Ex f' 1^, then E^ is a regular sequence of closed
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 sets and

 _D$(x) < lim / f dm/mCE^) = lim Jf^m/miE^)
 Ek Ek

 =fn(x) = f(x).

 Since almost every point x is a point of density of some An, it

 follows that Dp(x) < f(x) a.e. and hence J)$(x) = f(x) a.e.

 The following simple corollary is worth noting:

 if m(A<£) = 0 and $(E) = Jfdm + 0(E) with 0 singular, then

 d<£/dm = D<$ a.e. and D<£ = 0 a.e. Indeed, since A<£ is closed,

 it will be avoided in the computation of either D$(x) or

 D0(x) whenever xć A<£. Thus, on A$c, D<£ = d$/dm a.e. and

 D$ = 0 a.e.
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