Real Analysis Exchange Vol 15 (1989-90)

M. G. NADKARNI, Department of Mathematics, University of Bombay, Bombay 400 098, INDIA; and J. B. ROBERTSON, Department of Mathematics, University of California, Santa Barbara, CA 93106, U. S. A.

SPECTRAL RADIUS OF NONSINGULAR TRANSFORMATIONS

We say that T is an invertible, nonsingular, ergodic transformation on a probability space (X, \mathfrak{B}, μ) if T:X→X is one to one, T(A) and $T^{-1}(A) \in \mathfrak{B}$ whenever $A \in \mathfrak{B}, \mu(T(A)) > 0$ and $\mu(T^{-1}(A)) > 0$ whenever $\mu(A) > 0$, and $\mu(A) = 0$ or 1 whenever T(A) = A. Flytzanis [1] introduced the spectral radius as an invariant for such transformations as follows: For every $A \in \mathfrak{B}$ with $\mu(A) > 0$, let r(T,A) denote the radius of convergence of the power series $\sum_{n=0}^{\infty} \mu(\Delta A_n) \times^n$ where n=0 $A_n = \bigcup_{j=-n}^{n} T^j A$, $A_0 = A$, $A_{-1} = \emptyset$, and $\Delta A_n = A_n - A_{n-1}$. The spectral radius r(T) is then equal to $\inf\{r(T,A): \mu(A) > 0\}$. It is clear that $r(T) \ge 1$, and if T is a periodic transformation (T^p = identity for some $p \ge 1$), then $r(T) = \infty$. We will assume that μ is nonatomic, so that, since T is ergodic, it can not be periodic. The purpose of this note is to prove:

<u>Theorem.</u> Let T be any invertible nonsingular ergodic

transformation acting on a nonatomic probability space. Then r(T) = 1.

Robertson [3] showed that the following property implies that r(T) = 1.

<u>Property 1</u>. For every $\varepsilon > 0$ there exists a $\delta > 0$ such that for all positive integers k there exists a set A (depending on ε , δ , and k) such

that
$$0 < \mu(A) < \epsilon$$
 and $\mu(\bigcap T^{j}A) > \delta$.
 $j=-k$

For the sake of completeness we include a proof of this implication.

<u>Lemma 1</u>. Assume that μ is nonatomic, $\mu(X) = 1$, and that \top is ergodic, invertible and nonsingular. Then r(T,A) is less than or equal to

the radius of convergence of the power series
$$\sum_{n=0}^{\infty} \mu(A_n') \times^n$$
, where n=0

$$A_n' = X - A_n$$
.

<u>Proof</u>. Let $\mu(A) > 0$ and let x_0 be such that $0 < x_0 < r(T,A)$, but $x_0 \neq 1$. Since $\bigcup_{n=1}^{\infty} A_n = \bigcup_{j=-\infty}^{\infty} T^j A$, is an invariant set of positive measure, it has measure one, and thus, except for a set of measure zero, $A_n'=\bigcup_{j=n+1}^\infty \Delta A_j$.

Hence

$$\sum_{n=0}^{\infty} \mu(A_n') \times_0^n = \sum_{n=0}^{\infty} \sum_{j=n+1}^{\infty} \mu(\Delta A_j) \times_0^n$$
$$= \sum_{j=1}^{\infty} \mu(\Delta A_j) \left(\sum_{n=0}^{j-1} \times_0^n\right)$$
$$= \sum_{j=1}^{\infty} (1 - x_0^j)/(1 - x_0) \mu(\Delta A_j)$$

$$= \left[\sum_{j=1}^{\infty} \mu(\Delta A_j) - \sum_{j=1}^{\infty} \mu(\Delta A_j) \times_0^j \right] / [1 - x_0]$$

< ∞ .

Thus the radius of convergence of the power series $\sum_{n=0}^{\infty} \mu(A_n) x^n$ is

greater than or equal to x_0 . Letting x_0 approach r(T,A) we have the desired result.

<u>Proof</u>. This follows from the standard formula for the radius of convergence.

Lemma 3. Suppose property 1 is satisfied, i.e. for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for every positive integer k, there is a set $A \in \mathfrak{B}$

 $\begin{array}{l} (\underline{depending\ on}\ \epsilon\,,\delta\,,\underline{and}\ k)\,\underline{such\ that}\ \mu(A)<\epsilon\ \underline{and}\ \mu(\bigcap_{j=-k}\mathsf{T}^{j}A\,)>\delta\,.\\ \underline{Then\ there\ exists\ a\ set}\ B\in\mathfrak{B}\ \underline{such\ that}\ r(\mathsf{T},\mathsf{B})=1\,. \end{array}$

<u>Proof</u>. Let $\varepsilon_n > 0$ be such that $\sum_{n=1}^{\infty} \varepsilon_n < 1$. Let δ_n correspond to ε_n in the hypothesis of the lemma. Let $r_n < 1$ be such that $\lim r_n = 1$. Choose n→∞ k_n such that $r_n^k n < \delta_n$. Finally let A_n be the set corresponding to ε_n , δ_n and k_n in the hypothesis of the lemma. Set B = $\bigcap A(n)'$. Then **n=**0 $\mu(B') = \mu(\bigcup_{n=0}^{\infty} A(n)) < \sum_{n=0}^{\infty} \varepsilon_n < 1. \text{ Thus } \mu(B) > 0. \text{ Further}$ $\begin{array}{c} & n \\ r(\mathsf{T},\mathsf{B}) \leq [\limsup_{n \to \infty} \mu(\bigcap_{j=-n}^{n} \mathsf{T}^{j}(\mathsf{B}'))^{1/n}]^{-1} \end{array}$ $\leq [\limsup_{\substack{n \to \infty}} \mu(\bigcap_{\substack{j=-k_n}} T^j(B'))^{1/k_n}]^{-1}$ $\leq [\limsup_{\substack{n \to \infty}} \mu(\bigcap_{j=-k_n} T^j A(n))^{1/k_n}]^{-1}$ $\leq (\operatorname{limsup} \delta_n^{1/k} n)^{-1} \leq (\operatorname{limsup} r_n)^{-1} = 1.$ $n \to \infty \qquad \qquad n \to \infty$

Since r(T,B) is always greater than or equal to one, we see that r(T,B) = 1. This proves the lemma.

It was shown by Robertson [3] that every measure preserving transformation satisfies property 1. Here we prove the same for invertible nonsingular ergodic transformations.

Theorem. Let \top be an invertible nonsingular ergodic transformation acting on a nonatomic probability space (X, \mathfrak{B}, μ) . Let ε and δ be any two numbers such that $0 < \delta < \varepsilon < 1$. Then for every positive integer k there exists a set $A \in \mathfrak{B}$ such that $\mu(A) < \varepsilon$ and k $\mu(\bigcap_{j=-k} \tau^{j}A) > \delta$. In particular $r(\tau) = 1$.

Proof. Choose α such that $\delta < \alpha < \varepsilon$. For $A \in \mathfrak{B}$, write $\nu_k(A) = \sum_{j=-k}^{k} \mu(T^j A)$. Then ν_k is absolutely continuous with respect to μ . Hence j=-k there exists an $\eta > 0$ such that $\mu(A) < \eta$ implies that $\sum_{j=-k}^{k} \mu(T^j A) < (\alpha - \delta)/4$ (η will depend on k). Let N be an integer larger than $k + 1/(2\eta)$. Then choose $0 < \eta' < \eta$ such that $\mu(A) < \eta'$ implies that $\sum_{j=-2N}^{2N} \mu(T^j A) < (\alpha - \delta)/4$. We next apply Rohlin's theorem for nonsingular transformations which can be found for example in Friedman

[2] (Lemma 7.9). There exists a set $F \in \mathfrak{B}$ such that

F, TF, ..., $T^{2N-1}F$ are disjoint and $\mu(R) < \eta'$ where R is the complement 2N of $\bigcup_{j=1}^{j-1} T^{j-1}F$. There is some i such that $k \le i < 2N - k$ and $\mu(T^{i}F) < 1/(2(N - k)) < \eta$. Therefore $\sum_{j=-k}^{k} \mu(T^{j+i}F) < (\alpha - \delta)/4$. Since $\mu(R) < \eta'$, we have $\sum_{j=-k}^{-1} \mu(T^{j+i}R) < (\alpha - \delta)/4$. Using the fact that $T^{2N}F \subseteq F \cup R$ we have the following:

$$\begin{split} & \sum_{j=2N-k}^{2N-1} \mu(\mathsf{T}^{j+i}\mathsf{F}) = \sum_{j=-k}^{-1} \mu(\mathsf{T}^{j+i}\mathsf{T}^{2N}\mathsf{F}) \\ & \leq \sum_{j=-k}^{-1} \mu(\mathsf{T}^{j+i}(\mathsf{F}\cup\mathsf{R})\,) \\ & \leq \sum_{j=-k}^{-1} \mu(\mathsf{T}^{j+i}\mathsf{F}) \, + \, \sum_{j=-k}^{-1} \mu(\mathsf{T}^{j+i}\mathsf{R}) \\ & < \, (\alpha-\delta)/2 \, . \end{split}$$

 $\begin{array}{l} 2N-1 & 2N-1 \\ \text{Finally, since } \sum\limits_{j=0}^{2N-1} \mu(\mathsf{T}^{j}(\mathsf{T}^{i}(\mathsf{F}))) = \mu(\mathsf{T}^{i}(\bigcup\limits_{j=0}^{j=0}\mathsf{T}^{j}(\mathsf{F}))) = 1 - \mu(\mathsf{T}^{i}(\mathsf{R})) \geq \\ 2N \\ 1 - \sum\limits_{j=-2N}^{2N} \mu(\mathsf{T}^{j}(\mathsf{R})) \geq 1 - (\alpha - \delta)/4 \text{ and } \mu \text{ is nonatomic, we may choose} \\ B \subseteq \mathsf{T}^{i}\mathsf{F} \text{ such that } \varepsilon - (\alpha - \delta)/4 < \sum\limits_{j=0}^{2N-1} \mu(\mathsf{T}^{j}\mathsf{B}) < \varepsilon \text{ . Now} \\ B \text{, TB , ..., } \mathsf{T}^{2N-1}\mathsf{B} \text{ are disjoint and } \sum\limits_{j=0}^{k-1} \mu(\mathsf{T}^{j}\mathsf{B}) < (\alpha - \delta)/4 \text{ , and} \end{array}$

$$2N-1 \qquad 2N-1$$

$$\sum_{j=2N-k} \mu(T^{j}B) < (\alpha - \delta)/2 \text{. Set } A = \bigcup_{j=0} T^{j}B \text{. Then for } -k \le j \le k \text{ we}$$

$$j=0 \qquad 2N-k-1 \qquad k \qquad 2N-k-1$$
have $T^{j}A \supseteq \bigcup_{p=k} T^{p}B \text{. Hence } \bigcap_{j=-k} T^{j}A \supseteq \bigcup_{p=k} T^{p}B \text{. Thus}$

$$k \qquad 2N-1 \qquad k-1 \qquad p=k \qquad 2N-1$$

$$k \qquad 2N-1 \qquad k-1 \qquad 2N-1$$

$$k \qquad 2N-1 \qquad \sum_{p=k} (T^{j}B) \qquad \sum_{p=k} (T^{j}B) \qquad \sum_{p=k} (T^{j}B) = \sum_{p=k} (T^{j}B)$$

$$\mu(\bigcap_{j=-k}^{\kappa} \mathsf{T}^{j}\mathsf{A}) > \sum_{j=0}^{2N-1} \mu(\mathsf{T}^{j}\mathsf{B}) - \sum_{j=0}^{\kappa-1} \mu(\mathsf{T}^{j}\mathsf{B}) - \sum_{j=2N-k}^{2N-1} \mu(\mathsf{T}^{j}\mathsf{B})$$
$$> \varepsilon - (\alpha - \delta) = \delta + \varepsilon - \alpha$$
$$> \delta.$$

This completes the proof of the theorem.

REFERENCES

- [1] E. Flytzanis. Vector Valued Eigenfunctions of Ergodic Transformations. *Trans. Amer. Math. Soc.* **243** (1978), 53–60.
- [2] N. A. Friedman. *Introduction to Ergodic Theory*. Van Nostrand. (1970), New York.
- [3] J. Robertson. Spectral Radius of Ergodic Transformations, Prediction Theory and Harmonic Analysis. The Pesi Masani Volume. (1983), 263–267.

Roceived February 27, 1989