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 ON THE EQUIVALENCE OF ŁCNSTOCK-KURZWEL AND

 RESTRICTED DENJOY NTEGRALS h Rn

 1. Introduction

 Several descriptive definitions of the restricted Denjoy integral in

 Rn were given in the 1930' s and 1940 's [3, 8, 9], which are in terms of
 the generalized absolute continuity of the primitive function. However,

 for the next forty years, none of these has been proved to be equivalent

 to the Hens tock- Kurzweil integral or Perron integral in Rn, except for the
 case when n - 1 [4, 6, 12]. For a recent attempt, see [10, p. 83]. In

 this note, we shall settle the above problem, and, as a consequence, the

 problem posed by Pfeffer in [16, Problem 6.6]. Pfeffer's problem is: Give

 a Denjoy type descriptive definition of HF- integrals defined in section 4.

 The Hens tock -Kurzweil integral is of Riemann- type , which is defined

 by simply replacing the fixed norm S in the Riemann integral by a positive

 function i(x) . This basic idea of replacing the constant S of the

 classical definition by a positive function has been explored in many

 fields, for example, in integration theory [1, 6, 11, 15], in variation

 theory [5, 18] and in covering theory [2, 18]. The generalized absolute

 continuity of this type, denoted by ACG*, is defined by Henstock in
 [6, p. 58], which was drawn to the author's attention by P. Y. Lee. This

 *

 Henstock version of ACG is equivalent to the classical ACG^ [17, Chapter
 VII] in the one -dimensional space R. Vith this Henstock version, the

 equivalence of the Henstock-Kurzweil and the restricted Denjoy integrals

 in Rn can be proved easily. Furthermore, many proofs in R can be
 shortened. The Henstock version is the genuine one whereas the classical
 version in R is the resultant of the Henstock version and the property of
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 a closed set (i.e., the endpoints of a contiguous interval to a closed

 set are in the closed set itself) . This is not the case for higher

 dimensional space. The restriction of the classical AC was also

 pointed out by Henstock in [M.R.87b, #26010].

 2. Generalized absolute continuity

 Let Rn be the n-dimensional Euclidean space and E a nondegenerate

 closed interval Aļ* b^ e R and a^ < b^. Let tf be the
 class of all nondegenerate closed subintervals of E and let F be a

 real -valued interval function defined on tf. Given a closed interval I,

 let r(I) - |l|/[d(I)]n where d(I) and |l| denote the diameter and outer
 measure of I respectively. Given positive functions 6(x) and 0 < p(x) < 1

 defined on E, a partial partition { I ^ } of E with associate points e
 is said to be ¿-fine if dil^) < 6(x^)t and p-regular if r(I^) > p(x^).
 Note that the regularity of 1^ depends on x^, i.e., the regularity of the
 partition is controlled by a positive function p(x) instead of a constant.

 This idea is due to Pfeffer [15].

 Now we consider the case when n - 1 and give the classical

 generalized absolute continuity in R [17, Chapter VII]. Let X Ç [a,b] .

 An interval function F is said to be AC^(X) if for every e > 0, there is

 ri > 0 such that for any partial partition { I ^ } with Sļl^ļ < rj and the
 endpoints of 1^ belonging to X, we have

 Sa>(F;Ii) 3 €

 where w denotes the oscillation of F over 1^ and |I^| the measure of 1^.
 Furthermore, F is said to be ACG^ on [a,b] if F is continuous and [a,b] is

 the union of a sequence of X^ such that on each X^ the function F is
 AC^(X^) . Similarly we define BV^(X) and BVG^.

 Next we shall give a modified version of ACG^ for n - 1. An interval
 function F is said to be AC^(X) if the condition "the endpoints of 1^
 belonging to X" in AC^(X) is replaced by the condition : "at least one of
 the endpoints of 1^ belonging to X". In this definition, the oscillation
 of F is redundant and may be replaced by the difference of F. Similarly,
 we define ACG^.

 260



 In the one-dimensional space R, the continuity of an interval

 function F is defined in the usual way [6, p. 32]. That is, F is

 continuous at x in R if for every « > 0 there exists S > 0 such that

 whenever lisa closed interval containing x with 1 1 1 ś 6 1 we have
 I F(I) I ^ €. An additive interval function F in [a,b] is a function F of
 subintervals of [a,b] such that F(B) - ZF(I) , for each interval B Ç [a,b]

 and each partition (I) of B.

 LEMMA 1. Let X C [a,b] Q R. Then AC^(X) and AC^(X) are equivalent
 provided that F is continuous and additive .

 PROOF. We shall only prove that AC^(X) implies AC^(X) . The converse is
 obvious. Let F be AC^(X) . We may assume X is closed, in view of the

 continuity of F. Let l[x^,y^]J be the contiguous intervals to X. Note
 that x^, y^ e X except perhaps the case when x^ ■ a or y^ ■ b. Thus for
 every e > 0, there exists a natural number N such that

 CO

 w(F; [x^y^) 3 i.

 In view of the continuity of F, there exists > 0 such that for any

 partial partition (1^) with 2|I^| 5 and at least one of the endpoints
 of 1^ being in the set {x^, y^; i - 1, 2, N-l}, we have

 S|F(Ii)| i e .

 Let > 0 be the number as obtained in the definition of AC^(X), when e is

 given. Ve may assume r¡ < Now take a partial partition {[a^,b^]} with
 the total length less than i; with a^ or b^ belonging to X for every i.
 For example, if a^ € X, then b^ either belongs to X or lies in (x^y^) f°r
 some k. Considering various cases and using the above two inequalities

 and the definition of AC+(X) , we obtain

 ZI F( [a. ,b. ] ) I S 4(.
 i

 That is, F is AC^(X) . Note that in the above inequality, 2e comes from
 the first inequality, one c from the second inequality and the last c from

 AC^(X). Also note that the additivity of F is used in the above
 inequality.
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 Finally, we shall give the Henstock version of the generalized

 absolute continuity in Rn [6, p. 58]. Let X C E C Rn. An interval
 •ģļ

 function F is said to be AC (X) if for every e > 0, there exist positive

 functions £(x) and 0 < p(x) < 1 defined on E and 17 > 0 such that for any

 p- regular, 6 -fine partial partition {1^} of E with associate points in
 I. n X and S|I^| < q we have Z|F(I^)| S €. Similarly we define BV*(X),
 ★ ★

 ACG and BVG [6, p. 46; 18, p. 38]. We remark that the above form (due to

 P. Y. Lee) is different from Henstock' s , however they are equivalent

 [6, p. 58, line 15, p. 47, lines 17-21]. Note that we impose the regularity

 on I. here whereas Henstock does not. For one -dimensional case, the
 1 *

 regularity is superfluous and F is continuous if F is ACG .

 ★

 LEMMA 2. In R, the definitions of ACG^, ACG^ and ACG are equivalent
 provided that F is continuous and additive .

 ★

 PROOF. It is obvious that if F is ACG . on [a,b] , then F is ACG on
 'k

 [a,b] . In view of Lemma 1, it remains to prove that if F is ACG on [a,b] ,
 ★ k

 then F is ACG^ on [a,b] . It is known that if F is ACG , then F is BVG
 •k

 [6, p. 58] and, BVG and BVG. are equivalent if F is continuous [18, p. 94
 ★

 Theorem (40.1); 5]. Thus F is BVG^ if F is ACG . Now we shall prove that
 F fulfills Lus in' s condition (N) , i.e., | F (Q) | - 0 if | Q | - 0 by using the

 ideas in [18, p. 101]. Let B^ - Q n X^, where F is AC (X^) and

 UiXi - ta,b^ Since F is AC*^), therefore F is AC*(Q n Xļ) . Given c > 0,
 there exist 6(x) >0 and 17 > 0 such that S|F(I)| < € whenever (I) is a
 finite sequence of nonover lapping 5- fine intervals with associate points

 in Q n Xt and 2|l| á if. On the other hand, |Q n Xj - 0, thus there
 exists an open set G such that Q O X^ C G and | G | ^ tļ . Note that we may
 choose ¿(x) >0 such that ¿-fine intervals are always subsets of G.

 Therefore S I F( I ) I ^ € for any finite sequence of nonover lapping 6-fine
 1

 intervals I with associate points in Q n X^. Let B^ - {x € B^; £(x) > ,
 n - 1,2, . . . and I - , - ) , m - 0, ±1, ±2

 nm n n

 B. - U B. , Q - U.B, » Let x.y J € B. in n I i n in , ii » J in

 interval with an associate point x e B^n £ Q n X^. Hence
 I • F(B. )| 1 3 2° |F(B. ' n I )| ' á sup E|F(I)| where the supremum is taken • in 1 uh ' In nm '

 over all finite sequences of nonover lapping 6- fine intervals I with

 associate points in Q n X^ [18, p. 101, line 25], Therefore

 |F(Bin)| 3 sup E|F(I)| < € for every n". Then | F(B±) | < e , by taking the
 limit for the expanding sequence {^(Bj^)}^ 1^®» P-101, lines 26-29].
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 Consequently ļ F(Q) ļ - 0. Therefore F fulfills Lusin's (N) condition.
 Hence F is A CG^ [18, p. 106; 17, Theorem 6.8].

 3. The restricted Den Joy integral

 An interval function F defined oil sub interval s of E is said to be

 differentiable at a point x in E with derivative denoted by F' (x) if for

 every c > 0, there exist 6(x) > 0 and 0 < p(x) < 1 such that whenever I is

 p-regular, 6- fine interval with an associate point x e I, we have

 I F ( I ) - F' (x) |I|| ś € J 1 1 .

 Now we shall give a descriptive definition of Denjoy's special

 integral for Rn. A function f defined on E is said to be restricted
 Denjoy integrable on E if there is an additive Interval function F which

 is AC G on E and F' (x) - f(x) for almost all x in E. An additive interval

 function F in E is a function F of subintervals of E such that

 F(B) - ZF(I), for each interval B C E and each partition (1} of B.

 A function f is said to be Henstock-Kurzweil integrable on E Ç Rn if
 there exists a number A such that for every e > 0, there exist 5(x) > 0

 and 0 < p(x) < 1 such that

 |Sf (x) 1 1 1 - A| S c

 whenever {1} is a p-regular, Ä-fine partition of E with associate points

 x e I and 2 sums over (I). Denote A - f_ f.

 It is easy to check that f is Henstock-Kurzweil integrable on each

 subinterval of E if f is Henstock-Kurzweil integrable on E [15, 3.4].

 Denote F(B) - J^f for each interval B C E. F is called the primitive of
 f . We shall discuss the additivi ty property of F with respect to the

 domain of integration in Section 4.

 THEOREM 1. A function f is Henstock-Kurzweil integrable on E iff f is

 restricted Denjoy integrable there.
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 PROOF. (Necessity) Let f be Hens tock- Kurzweil integrable on E and F the

 primitive of f. Then F' (x) - f(x) almost everywhere [6, p. 78; 12, p. 46;

 the proof in [12] is valid in Rn, see [15], Proposition 4.4]. It remains
 ft it

 to show that F is ACG . In fact, F is AC (Xr) for every n, where
 Xn - (x; I f (x) I S n) . This follows immediately from the following
 inequality

 Z|F(I)| i Z|F(I) - f (x) 1 1 1 I + 21 f (x) I 1 1 1

 The first term on the right-hand side of the inequality is less than e , in

 view of Saks-Henstock Lemma [13, Lemma 1; 15, 4.3]. The second term is

 less than e if Sļlļ < c/n. See also [6f p. 59].

 (Sufficiency) It is analogous to the one -dimensional case [4, 12] . Let f

 be restricted Denjoy integrable on E with primitive F. Note that F is

 ACG* and F' (x) - f(x) everywhere except in a set S of measure zero. For
 x e E - S, given € > 0, there exist S(x) > 0 and 0 < p(x) < 1 such that

 whenever I is p- regular, Í- fine interval with an associate point x e I, we
 have

 I F(I) - f(x) 1 1| I S « 1 1 1 .

 ★

 Since F is ACG , there exists a sequence of sets X^ such that
 UjXj^ - E and F is AC*(Xi> for each i. Let Yx - Xļt
 Yi - Xi'(Xl u x2 u * * ' u xi_i> for i £ 2 and denote the set of
 points x € S n Ył such that j-1 S |f(x)| < j. Obviously, S^j ,
 i,j - 1,2,... are pairwise disjoint and their union is the set S. Since

 F is also AC*(S^j), there exist i(x) > 0 and 0 < p(x) < 1 defined on S^
 and < « 2 * ^ j ^ such that for any p- regular, 5-fine partial

 partition of E with associate points x^ in S^ n 1^ and satisfying

 Ï |lkl < »»ił J we have I lF<Ik> I < e i J k

 Choose to be the union of a sequence of open intervals such that

 lGijl < "ij and Gij D sij
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 where |Gjj| denotes the total length of . Now for x € ,
 i,j - 1,2,..., we may redefine 6(x) such that whenever I is ¿-fine

 interval with an associate point x, we have I £ Gij *

 Take any p-regular, ¿-fine partition (1) with associate points (x) .
 1 2

 Split the sum S over (1} into two partial sums Z and Z in which x € S

 and x E S respectively and we obtain

 I F(E) - Zf(x) 1 1 1 I i S1|F(I) - f (x) 1 1 1 I + S2|F(I)| + Z2|f(x)|l||

 < c |E| + I « 2-i-J + X j IJ
 ij i.j J

 < e I E ļ + 2«.

 Thus f is Hens tock- Kurzweil integrable to F(E) on E.

 The above proof is very much simpler in view of the one-pöint

 instead of two-points definition of ACG*. This remarkable simplification
 can also be done in many proofs, for example, the proof of the controlled

 convergence theorem [13].

 4. The additlvlty property with respect to the domain of integration

 The integrals defined in Section 3 do not have the additlvlty

 property with respect to the domain of integration, i.e., the

 integrability over each member of a finite division of an interval does

 not imply the integrability over the whole interval. For a

 counterexample, see [7, Example 1; 15, Example 7.2]. This is due to the

 fact that if I is a p- regular sub interval of an interval A, then, in

 general, I n B is not necessarily a p- regular sub interval of B. See the

 following diagram.

 B

 A
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 Ve may overcome this undesirable property by using integrals defined by

 Pfeffer [IS] or Jarnik, Kurzweil and Schwabik [7]. Here we shall only

 give an integral defined by Pfeffer [15, 7.7] with a slight modification
 to Illustrate the idea.

 A function f is said to be HF-integrable on E if there exists a

 number A such that for every e > 0 and every finite family X of planes,

 there exist S(x) > 0 and 0 < p(x) < 1 such that

 |Sf <x) 1 1 1 - A| * e

 whenever {1} is a (p.X)-regular, S- fine partition of E with associate

 points x 6 I and Z sums over (I). An interval I is said to be

 (p.X)-regular if r(I,X) > p(x). The regularity r(I,X) of I relative to K

 is defined by Pfeffer [15, p. 667] as follows : If K - 4, then

 r(ī,K) - r(I); if X consists of a single k- plane H (k-dlmensional linear

 submanifold of Rn) , then r(I,X) - |l n H|k/[d(I)]k whenever I n H x 0, and
 r(I,K) - r(I), otherwise, here |l n H|^ denotes the k-dimensional outer
 measure of I n H. Finally, if K * 0 is arbitrary, then

 r(I,K) - sup{r(I, {H}) ; H € K). For more detail, see [15].

 HF-integrals have the additivity property as shown in the following
 theorem.

 THEOREM 2 [15, 3.6]. Let f be a function on an interval E. Let

 V be a partition of E. If f is HF- integrable on D for each D € D, then f

 is HF-integrable on E and

 f ' ^DeD f'

 Now we shall give a Denjoy type descriptive definition of

 HF-integrals, and hence settle the problem raised by Pfeffer in
 [16, Problem 6.6] .

 F is said to be AC(^(X) if for every e > 0 and every finite family X
 of planes, there exist £(x) > 0, 0 < p(x) < 1 and r¡ > 0 such that for any
 (p ,K)-regular , 6-fine partial partition (I) with associate points x 6 I

 and Z|l| ^ ff, we have S|F(I)| ^ €. Similarly we define ACG^^ .
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 A function f defined on E is said to be DF-integrable on E if there

 is an additive interval function F which is ACG^ on E and F' (x) - f(x)
 for almost all x in E.

 Following the sane ideas of the proof of the equivalence theorem in

 Section 3, we have

 THEOREM 3. A function f is HF-integrable on E iff f is DF- integrable
 there on E.

 We remark that we do not modify the definition of the derivative of F

 in the above integral since ļ I n H ļ - 0 for any plane H and if x € H for
 each HeX, then we may define a p- regular, {-fine Interval 1 with an

 associate point x e I such that I n H - 0 for each H € X.

 The author acknowledges his thanks to the referees for their
 constructive comments.
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