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 Functions with all singular sets of HausdorfF

 dimension bigger than one

 Introduction. To obtain an integration process which leads to a very general diver-

 gence theorem W. F. Pfeffer [P] introduced the c-integral. The domain of this integration

 is the family of sets with bounded variation ( BV sets), [Fe], [G]. During the definition of

 the c- integral first an averaging process, called v- integral, is defined on BV sets. Then

 using an extension method due to Marik the v- integral is extended to the c- integral.

 The extension is necessary because the v-integral is not additive. In fact there exists a, BV

 set H C [0, l]2 and a function / defined on [0, l]2 such that / is v- integrable on H, and

 [0, l]2 ' H but not on [0, l]2.

 To keep the notation as simple as possible and to avoid technical difficulties instead of

 BV sets we shall use BV S sets, that is, unions of finitely many squares and points. In this

 case it is obvious what we mean by the perimeter and the essential boundary of a BV S

 set.

 Since the structure of the BV S sets is quite simple, our example might be useful in

 other generalizations of the Lebesgue integral.

 When dealing with generalized integrals, one has to find out whether Riemann type

 sums for / can be well approximated by a suitable primitive function. In the definition of

 the v- integral a thin set, that is a set of small Hausdorff dimension, is dropped and one

 has to check the accuracy of the above approximation modulo thin sets. This motivates

 299



 our definition of singular sets (Definition 2). For a given function / defined on a set A one

 can ask, whether there are sets S such that the singular behavior of / is concentrated on

 these sets, that is, Riemannian sums on A'5 can be approximated by a suitable primitive.

 Plainly S = A is always a good singular set. In the definitions of generalized integrals

 one has to find small singular sets, but as our Theorem demonstrates this is not always

 possible.

 Although we do not discuss the v- integral in this paper, we remark that it is obvious

 that the v- integral of / can be evaluated on [0, l]2 ' H. Prom our Theorem it follows that

 this averaging process does not integrate / on [0, l]2. To show that this averaging process

 integrates f on H one have to state and prove a version of Lemma 1 that is valid for

 BV sets instead of squares. There is another possibility, namely, preserving the essential

 properties of our example one can modify the definition of / as it was done by W. F. Pfeffer

 in [P]. In that case one can apply Theorem 5.19. of [P] to show that / is v- integrable.

 We also want to remark that modifying our construction (using grids different from

 the ternary, taking a countable union etc.) one can obtain examples where the Hausdorff

 dimension of all the singular sets equals two.

 The author would like to thank W. F. Pfeffer for suggesting this problem and for his

 comments during the preparation of this paper.

 Preliminaries. In this paper we work in the Euclidean plane R2. If a set A consists of

 countably many rectangles then we denote by |A|, ||A||, and d(A) respectively the Lebesgue

 measure, the perimeter, and the diameter of A. A BV S set consists of finitely many squares

 and points. We define the regularity of a BV S set A by

 r (X)=(îÂiï *<*U)PII>Ū 1 0 otherwise.

 Lemma 1. Suppose that the function / is defined on the square J of side a. The

 square J is divided into 22m subsquares of sides a • 2-m, denoted by Kk ( k = l,...,22m)

 where the indices k are chosen so that if two squares Kkl and Kk2 have a common side

 then one of the indices ki , kļ is odd and the other is even, that is, if we color the squares
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 Kk by black or white according to the parity of k then we get a 2m x 2m chessboard.

 Suppose also that for x (E int(Kk)i f(x) = c if k = 2£ (£ = 1, ...,22m_1) and f(x ) = - c if

 k = 2£-' (£ - l,...,22m"1).

 Then for any square S C J we have

 I/5/I < £ _ÍL
 ''S'' ~ 4 2m '

 Proof of Lemma 1. We may suppose that J = [0, a]2 and S = [x0> £o+&] x [yo> Î/0+&]*

 Then from the definition of / it follows that f(x + rßz,y) = -f(x,y), 'f(x,y)' = c for

 (x,y),(x + 2^r,y) € U|!TJm*(.Kfc). Thus

 I f(x,y)d(x)' = |y(y)| < c- ^L.

 Again from the definition of / it follows that g(y + ^r) = -g(y) and |y(y)| - c' < c^r for

 almost every y such that yo<y<yo + b- Thus

 I Jyo 9(y)dy'<c'ģ^ <c(^f.

 If b > then ||5|| > 4--^ and hence

 LŁZ!<iżZ = £ ±.
 ||5|| - 4^Ł. 4 2m

 If 6 < 2^r then | Js /| < c • ļS"! = c • b2 and

 I Jsf' < c'b2 _ ~ °b a
 ||S|| < - 4- 6 _ ~ 4 - C2m

 q.e.d.

 Definition 1. Suppose that H C [0, l]2 is an open set. We say that f is BVSJ7 on

 H, (/ 6 BVS^H)), if / is defined on [0, l]2, f(x) = 0 for x G [0, l]2 ' H, f is Lebesgue

 integrable on every B VS subset of H and for every e > 0 there is an 77 > 0 such that

 I fB f' < e for each B € BVS, B C H with |1?| < 77 and ||i?|| <

 This BVSF property is roughly equivalent to the fact that the (generalized) integral

 function of / is continuous in the B VS sense.
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 Definition 2. Suppose that H C [0, l]2 is an open set and / G BVS^F(H). A set A

 is a regular set for /, if there is a 6(x) > 0 gauge function defined on [0, l]2 such that

 Y^'f(xj)'Bi'~ Í f(xi) |<°° (!)
 j= i Jb>

 for every sequence Bj of pairwise disjoint BVS sets such that Xj € A, xj G Bj, d(Bj) <

 Hxj)> r{Bj) > e > 0 and / is Lebesgue integrable on Bj. A set T is a singular set for /,

 (T 6 S(f)), if [0, l]2 ' T is regular.

 Theorem. There exists a real number 7 > 1, an open set H C [0, l]2 of finite

 perimeter and a function / G BVSP(H) such that the Hausdorff dimension of every

 singular set of / is bigger than 7.

 Proof. First we shall do a Cantor triadic set like construction in the plane, that is at

 each step we remove the middle | x ^ open square of the former ones. Put J^o = [0, l]2.

 Then -Ti.o ' (2 - 6 ' 2 6 )2 can divided into 8 closed squares each of sides |. We denote

 these squares by Ijt 1 (j = 1, ...,8). If the squares IjļTn (j = 1, ...,8m) of sides ^ are given

 then remove the middle subsquare of sides jsqr from each of these squares and take the

 remaining 8m+1 squares of sides and denote them by Ij,m+ 1 (j = 1, ...,8m+1).

 We also put Jito = - 202 '2 + 202 )2' *^at the centers of J'$ and I'$ coincide

 and the sides of 0 are of length For j = l,...,8m denote by Jjm the open square

 with length of sides 12-m_1 and concentric with Ij,m- Obviously Jjm will be a subset

 of the middle square removed from IjtTn at the (m + l)'st step of the above definition of

 Ijtm+1 (j = l,...,8m+1).
 Put H =

 Plainly

 00 8m 00

 E ii = E E iiJ>.™" = E 8m • 4 • 12"m_1 < «•
 j,m m= 0 j= 1 m=0

 thus the perimeter of H is finite.

 Divide Jjtm into 22m subsquares of sides 12~m-12~m, denote them by KjtTn<k where

 k = l,...,22m. Choose the indices k so that if two squares Kj¡mj ^ and KjtTn k3 have a
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 common side then one of the indices ki , kļ is odd and the other is even, that is, if we color

 the squares by black or white according to the paxity of k then we get a 2m x 2m

 chessboard.

 For x G int(Kjļm<k ) put f(x ) = 2 • I22m+2 • 8-m if k - 2£ {i - l,...,22m_1) and

 f(x) - -2 • I22m+2 • 8-m if k = It - 1 (i = 1, ...,22m_1), otherwise put f(x) = 0.

 First we prove that / G BVSF(H). It is obvious that / is defined on [0, l]2 and

 f(x) = 0 for x G [0, l]2 ' H. Since every BVS subset of H can be covered by finitely many

 squares of the form J j,m the function / is Lebesgue integrable on every B VS subset of H.

 If 5" C Jj,m is a square then from Lemma 1 (with a = 12-m_1, c = 2 • 122m+2 • 8~m) it

 follows that

 I Js /| ^ 2 • I22m+2 • 8"m • 12-m~1 3m
 ||5|| - 4-2""* ~ 4-

 thus

 ijf/i<6-(|nisii.
 For a given e > 0 choose M such that

 Since f is bounded on Jhm we can choose r) > 0 such that if

 B' C US ujZi Jj,m and 'B'' < r¡

 then I SB> /I < f • If l-Bļ < 77, and B C H is a BVS set then B = B' U B" where B', B" are

 BVS sets and B' C U^1 U^i Jj.m and B" C U~=Af U^i Jj,m- Thus

 1 /B - 1 1 /! + 1 L yl - i + 6 ' (ï)M||s"N 5 1 + 6 ' (ï)M||B|1 s I + 6 ' (ï)M; < e

 proving that / G BVSf(H).

 Suppose that T G S(f ) and put A = [0, l]2 ' T. Choose S(x) > 0 fulfilling the require-

 ments of Definition 2. Put

 C = n~„0u5:i/i,m.
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 We say that 6 is big in the square Ijitn if there exists an x € /¿)fn fìAflC such that

 6(x) > d(Ij>m), otherwise we say that 6 is small in Ij,m- Suppose that 0 < p' < 1 and there

 axe more than p' 8m different squares Ijm such that 8 is big in Ij,m. Denote the set of the

 corresponding indices j by $m, therefore #$m > p' 8m. Choose xj¡m G Ij<m fi A fi C for

 each j G $m such that 6(xj>m) > d(Ij>m). Denote by Jļ m the middle | square removed

 from Ij¡m at the (m + l)'st step of the definition of the squares Ij,m+ 1- Since the side of Jj- m

 is 3m|i and the side of Jj<m C I'jm is 12-m_1 one can choose a square m C /¿m ' Jjifn

 of side 3-m-3 < ì(3"(m+1) - 12"m"1). Put

 Bj,m = {^j} U U U¿_ j Kj, m, 2t •

 Thus Bj¡m is a BVS set and 'Bj¡m' > 'Lj¡m' = (3^+ā)2 = 3~2m"6, d(Bjttn) < d(Ijtm) =

 3-m'/2 and ||£iim|| = 3^ + 22m-1||^>) m,2ť|| = 4(3"m-3 + 22m-112-12-m) < 8-3"m.
 Therefore

 ID. I o- 2m- 6

 - ĄBjtm)''Bjtm H > 3~m'/2 • 8 • 3-m > 10 ~ c > °'

 Since Xjttn € C C [0, l]2 'H we have f(xjm) = 0. Also f(x) = 0 for x G Ljifn since

 L]tm C I j m ' Jj,m ■ Thus

 2 2 m - 1

 E f /i=Ei/ /1- Ei E / /1 = jBi.m /=1 2t

 ^ 22m-i . 2 . 122m+28-m12-2m-22-2m > g -m > p'gmg-m _

 Suppose that 0<p< 1 and there exist infinitely many different m's such that > /?8m.

 Then inductively one can choose a sequence m,ļ < ... < < ... such that > p8m*

 and ^8m* > 8m' • For a fixed integer k the sets Bjmk defined above axe pairwise

 disjoint, and for any k' < k, Bj'tTnk, D Bj>mk is either empty or = Xj¡mk- Deleting

 those indices j from $mļk for which there exists k' < k, j' € $mfc, such that Xj>mk = xy ,mk,

 we obtain $'mfc . Since we delete at most 8m' < ^8m* indices from we get that

 ^ ^8 - 8 • Since the sets ^ j G ^ sxc disjoint Ave ofotciin from (2) thsit

 E i/i-«) uw-/ f'>p' = Ļ
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 This contradicts (1) in Definition 2 since we can order Xj,mk and Bhmk j G $mk k = 1,2, ...

 into infinite sequences xj and Bj such that they fulfill the requirements in Definition 2 and

 E£i |/(*i)|Bil - iB, I = oo. Therefore we proved that for every p > 0 there exists

 Mp > 0 such that if m > Mp then è is small in Ihm for more than (1 - p) 8m different

 indices j G Denote by 'řm the set of these indices.

 Choose sequences pk and mk ( k = 1, ...) such that ļ > p' > ... > pk > ...; mk > MPk,

 and for every k we have Pl 8m*"m> + p28mfc_m2 + ... + pk-18mk~mk-1 + pk8mk < 8m<=_1.

 For any i < k an interval Ijtmt covers 8mfc-m< intervals Ihmk • Put C' = and

 ^m! = Given Ck-1 put Ck = Ck-i D U and denote by C $mic the

 set of the indices j for which Ij,mk C Ck. Plainly #^'mk > (1 - pk)8mk - pk-iSmk~mk~l -

 ... - p2 8m*~m2 - pi 8m*_mx > (1 - 8_1)8m* > 8m*-1.

 Put F - Obviously F is closed. Since F C Ck for each k, S is small in the

 squares Ij<mk ( j G ^m*)- For any x G F, 6(x) > 0 and hence there exists k and j such that

 X € Ij,m„ j 6 4^, and d(I¡, mk) < ¿>(x). Therefore x G T, that is F C T.

 Using comparable net measures [Fa] for the ternary grid we compute the Hausdorff

 dimension of F. Suppose that p > 0 and Uv ( p = 1, ...) is a p cover of F and the sets Up

 belong to the ternary grid, that is, each Up is of the form [A; • 3 + 1) • 3-m,>] x [£ •

 3~mP ^ (7+i).3-mp] with integers k and t. Each set Up has eight grid neighbors of sides 3-mp .

 Taking the intervals Up and all of their neighbors we obtain the set {Wq : q = 1,2,...}

 which is also a p cover of F, and obviously <¿(Wg)7 < 9 Yhp cř(ř/p)7. If we expand the

 intervals Up slightly we can choose open intervals U'p D Up such that each U'p is still covered

 by Up and its neighbors. By the compactness of F there is a P such that F C U p=1Up.

 Thus there exists a Q such that U^=1 Wq D U p=ļU'p D F. Recall that F = and

 the sets Ck D Ck+ 1, k = 1,2,..., are compact. Hence the sets C'k = Ck ' U p=1U'p are

 also compact and from U p='U'p D F it follows that = 0. By Cantor's theorem

 there exists a natural number K such that C'K = r'^_1C'k = 0. Choose a k > K such that

 3-m* < d(Wq), q = 1 Then C'k = 0, that is, Ck C U ļ=1U'p C U %xWq. Using that

 Ck = U je9'mkIj,mk

 and > 8m*-1 we obtain that U ®=ļWq covers more than 8m*-1 intervals /Jmjc . It
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 follows from the definition of the intervals Ijtmk that an interval Wq of sides m(q) can cover

 at most of the intervals Ij,mk • Thus

 ¿(«TOP = ¿(vís-o»)' = ^ . ¿8-*- >
 g= 1 ?=1 q= 1

 Mi! Cm-. (^r
 8m* 8

 whenever 57 > 1, that is, 7 < 1§|f • Therefore

 p g

 Thus we proved that every singular set T has HausdorfF dimension bigger than |^| =

 7-
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